北师版八年级下册分式应用题专题含答案

合集下载

北师大版八年级数学下册第五章分式与分式方程分式方程与分式方程的解法专题(有答案)

北师大版八年级数学下册第五章分式与分式方程分式方程与分式方程的解法专题(有答案)

分式方程分式方程的概念与列分式方程分式方程的概念1.下列关于x 的方程中,是分式方程的是( ) A .3x =B .=2C .=D .3x ﹣2y =12、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个.A 、2B 、3C 、4D 、5列分式方程3.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .﹣=45 B .﹣=45 C .﹣=45 D .﹣=454.某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x 元,根据题意可列方程为 .5.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A ﹣B ﹣C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .练习:6.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .﹣=60B .﹣=60C .﹣=60D .﹣=607.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A ,B ,C 三地在一条直线上,若A 、C 两地距离为2千米,则A 、B 两地之间的距离是 千米.8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.答案:1.B.2.A 3.A.4.=﹣3.5.,6.D.7.12.5或10千米.8.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.分式方程的解法分式方程的解法1.解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)2.方程=的解为()A.x=B.x=C.x=D.x=3.若关于x的分式方程=1的解为x=2,则m的值为()A.5B.4C.3D.24.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=15.分式方程=的解为y=.6.解下列分式方程(1)313221x x+=--(2)11222xx x-=---(3)271326xx x+=++;(4)xxx--=+-34231.7.如图,点A、B在数轴上,它们对应的数分别为﹣2,,且点A、B到原点的距离相等.求x的值.分式方程的增根8.若分式方程有增根,则增根可能是()A.1B.﹣1C.1或﹣1D.09.若关于x的分式方程﹣1=有增根,则m的值为.10.已知关于x的分式方程+=.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.练习:11.已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3C.m>﹣3D.m≥﹣312.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3B.1C.5D.不能确定13.若关于x的方程=﹣有增根,则m的值为.14.若关于x的方程+=无解,则m的值为.15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?16.阅读材料:小华像这样解分式方程=解:移项,得:﹣=0通分,得:=0整理,得:=0分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程﹣=117.阅读理解,并解决问题.分式方程的增根解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现0=0的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是;(2)小明认为解分式方程时,不会产生增根,请你直接写出原因;(3)解方程.。

最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案

最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案

最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。

(2)分式有意义:B ≠0时。

(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。

2、如果分式1x 3-有意义,那么x 的取值范围是 。

3、下列分式中,不论a 取何值总有意义的是 。

A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。

5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。

分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。

yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。

A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。

A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。

5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。

6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。

北师大版八下数学《分式的乘除法》典型例题1(含答案)

北师大版八下数学《分式的乘除法》典型例题1(含答案)

《分式的乘除法》典型例题例1 下列分式中是最简分式的是( )A .264ab B .b a a b --2)(2 C .y x y x ++22 D .yx y x --22 例2 约分(1)36)(12)(3a b a b a ab -- (2)44422-+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除)(1)22563ab cd c b a -⋅- (2)422643mn n m ÷- (3)233344222++-⋅+--a a a a a a (4)22222222b ab a b ab b ab b ab a +-+÷-++ 例4 计算(1))()()(4322xy xy y x -÷-⋅- (2)xx x x x x x --+⨯+÷+--36)3(446222 例5 化简求值22232232b ab b a b b a ab a b a b +-÷-+⋅-,其中32=a ,3-=b . 例6 约分(1)3286b ab ; (2)222322xy y x y x x --例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式.(1)44422-+-x x x ; (2)36)(4)(3a b b a a --; (3)222yy x -; (4)882122++++x x x x 例8 通分:(1)223c a b, ab c 2-,cb a 5 (2)a 392-,a a a 2312---,652+-a a a参考答案例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D.故选择C.解 C例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分.解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-⋅--⋅-=b a a b b a b a a 3)(41b a b --= (2)44422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)221(6)3432(bb b b -+=⋅-⋅+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成164mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算.解:(1)22563ab cd c b a -⋅-2253)6(ab c cd b a ⋅--=bad 52= (2)422643mn n m ÷-743286143n m mn n m -=⋅-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 122--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2222))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除法化成乘法,而根据分式乘法法则,是先把分子、分母相乘,化成一个分式后再进行约分.在实际运算时,可以先约分,再相乘,这样简便易行,可减少出错.例4 分析:(1)对于含有分式乘方,乘除的混合运算,运算顺序是先乘方后乘除,一般首先确定结果的符号,再做其他运算,(2)进行分式的乘除混合运算时,要注意,当分子、分母是多项式时,一般应分解因式,并在运算运程中约分,使运算简化,因式,除式(或被除式)是整式时,可以看作分母是“1”的式子,然后按照分式的乘除法法则计算,这样可以减少错误.解:(1)原式2436221)1()(x xy x y y x =-⋅-⋅= (2)原式x x x x x x --+⨯+⨯--=3)2)(3(31)2()3(22 x-=22 例5 分析 本题要求先化简再求值,实际上就是先将分子、分母分别分解因式,然后约分,把分式化为最简分式以后再代入求值.解 原式=)())((23223b a b b a b a b b a ab a b a b +-+÷-+⋅- ))(()()(32b a b a b a b b b a a b a b -++⨯-⨯-= ba -= 当3,32-==b a 时, 原式92332-=-= 例6 解 (1).4328268623232ba b b b ab b ab =÷÷= (2)222322xy y x y x x --)2()2(2y x xy y x x --=(分子、分母分解因式) yx =(约去公因式)说明 1.当分子、分母是单项式时,其公因式是系数的最大公约数与相同字母的最低次幂的积.2.当分子、分母是多项式时,先分解因式,再约去公因式.例7 分析 (1)∵44422-+-x x x )2)(2()2(2-+-=x x x ,分子、分母有公因式)2(-x ,所以它不是最简分式;(2)显然也不是最简分式;(3)中))((22y x y x y x -+=-与2y 没有公因式;(4)中22)1(12+=++x x x ,222)2(2)44(2882+=++=++x x x x x ,分子、分母中没有公因式.解 222y y x -和8821222++++x x x x 是最简分式; 44422-+-x x x 和63)(4)(3a b b a a --不是最简分式; 化简(1)44422-+-x x x .22)2)(2()2(2+-=-+-=x x x x x (2)63)(4)(3a b b a a --336)(43)(4)(3a b a a b a b a -=--= 例8 分析 (1)中各分母的系数的绝对值的最小公倍数为30,各字母a 、b 、c 因式的最高次幂分别是2a 、2b 、2c ,所以最简公分母是22230c b a .(2)中分母为多项式,因而先把各分母分解因式,)3(339a a -=-;)3)(1(232-+=--a a a a ;)3)(2(652--=+-a a a a ,因而最简公分母是).3)(2)(1(3--+a a a解 (1)最简公分母为23230c b a .223ca b 23243223301010310c b a b b c a b b =⋅⋅=, abc 2-232322222301515215c b a c ab c ab ab c ab c -=⋅⋅-=cba 52323232306656cb ac a c a cb c a a -=⋅⋅= (2)最简公分母是)3)(2)(1(3--+a a aa 392-)2)(1()3(3)2)(1(2)3(33-+⋅--+⋅-=-=a a a a a a )3)(2)(1(3)2)(1(2--+-+-=a a a a a aa a 2312---)2(3)3)(1()2(3)1()3)(1(1-⋅-+-⋅-=-+-=a a a a a a a a )3)(2)(1(3)2)(1(3--+--=a a a a a 652+-a a a )1(3)3)(2()1(3)3)(2(+⋅--+⋅=--=a a a a a a a a )3)(2)(1(3)1(3--++=a a a a a 说明 1.通分过程中必须使得化成的分式与其原来的分式相等.2.通分的根据是分式的基本性质,分母需要乘以“什么”,分子也必须随之乘以“什么”,且不漏乘.3.确定最简公分母是通分的关键,当公分母不是“最简”时,虽然也能达到通分的目的,但会使运算变得繁琐,因而应先择最简公分母.。

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。

2020-2021学年北师大版八年级数学下册 第5章《分式与分式方程》实际应用综合专练(二)

2020-2021学年北师大版八年级数学下册 第5章《分式与分式方程》实际应用综合专练(二)

北师大版八年级下册第5章《分式与分式方程》实际应用综合专练(二)1.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?2.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆3.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.4.高铁的蓬勃发展为我们的出行带来了便捷.已知某市到天津的路程约为900km,一列动车组列车的平均速度是特快列车的1.5倍,运行时间比特快列车少2h,求该列动车组列车的平均速度.(1)设特快列车的速度为xkm/h,则用含x的式子把表格补充完整;路程(km)速度(km/h)时间(h)动车组列车900特快列车900 x(2)列出方程,完成本题解答.5.为了防止感染新冠病毒,小明家要购买A,B两种型号的口罩,每个A型号口罩比B型号口罩的单价少0.3元,且用45元购买的A型口罩与用60元购买的B型口罩数量相同,求两种口罩的单价.6.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.7.德国著名心理学家韦特海默(M•Wertheimer,1880﹣1943)曾写给爱因斯坦(A•Einstein,1879﹣1955)一道数学题:一辆老破车要走4km的路,上山和下山各2km.这辆车太旧了,它上山的速度小于25km/h,下山的速度是上山的1.5倍.问这辆车往返的平均速度能否达到30km/h?8.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.设该公司购买的A型芯片的单价为x元.(1)根据题意,用含x的式子填写下表:单价(元)数量(条)总费用(元)A型芯片x3120B型芯片4200(2)根据题意列出方程,求该公司购买的A、B型芯片的单价各为多少元?9.小丽乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵;路线二的全程是30千米,平均车速比走路线一的平均车速能提高50%,因此能比路线一节省10分钟到达.那么选走路线二去体育场需要多少时间?10.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?参考答案1.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.2.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.3.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w最大=﹣10×15+585=435(元),则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.4.解:(1)设特快列车的速度为xkm/h,则动车组列车的平均速度为1.5xkm/h,∴乘坐动车组列车需要(h),乘坐特快列车需要(h).故答案为:1.5x;;.(2)依题意得:﹣=2,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴1.5x=225.答:该列动车组列车的平均速度为225km/h.5.解:设A型号口罩的单价为x元,则B型号口罩的单价为(x+0.3)元,由题意得:=,解得:x=0.9,经检验:x=0.9是原方程的根,且符合题意,∴x+0.3=1.2.答:A、B两种型号口罩的单价分别为0.9元、2.5元.6.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.7.解:设上山的速度为xkm/h,则下山的速度为1.5xkm/h,假设这辆车往返的平均速度能达到30km/h,由题意得:+=,解得:x=25,经检验,x=25是原分式方程的解,∵上山的速度小于25km/h,∴x=25不合题意舍去,答:这辆车往返的平均速度不能达到30km/h.8.解:(1)由题意得:A型芯片的条数为条,B型芯片单价为(x+9)元,则B型芯片的条数为条;故答案为:;x+9,;(2)由题意得:=,解得:x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=35.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.9.解:设小丽走路线一的平均速度是x千米/小时,则小丽走路线二的平均速度是(1+50%)x千米/小时,由题意,得:﹣=,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴(1+50%)x=45,∴=(小时)=40分钟,答:选走路线二去体育场需要40分钟.10.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.。

八年级数学分式综合应用(分离整式法)(北师版)(含答案)

八年级数学分式综合应用(分离整式法)(北师版)(含答案)

分式综合应用(分离整式法)(北师版)一、单选题(共6道,每道16分)
1.若分式的值为正整数,则整数x的值为( )
A.1或-3
B.0或1
C.-2或-3
D.0或1或-2或-3
答案:B
解题思路:
试题难度:三颗星知识点:分式取值分析
2.若x取整数,则使分式的值为整数的x值有( )
A.3个
B.4个
C.6个
D.8个
答案:B
解题思路:
试题难度:三颗星知识点:分式取值分析
3.若x取整数,则分式能取到的最大整数为( )
A.1
B.4
C.7
D.10
答案:D
解题思路:
试题难度:三颗星知识点:分式取值分析
4.若分式的值为整数,则整数x的值为( )
A.3或5或-1或1
B.3或5
C.3或1
D.5
答案:A
解题思路:
试题难度:三颗星知识点:分式取值分析
5.已知x为整数,且分式的值为整数,则x可取的值有( )
A.1个
B.2个
C.3个
D.4个
答案:C
解题思路:
试题难度:三颗星知识点:分式取值分析
6.若分式的值为整数,则整数x可取的值为( )
A.3或4
B.0或1或3或4
C.-1或0
D.-1或0或-3或-4
答案:D
解题思路:
试题难度:三颗星知识点:分式取值分析。

北师大版八年级数学下册第五章分式与分式方程分式方程与分式方程的解法专题(有答案)

北师大版八年级数学下册第五章分式与分式方程分式方程与分式方程的解法专题(有答案)

分式方程分式方程的概念与列分式方程分式方程的概念1.下列关于x 的方程中,是分式方程的是( ) A .3x =B .=2C .=D .3x ﹣2y =12、下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+−−−π其中分式共有( )个. A 、2 B 、3 C 、4 D 、5列分式方程3.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .﹣=45 B .﹣=45 C .﹣=45 D .﹣=454.某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x 元,根据题意可列方程为 .5.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A ﹣B ﹣C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .练习:6.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .﹣=60B .﹣=60C .﹣=60D .﹣=607.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,已知A ,B ,C 三地在一条直线上,若A 、C 两地距离为2千米,则A 、B 两地之间的距离是 千米.8.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.答案:1.B.2.A 3.A.4.=﹣3.5.,6.D.7.12.5或10千米.8.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.分式方程的解法分式方程的解法1.解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)2.方程=的解为()A.x=B.x=C.x=D.x=3.若关于x的分式方程=1的解为x=2,则m的值为()A.5B.4C.3D.24.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=15.分式方程=的解为y=.6.解下列分式方程(1)313221x x+=−−(2)11222xx x−=−−−(3)271326xx x+=++;(4)xxx−−=+−34231.7.如图,点A、B在数轴上,它们对应的数分别为﹣2,,且点A、B到原点的距离相等.求x的值.分式方程的增根8.若分式方程有增根,则增根可能是()A.1B.﹣1C.1或﹣1D.09.若关于x的分式方程﹣1=有增根,则m的值为.10.已知关于x的分式方程+=.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.练习:11.已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3C.m>﹣3D.m≥﹣312.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3B.1C.5D.不能确定13.若关于x的方程=﹣有增根,则m的值为.14.若关于x的方程+=无解,则m的值为.15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?16.阅读材料:小华像这样解分式方程=解:移项,得:﹣=0通分,得:=0整理,得:=0分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程﹣=117.阅读理解,并解决问题.分式方程的增根解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现0=0的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是;(2)小明认为解分式方程时,不会产生增根,请你直接写出原因;(3)解方程.答案:1.C . 2.C . 3.B . 4.D . 5.﹣3 6.(1)67=x (2)2=x (3)61=x (4)1=x 7.解:根据题意得:,去分母,得x =2(x +1),去括号,得x =2x +2,解得x =﹣2经检验,x =﹣2是原方程的解. 8.C . 9.3.10.解:(1)去分母得:2(x +2)+mx =2(x ﹣2)整理,得mx =﹣8. 若增根为 x =2,则2m =﹣8.得m =﹣4;(2)若原分式方程有增根,则(x +2)(x ﹣2)=0.所以 x =﹣2 或 x =2. 当 x =﹣2 时,﹣2m =﹣8.得m =4. 当 x =2 时,2m =﹣8.得m =﹣4. 所以若原分式方程有增根,则m =±4.(3)由(2)知,当 m =±4 时,原分式方程有增根,即无解;当 m =0 时,方程 mx =﹣8 无解. 综上知,若原分式方程无解,则 m =±4 或 m =0. 11.A . 12.A . 13.±1. 14.﹣1或5或﹣. 15.解:(1)方程两边同时乘以(x ﹣2)得5+3(x ﹣2)=﹣1解得x =0 经检验,x =0是原分式方程的解. (2)设?为m ,方程两边同时乘以(x ﹣2)得m +3(x ﹣2)=﹣1由于x =2是原分式方程的增根, 所以把x =2代入上面的等式得m +3(2﹣2)=﹣1,m =﹣1 所以,原分式方程中“?”代表的数是﹣1.16.解:(1)小华这种解分式方程的新方法,主要依据是分式的值为0即分子为0且分母不为0, 故答案为:分式的值为0即分子为0且分母不为0. (2)﹣﹣1=0,﹣﹣=0,=0,=0, 则﹣4(x +2)=0, 解得:x =﹣2,检验:x =﹣2时,分母为0,分式无意义, 所以x =﹣2是增根,原分式方程无解.17.解:(1)x=2;故答案为:x=2;(2)∵原分式方程的最简公分母为2(x2+1),而2(x2+1)>0,∴解这个分式方程不会产生增根.(3)方程两边同乘(x﹣1)(x+1),得2(x+1)+(x﹣1)=4解得:x=1经检验:当x=1时,(x﹣1)(x+1)=0所以,原分式方程无解.。

分式综合应用(裂项相消、设参法)(北师版)(含答案)

分式综合应用(裂项相消、设参法)(北师版)(含答案)

学生做题前请先回答以下问题问题1:分式运算的基础是什么?问题2:解有条件的分式化简求值题目,既要盯准目标,又要抓住条件;既要根据目标变换条件,又要根据条件来调整目标.例如:___________,适用于分母中两因式之差相同;___________,适用于已知条件为连比的形式;分式综合应用(裂项相消、设参法)(北师版)一、单选题(共8道,每道12分)1.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:裂项相消2.( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:裂项相消3.已知,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:裂项相消4.已知,则的值为( )A. B.9C.-9D.答案:B解题思路:试题难度:三颗星知识点:分式的化简求值5.已知x:y=3:2,那么下列各式中不正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分式的化简求值6.已知x:y:z=2:(-1):1,则的值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的化简求值7.已知,且2x-y-2z=22,则5x-3y+z的值为( )A.1B.-1C.2D.-2答案:D解题思路:试题难度:三颗星知识点:分式的化简求值8.已知a,b,c是△ABC的三边长,,且a+b+c=12,则△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形答案:D解题思路:试题难度:三颗星知识点:分式综合应用。

期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册

期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册

八年级数学北师大版下册期末备考:第5章《分式方程》实际应用解答专项(二)1.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?2.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.3.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?4.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?5.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?6.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?7.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?8.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?9.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?10.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)11.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?12.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?13.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?14.某商家预测某种粽子能够畅销,就用6000元购进了一批这种粽子,上市后销售非常好,商家又用14000元购进第二批这种粽子,所购数量是第一批购进数量的2倍,但每袋进价多了5元.(1)该商家两批共购进这种粽子多少袋?(2)由于储存不当,第二批购进的粽子中有10%腐坏,不能售卖.该商家将两批粽子按同一价格全部销售完毕后获利不低于8000元,求每袋粽子的售价至少是多少元?15.某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳.面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进手机壳按同一价格销售,全部售完后,为使得获利不少于2000元,那么销售单价至少为多少?参考答案1.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.2.解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.3.解:(1)设第一批购进书包的单价为x元.依题意,得,整理,得20(x+4)=21x,解得x=80.检验:当x=80时,x(x+4)≠0,∴x=80是原分式方程的解.答:第一批购进书包的单价为80元,(2)=300+1050=1350答:商店共盈利1350元.4.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.5.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.6.解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.7.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.8.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:+=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(+)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.9.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.10.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.11.解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.12.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.13.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.14.解:(1)设该商家第一次购进这种粽子x袋,则第二次购进2x袋,依题意,得:﹣=5,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意,∴x+2x=600.答:该商家两批共购进这种粽子600袋.(2)设每袋粽子的售价是y元,依题意,得:[200+200×2×(1﹣10%)]y﹣6000﹣14000≥8000,解得:y≥50.答:每袋粽子的售价至少是50元.15.解:(1)设第一批手机壳进货单价为x元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批手机壳的进货单价是8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥2000,解得:m≥12.答:销售单价至少为12元.。

北师大版八年级数学下册第五章分式与分式方程分式方程的应用(有答案)

北师大版八年级数学下册第五章分式与分式方程分式方程的应用(有答案)

分式方程的应用列分式方程解决实际问题1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=2.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠20元.若该校花费4400元采购款在B商家购买餐桌的张数等于花费4000元采购款在A商家购买餐桌的张数,则A 商家每张餐桌的售价为()A.197元B.198元C.199元D.200元3.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克已知第二块试验田每亩的产量比第一块多200千克若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是()A.=B.=C.=D.=4.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.5.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.6.我市从今年1月1日起调整居民用水价格,每立方米水费上涨原价的25%.小明家去年10月份的水费是15元,而今年8月份的水费则是30元.已知小明家今年8月份的用水量比去年10月份的用水量多4立方米,求该市今年居民用水的价格每立方米多少元?()7.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.8.端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?9.某工厂有甲、乙两台机器加工同一种零件,已知甲每小时加工的零件数与乙每小时加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求两台机器每小时分别加工零件多少个? 设甲机器每小时加工x 个零件: (1)用含x 的代数式填表;每小时加工个数 (个/小时)加工时间加工的总个数(个)甲机器 x 80 乙机器100(2)求x 的值. 练习:10.2015年8月31日慧聪网报道,爱唱响内蒙音乐夏令营9月开启,某学校组织部分学生参加夏令营,李老师从夏令营咨询处带回如图所示的两条信息,则原来报名参加夏令营的学生有( )A .100人B .150人C .200人D .250人11.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A .8B .7C .6D .512.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.13.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?14.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?15.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.16.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.17.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.答案:1.A . 2.D . 3.C . 4.4. 5.80. 6.每立方米元. 7.10.8.解:设这种粽子的标价是x 元/个,则节后的价格是0.6x 元/个, 依题意,得:+=27,解得:x =8,经检验,x =8是原方程的解,且符合题意.答:这种粽子的标价是8元/个. 9.解:(1)填表如下:每小时加工个数 (个/小时)加工时间加工的总个数(个)甲机器 x 80 乙机器36﹣x100故答案为,36﹣x ,;(2)设甲机器每小时加工x 个零件,根据题意得,=,解得:x =16.经检验,x =16是原方程的解.所以x =16. 10.A . 11.A .12.解:设票价为x 元,由题意得,=+2,解得:x =60,经检验,x =60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.13.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元, 依题意,得:=,解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元. (2)设大本作业本购买m 本,则小本作业本购买2m 本, 依题意,得:0.8m +0.5×2m ≤15,解得:m ≤.∵m 为正整数,∴m 的最大值为8.答:大本作业本最多能购买8本.14.解:(1)设乙工程队单独做需要x 天完成任务,由题意,得+×20=1,解得:x =100,经检验,x =100是原方程的根. 答:乙工程队单独做需要100天才能完成任务; (2)根据题意得 +=1. 整理得 y =100﹣x .∵y <70,∴100﹣x <70.解得 x >12.又∵x <15且为整数,∴x =13或14.当x =13时,y 不是整数,所以x =13不符合题意,舍去. 当x =14时,y =100﹣35=65.答:甲队实际做了14天,乙队实际做了65天. 15.解设他原来驾车的速度为x km/h.根据题意得xxx 6.121005.02100-++= 解得30=x 经检验30=x 是原分式方程的解 答:某人原来驾车的速度为30km/h16.解设一片国槐树叶一年的平均滞尘量为x 毫克. 根据题意得xx 550421000=- 解得22=x 经检验22=x 是原分式方程的解 答:一片国槐树叶一年的平均滞尘量为22毫克. 17.解:设该地驻军原来每天加固的米数为x 米. 根据题意得926004800600=-+xx 解得300=x 经检验300=x 是原分式方程的解 答:该地驻军原来每天加固的米数为300米.。

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)

一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b +A .4B .3C .2D .13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .65.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( )A .112m ≤< B .312m ≤<C .322m ≤< D .522m ≤<7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-9.若ab ,则下列分式化简中,正确的是( )A .22a ab b+=+ B .22a ab b -=- C .33a a b b = D .22a a b b=10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( )A .12B .2C .12-D .2-12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 14.已知2a b=,则a ba b +-=_____.15.关于x 的分式方程211mx =-+无解,则m 的取值是_______. 16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________;(2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a ,…其中第n 个分式是__________(n 为正整数).18.已知215a a+=,那么2421a a a =++________. 19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.20.计算:22x x xyx y x -⋅=-____________________. 三、解答题21.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送) 22.解下列分式方程(1)42122x x x x ++=--; (2)()()21112x x x x =+++-. 23.解方程: (1)81877--=--x x x; (2)21124x x x -=--. 24.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=-- (5)2124111x x x +=+-- 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b,故不符合题意;【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.A解析:A 【分析】分母是整式且整式中含有字母,根据这点判断即可. 【详解】 ∵3x中的分母是3,不含字母, ∴3x不是分式; ∵1n中的分母是n ,是整式,且是字母, ∴1n是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b+中的分母是15,不含字母, ∴15a b+不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y是分式;∵()22aba b +中的分母是2()a b +,是整式,含字母a ,b ,∴()22aba b +是分式;共有4个, 故选A . 【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.3.D解析:D设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C 【分析】先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】∵211x x ++=22-12(1)-112111x x x x x ++==-+++,又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C . 【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.A解析:A 【分析】根据新定义,把2x y *=转化为分式的运算即可. 【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xyx y-得, 122xy xy =, 故选:A . 【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.3≤b<4【分析】首先解分式方程求得a的值然后根据不等式组的解集确定x的范围再根据只有3个整数解确定b的范围【详解】解:解方程两边同时乘以a得:2-a+2a=3解得:a=1∴关于x的不等式组则解集是解析:3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.3【分析】首先由可设a=2kb=k然后将其代入即可求得答案【详解】解:∵∴设a=2kb=k∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k法设出未知数解析:3【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案. 【详解】 解:∵2a b=, ∴设a =2k ,b =k , ∴a b a b +-=22k k k k+-=3. 故答案为:3.【点睛】 本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键. 16.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+, 整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解.【点睛】本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.26.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:()()1.5800.3800.534m mm m-⎧⎪⎨-+≤⎪⎩≥,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键;。

5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)

5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)

5.4 第3课时 列分式方程解应用题知识点 分式方程的应用1.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .80(1+35%)x-80x =40B .80(1+35%)x -80x =40C .80x -80(1+35%)x =40D .80x -80(1+35%)x =402.甲、乙两船从相距300 km 的A,B 两地同时出发,相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h .若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A .180x +6=120x -6B .180x -6=120x +6C .180x +6=120x D .180x =120x -63.某市为治理污水,需要铺设一条全长为550 m 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工作效率比原计划增加10%,结果提前5天完成这一任务.则原计划每天铺设 m .4.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.5.刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40 kg .这种大米的原价是每千克多少元?6.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进,这样120 t水可多用3天,求现在每天用水量是多少后,现在每天用水量是原来每天用水量的45吨.7.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家每张餐桌的售价优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )A.117元B.118元C.119元D.120元8.某校学生去距学校20 km的白水寺参观,一部分学生骑自行车先走,过了40 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,则骑车学生的速度是 km/h.9.某公司会计欲查询乙商品的进价,发现进货单已被墨水污染(如下表).进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.10.为厉行节能减排,倡导绿色出行,2018年3月“共享单车”登陆某市中心城区.某公司拟在甲、乙两个街道社区投放一批“共享单车”,这批“共享单车”包括A,B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A,B两种款型“共享单车”各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元/辆,A,B两种款型“共享单车”的成本单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“共享单车”,乙街区每1000人投放8a+240辆“共享单车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两a个街区共有15万人,试求a的值.参考答案1.A2.A3.10 [解析] 设原计划每天铺设x m,实际施工时每天铺设(1+10%)x m,由题意,得550x -550(1+10%)x=5,解得x=10.经检验,x=10是原分式方程的根,且符合题意,所以原计划每天铺设10 m .4.解:设乙每小时做x 个零件,则甲每小时做(x+6)个零件.根据题意,得90x +6=60x ,解得x=12.经检验,x=12是原方程的根,且符合题意,故乙每小时做12个零件.5.解:设这种大米的原价是每千克x 元.根据题意,得105x +1400.8x =40,解得x=7.经检验,x=7是原方程的根,且符合题意.故这种大米的原价是每千克7元.6.解:设原来每天用水量是x t,则现在每天用水量是45x t .依题意,得12045x -120x =3,解得x=10.经检验,x=10是原方程的根,且符合题意,∴45x=8.故现在每天用水量是8 t .7.A [解析] 设A 商家每张餐桌的售价为x 元,则B 商家每张餐桌的售价为(x+13)元.根据题意,得20000x +13=18000x ,解得x=117.经检验,x=117是原方程的根,且符合题意.故选A .8.15 [解析] 设骑车学生的速度为x km/h,则汽车的速度为2x km/h .根据题意,得20x -202x =4060,解得x=15.经检验,x=15是原方程的根,且符合题意.故答案为15.9.解:设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件.依题意,得7200(1+50%)x -3200x =40,解得x=40.经检验,x=40是原方程的根,且符合题意,∴(1+50%)x=60,3200x=80,7200(1+50%)x =120.故甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.补全进货单略.10.解:问题1:设A 型车的成本单价为x 元/辆,则B 型车的成本单价为(x+10)元/辆.依题意,得50x+50(x+10)=7500,解得x=70,所以x+10=80.故A,B 两种款型“共享单车”的单价分别是70元/辆和80元/辆.问题2:由题意,得1500a ×1000+ 1200 8a +240a×1000=150000,解得a=15.经检验,a=15是所列方程的根,且符合题意.故a 的值为15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题专题1、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要()A.6天B.4天C.3天D.2天2、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.66602x x=-B.66602x x=-C.66602x x=+D.66602x x=+3、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程()A.9001500300x x=+B.9001500300x x=-C.9001500300x x=+D.9001500300x x=-4、我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).5、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.6、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率 污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?7、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的通过这段对话,请你求出该地驻军原来每天加固的米数.加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x 2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元.8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分 341040%1.05x x-= 4分 解得56x ≈ 5分经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨)(2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨. 10分4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分 根据题意,得 10x +1245x =1 ………………………………… 4分 解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x ---⨯+=⨯-%%%%%. 5分解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得: x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分解得:5x = 经检验5x =是原方程的解 6分 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 8分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分 111220x x +=, 3分 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意.5分 ∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分 根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分18、 20。

相关文档
最新文档