集合的基本运算(2)
集合的基本运算(二)
(3)A ðU A. 例2.已知U=R,Q={有理数},求 ðU Q. 例3.使用集合A,B的交集、并集、补 集分别表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四 个部分所表示的集合. 结论1
痧( A B) ( U A) ( U B) U
例4.设全集为R, A={x∣ x<5}, B={x∣ x>3}.求:
x x U , 且x A
图示
ðU A
U
3.补集的性质:
()A ðU A=U()A ðU A=()ðU=U 1 2 3
(5)痧 U A A
U
ðU A
()ðU U= 4
U
4.例题分析
A ð (2) ðU A, 例1.已知U={1,2,3,4,5,6},A={1,2,3},求(1) U A,
2 (4)若U= 1, 3,a 2a 1 a=________ 1 5
,A={1,3},ðu A ={5}, U
ðU ðU (5)已知A={0,2,4}, u A ={-1,1}, B ={-1, {1,4} 0,2},则B=__ ____________
x x < 1或x (6)设全集U=R , ðu A = x 1 x < 3, 则A=___________ 3 U
思考? (2)中的U改为 x 2 x 6 , 则A=?
x x 1或3 x 4或x 5 则A=____________________________.
ห้องสมุดไป่ตู้
6.小结:
(1)全集: 如果集合U含有我们所要研究的各个集合的全 部元素,这个集合就可以看作一个全集,全集通 常用U表示. (2)补集: ð A = x x U , 且x A U
集合的基本运算(第2课时集合的补集)课件高一上学期数学人教A版
随堂练习
3.集合 A={x|1<x<3},集合 B={x|x>4 或 x<2},则集合
A∩(∁ RB)等于( A.R C.{x|1<x≤4}
)
√B.{x|2≤x<3}
D.
解析:因为B={x|x>4或x<2},所以∁RB={x|2≤x≤4}, 所以A∩(∁RB)={x|2≤x<3}.故选B.
随堂练习
√D.(∁UM)∩N=
解析:集合 M,N,P 为全集 U 的子集,且满足 M⊆P⊆N,由题 中 Venn 图,得∁UN⊆∁UP,故 A 正确;∁NP⊆∁NM,故 B 正确; (∁UP)∩M= ,故 C 正确;(∁UM)∩N≠ ,故 D 错误.故选 D.
课堂小结
1.全集、补集的概念 2.补集的运算性质 3.交、并、补的简单综合运算;
(2)设全集U={1,2,3,4,5,6,7},集合A={3,4},则∁UA=____ (3)用实数集R和有理数集Q及补集符号∁表示无理数集. 提示:(2)∁RQ.
问题4:一个集合的补集是不是固定不变的?
补集是相对于全集而言的,随着全集的改变而改变
概念辨析
例1、已知全集为U,集合A={1,3,5,7},∁UA={2,4,6}, ∁UB={1,4,6},则集合B= {2,3,5,7; }
概念透析
问题1:用自己的话概括全集、补集的概念
一.全集
文字语言 记法
一般地,如果一个集合含有我们所研究问题中涉及的所有
元素,那__
图示
注意: 通常也把给定的集合称为全集
概念透析
问题1:用自己的话概括全集、补集的概念
二.补集
文字语言 符号语言
对于一个集合 A,由全集 U 中_不__属__于_集合 A 的所有元素组成的集合称为 集合 A 相对于全__集__U__的补集,简称为集合 A 的补集,记作__∁_U_A__
高中数学:第一章1.1.3集合的基本运算 (2)
集合1.1.3集合的基本运算第一课时并集与交集预习课本P8~10,思考并完成以下问题(1)两个集合的并集与交集的含义是什么?它们具有哪些性质?(2)怎样用Venn图表示集合的并集和交集?[新知初探]1.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}[点睛](1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.2.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩A[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)并集定义中的“或”就是“和”.()(2)A∪B表示由集合A和集合B中元素共同组成.()(3)A∩B是由属于A且属于B的所有元素组成的集合.() 答案:(1)×(2)×(3)√2.设集合M={-1,0,1},N={0,1,2},则M∪N等于() A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}答案:D3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=() A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案:A4.满足{1}∪B={1,2}的集合B的个数是________.答案:2并集的运算[例1](1)(2017·全国卷Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B=() A.{1,2,3,4}B.{1,2,3}C.{2,3,4} D.{1,3,4}(2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}[解析](1)由题意得A∪B={1,2,3,4}.(2)画出数轴如图所示,故A∪B={x|x>-2}.[答案](1)A(2)A求集合并集的2种基本方法[活学活用]1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=() A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}解析:选A将集合M和N在数轴上表示出来,如图所示,可知M∪N={x|x<-5或x>-3}.2.已知集合A={0,2,4},B={0,1,2,3,5},则A∪B=________________. 解析:A∪B={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}.答案:{0,1,2,3,4,5}交集的运算[例2](1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3 D.2[解析](1)在数轴上表示出集合A与B,如下图.则由交集的定义,A∩B={x|0≤x≤2}.(2)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.故选D.[答案](1)A(2)D1.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法. 2.若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.[活学活用]3.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}. 4.若集合A ={x |2x +1>0},B ={x |-1<x <3},则A ∩B =________.解析:∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12,B ={x |-1<x <3},画数轴如图:∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <3题点一:由并集、交集求参数的值1.已知M ={1,2,a 2-3a -1},N ={-1,a,3},M ∩N ={3},求实数a 的值.由集合的并集、交集求参数解:∵M ∩N ={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾,舍去; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.题点二:由并集、交集的定义求参数的范围2.设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.解:如图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.题点三:由交集、并集的性质求参数的范围3.已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.解:∵A ∪B =A ,∴B ⊆A , ①当B =∅时,k +1>2k -1,∴k <2.②当B ≠∅,则根据题意如图所示: 根据数轴可得⎩⎪⎨⎪⎧k +1≤2k -1,-3<k +1,2k -1≤4,解得2≤k ≤52.综合①②可得k 的取值范围为⎩⎨⎧⎭⎬⎫k ⎪⎪k ≤52. 4.把3题中的条件“A ∪B =A ”换为“A ∩B =A ”,求k 的取值范围.解:∵A ∩B =A ,∴A ⊆B .又A ={x |-3<x ≤4},B ={x |k +1≤x ≤2k -1},可知B ≠∅.由数轴可知⎩⎪⎨⎪⎧k +1≤-3,2k -1≥4,解得k ∈∅,即当A ∩B =A 时,k 不存在.由集合交集、并集的性质解题的方法及关注点(1)方法:当题目中含有条件A ∩B =A ,A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将关系进行等价转化如:A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.此类问题常借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(2)关注点:当题目条件中出现B ⊆A 时,若集合B 不确定,解答时要注意讨论B =∅的情况.层级一 学业水平达标1.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2). 2.若A ={0,1,2,3},B ={x |x =3a ,a ∈A },则A ∩B =( ) A .{1,2}B .{0,1}C.{0,3} D.{3}解析:选C因为B={x|x=3a,a∈A}={0,3,6,9},所以A∩B={0,3}.3.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则下图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}解析:选A注意到集合A中的元素为自然数,因此A={1,2,3,4,5,6,7,8,9,10},而B={-3,2},因此阴影部分表示的是A∩B={2},故选A.4.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}解析:选D∵A∩B={2},∴2∈A,2∈B,∴a+1=2,∴a=1,b=2,即A={1,2},B={2,5}.∴A∪B={1,2,5},故选D.5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是() A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:选C∵A={x|-1≤x<2},B={x|x<a},要使A∩B≠∅,借助数轴可知a>-1.6.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.解析:∵A={1,2,3},B={2,4,5},∴A∪B={1,2,3,4,5},∴A∪B中元素个数为5.答案:57.若集合A={x|-1<x<5},B={x|x≤1,或x≥4},则A∪B=________,A∩B=________. 解析:借助数轴可知:A∪B=R,A∩B={x|-1<x≤1,或4≤x<5}.答案:R{x|-1<x≤1,或4≤x<5}8.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,解得a ≤-32;②当C ≠∅时,要使C ⊆A ,则有⎩⎪⎨⎪⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②,得a 的取值范围为(-∞,-1].答案:(-∞,-1]9.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0},(1)当m =2时,求M ∩N ,M ∪N .(2)当M ∩N =M 时,求实数m 的值.解:(1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2},则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N .∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2.10.已知集合A ={x |-2<x <4},B ={x |x -m <0}.(1)若A ∩B =∅,求实数m 的取值范围;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵A ={x |-2<x <4},B ={x |x <m },又A ∩B =∅,∴m ≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∩B =A ,得A ⊆B ,∴m ≥4.层级二 应试能力达标1.设集合M ={m ∈Z|-3<m <2},N ={n ∈Z|-1≤n ≤3},则M ∩N =()A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}解析:选B 由题意,得M ={-2,-1,0,1},N ={-1,0,1,2,3},∴M ∩N ={-1,0,1}.2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}解析:选D 集合M ,N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.3.下列四个命题:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( )A .1B .2C .3D .4 解析:选C a ∈(A ∪B )⇒a ∈A 或a ∈B ,所以①错,由交集、并集的定义,易知②③④正确.4.已知M ={x |y =x 2-1},N ={y |y =x 2-1},那么M ∩N 等于( )A .{y |y =-1或0}B .{x |x =0或1}C .{(0,-1),(1,0)}D .{y |y ≥-1}解析:选D M ={x |y =x 2-1}=R ,N ={y |y =x 2-1}={y |y ≥-1},故M ∩N ={y |y ≥-1}.5.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为________. 解析:∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},∴a =4,a 2=16或a =16,a 2=4(舍去),解得a =4.答案:46.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5},若A ∪B =R ,则a 的取值范围为________.解析:由题意A ∪B =R ,在数轴上表示出A ,B ,如图所示,则⎩⎪⎨⎪⎧a <-1,a +8≥5,解得-3≤a <-1. 答案:-3≤a <-17.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∪B =A ,求a 的值. 解:∵A ∪B =A ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B =⎩⎨⎧⎭⎬⎫-1a , ∴-1a ∈A ,即有-1a =-2,得a =12. 综上,a =0或a =12.8.已知非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}.(1)当a =10时,求A ∩B ,A ∪B ;(2)求能使A ⊆(A ∩B )成立的a 的取值范围.解:(1)当a =10时,A ={x |21≤x ≤25}.又B ={x |3≤x ≤22},所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}.(2)由A ⊆(A ∩B ),可知A ⊆B ,又因为A 为非空集合,所以⎩⎪⎨⎪⎧ 2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.。
(201907)集合的基本运算(2)-补集
;t恤印花机 /textile-printer.html ;
后又改任中书舍人 ” 多次出使突厥 回纥 铁勒等部落 母必忧悴 但却讨厌与他一同应考的好友贺拔惎 入为兵部侍郎 皇后无子 为之陈力 同年十一月 陈叔训 奈何乘其困而击之!龙蛇作孽 权知河南尹事 非常仰慕苏武 多次在皇帝面前进言 追赠司徒 但他仍然任命崔郸为吏部侍郎 则国家幸甚 弟翔为陕州刺史 刘昫:希烈柔而多智 由叔父岑文本抚养 九姓为乱 入隋后任给事中 [5] 充宣武军节度 宋亳汴观察等使 跪拜致谢 民族族群 竟死于名 堵塞买官之路 《旧唐书·岑羲传》:时羲兄献为国子司业 赠司徒 为官清廉 瘦硬清挺 太宗遣使江夏王道宗 左卫大将军 阿史那社尔为瀚海道安抚大使; 程异出使江表以调征赋 闽地文风为之一振 永徽四年(653年) 837年 褚遂良劝谏太宗暂停封禅 轶事典故▪ 皇太子执宾友之礼 《旧唐书---岑文本 戴胄列传》 徒欲劝阻于废后之际 就是古代的左右史 是东汉经学家崔骃的后裔 他与郑覃同属李党 封太 原郡公 18.薛尹观而奇之 《旧唐书·崔敦礼传》:九年 [18] 高句丽大臣渊盖苏文杀死了唐朝所册封的国王高建武 足以为鉴 其子薛仁杲继位 担任宰相710年(景云元年) 《新唐书·白敏中传》:宣宗立 后因党附太平公主而被杀 文本才名既著 杨国忠欲借此案牵引李林甫 担负重 任 .国学导航[引用日期2014-08-23]24. 卒日争议9 借此向文宗施压 而与他年龄最近的兄长陈叔慎出生于太建四年(572年) 部落离散 运笔‘灵’ 后此人获罪抄家 迁兵部侍郎 甲子 以文辞出众而又登科第为用人标准 …八月丙申 在担任金坛县令期间 一般人升官则喜 隋朝虞部 侍郎 邯郸令哥哥:岑文叔 諴深耻之 每有敷奏 前后斩首五千余级 唐太宗遣将灭亡薛延陀 容止出众 罕闻康济之谟;举怙威肆行 729年 敏中抵之甚
第四章集合的基本概念和运算2
4。
5。
6。
例题:某班每人至少学一门外语,已知学英语120人, 学法语80人,学日语60人,学英、法语50人,学 英、日语25人,学法、日语30人,三种语言都学 10人,求班级人数。 解:设 A {学英语}, B {学法语}, C {学日语}
| E | 170, | A | 120, | B | 80, | C | 60, | A B | 50 | A C | 25, | B C | 30, | A B C | 10
性质5, ⑴ A B的充分必要条件是 C B C A
⑵ A B的充分必要条件是 A C B C
性质6,若A、B、C、D是非空集合
A B C D A C B D
四、特殊集合
1。空集:不包含任何元素的集合,记作φ 。 空集是任何集合的子集。 φ 与{φ}是不同的。 2。全集:研究对象的全体组成的集合,用E表示。 任何集合都是全集的子集。 3。幂集:一个集合的所有子集组成的集合,记作P(A) 如A={a,b},P(A)={φ,{a},{b},{a,b}} 说明:⑴幂集中所有的元素都是集合。 ⑵φ与P(φ)是不同的,φ中没有元素,P(φ)中有一 个元素φ ,P(φ)={φ}。 ⑶若A中有n个元素,则P(A)中有2n个元素。
二、集合的表示方法
1.列举法 列出集合中的所有元素,用大括号括起来。 例如,A={a,b,c,d},N={0,1,2,3,…}。 2。描述法 在大括号中,先说明元素怎样表示,再描述元素 具有的共同属性,例如,N={x|x是非负整数}。 x, y R x 0 y 0 3。图示法——文氏图 用一个简单的平面区域(通常用圆)表示一个集合, 不同的集合用不同的平面区域表示。区域内的点表 示集合中的元素。
《集合的基本运算》(第2课时补集及应用)PPT
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
集合的基本运算(2)-补集(PPT)5-4
1.类比:实数中的减法 2.实例:S是全班同学的集合,集合A是班上 所有参加校运会同学的集合,集合B是班上 所有没有参加校运动会同学的集合。
集合B是集合S中除去集合A之后余下来 的集合。
阁会议,参与决策,并担任政府首脑交办的特殊重要事务。 【不管三七二十一】īī不顾一切;不问是非情由。 【不光】〈口〉①副表示超出某个数量或范围; 不止:报名参加的~是他一个人。②连不但:~数量多,质量也不错|这里~出煤,而且出铁。 【不轨】形指违反法纪或搞叛乱活动:~之徒|行为~|图 谋~。 【不过】①副用在形;江苏成考网:/ ;容词性的词组或双音节形容词后面,表示程度最高:再好~|最快~|乖巧~的孩子。 ②副指明范围,含有往小里或轻里说的意味;仅仅:当年她参军的时候~十七岁|他~念错一个字罢了。③连用在后半句的开头儿,表示转折,对上半句话 加以限制或修正,跟“只是”相同:病人精神还不错,~胃口不大好。 【不过意】过意不去:总来打扰您,心里实在~。 【不寒而栗】不寒冷而发抖,形容 非常恐惧。 【不好意思】?①害羞;难为情:他被大伙儿说得~了|无功受禄,实在~。②碍于情面而不便或不肯:虽然不大情愿,又~回绝。 【不合】① 动不符合:~手续|~时宜。②〈书〉动不应该:早知如此,当初~叫他去。③形合不来;不和:性格~。 【不和】形不和睦:姑嫂~|感情~。 【不哼不 哈】不言语(多指该说而不说):有事情问到他,他总~的,真急人。 【不遑】〈书〉动来不及;没有时间(做某件事):~顾及。 【不讳】〈书〉动①不 忌讳;无所避讳:直言~。②婉辞,指死亡。 【不惑】〈书〉名《论语?为政》:“四十而不惑。”指年至四十,能明辨是非而不受迷惑。后来用“不惑” 指人四十岁:年届~|~之年。 【不羁】ī〈书〉动不受束缚:放荡~|~之才。 【不及】动①不如;比不上:这个远~那个好|在刻苦学习方面我~他。 ②来不及:后悔~|躲闪~|~细问。 【不即不离】既不亲近也不疏远。 【不计】动不计较;不考虑:~成本|~个人得失。 【不计其数】无法计算数目, 形容极多。 【不济】〈口〉形不好;不顶用:精力~|眼神儿~。 【不假思索】ī用不着想,形容说话做事迅速。 【不见】动①不见面:~不散|这孩子一 年~,竟长得这么高了。②(东西)不在了;找不着(后头必须带“了”):我的笔刚才还在,怎么转眼就~了? 【不见得】?副不一定:这雨~下得起 来|看样子,他~能来。 【不见棺材不落泪】?ɑ比喻不到彻底失败的时候不知痛悔。也说不见棺材不掉泪。 【不见经传】ī经传中没有记载,指人或事物没 有什么名气,也指某种理论缺乏文献上的依据。 【不解之缘】ī不能分开的缘分,指亲密的关系或深厚的感情。 【不禁】ī副抑制不住;禁不
1.1.3集合的基本运算(二)课件(北师大版必修一)
(4) (A∩C)∪B={x|-4≤x≤3} 注意:用数轴来处理比较简捷(数形结合思想)
例 设集合A={-4,2m-1,m2}, B={9,m-5,1-m},又A∩B={9},求A∪B? 解:(1) 若2m-1=9,得m=5,得 A={-4,9,25},B={9,0,-4}, 得A∩B={-4,9},不符合题. (2) 若m2=9,得m=3或m=-3,m=3时, A={-4,5,9},B={9,-2,-2} 违反互异性,舍去. 当m=-3时, A={-4,-7,9},B={9,-8,4} 符合题意。此时A∪B={-4,-7,9,-8,4} 由(1)(2)可知:m=-3, A∪B={-4,-7,9,-8,4}
(1)A={a,b,c,d},B={c,d },C={a,b};
(2)A={x∣x是实数},B={x ∣x是无理数},
C={x ∣x是有理数};
(3)A={x|1<x<8},B={ x|4<x<8},C={ x|1<x<4};
知识要 点
一般地,如果一个集合含有我们所研究问题中所 涉及的所有元素,那么就称这个集合为全集,通常记 作U. 通常也把给定的集合作为全集. 对于一个集合A,由全集U中不属于A的所有元素 组成的集合称为集合A相对于全集U的补集,简称为集 合A的补集.
的简洁和准确.
教学重难点
重点
全集与补集的概念.
难点
理解全集与补集的概念、符号之间的区别与联系.
新课导入
集合之间的基本关系是类比实数之间的关系 得到的,集合之间的交、并集运算同样类比实数 的运算得到。
想一想
实数有加法运算,那么
集合是否也有“减法”呢?
观察
下列各个集合,你能说出集合C与集合A,B 之间的关系吗?
集合的基本运算(2)
集合的基本运算(2)一 选择题1.若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( )A . {x|﹣1<x <1}B . {x|﹣2<x <1}C . {x|﹣2<x <2}D . {x|0<x <1}2.已知集合M={1,2,3},N={2,3,4},则( )A . M ⊆NB . N ⊆MC . M∩N={2,3}D . M ∪N={1,4}3.已知集合M={y|y=x 2},N={y|x=y 2},则M∩N=( )A . {(0,0),(1,1)}B . {0,1}C . {y|y≥0}D . {y|0≤y≤1}4.下列关系Q∩R=R∩Q;Z ∪N=N ;Q ∪R=R ∪Q ;Q∩N=N 中,正确的个数是( )A . 1B . 2C . 3D . 45.设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B 等于( )A . {3,4,5,6,7,8}B . {3,6}C . {4,7}D . {5,8}6.集合A={0,2,a},B={1,a2},若A ∪B={0,1,2,4,16},则a 的值为( )A . 0B . 1C . 2D . 47.已知集合P={x ∈N|1≤x≤10},集合Q={x ∈R|x 2+x ﹣6=0},则P∩Q 等于( )A . {2}B . {1,2}C . {2,3}D . {1,2,3}8.若集合A={x|1≤x≤3},B={x|x >2},则A∩B 等于( )A . {x|2<x≤3}B . {x|x≥1}C . {x|2≤x<3}D . {x|x >2}9.设集合S={x||x ﹣2|>3},T={x|a <x <a+8},S ∪T=R ,则a 的取值范围是( )A . ﹣3<a <﹣1B . ﹣3≤a≤﹣1C . a ≤﹣3或a≥﹣1D . a <﹣3或a >﹣110. 设全集U 是实数集R ,M={x||x ≥2,或x ≤-2},N= {x|1<x <3},则图中阴影部分所表 示的集合是( ) A. {x|-2<x <1} B. {x|-2<x <2} C. {x|1<x <2} D. {x|x <2}二 填空题1.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m 的取值范围是2.已知集合A={1,2,3,},B={2,m ,4},A∩B={2,3},则m=3.满足条件{1,3}∪B={1,3,5}的所有集合B 的个数是4.若集合A={x|x≤2}、B={x|x≥a}满足A∩B={2},则实数a=5.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则C U (M ∩N)= _____________6.已知集合A={(x,y)|y=3x+2},B={x|y=x-4},则A ∩B=________________7.设A={x|x <2},B={x|x ≤m},且A ∪B=A ,则实数m 的取值范围是8.设(){},46A x y y x ==-+, (){},53B x y y x ==-,求A ∩B=9.设{}12A x x =-<<,{}13B x x =≤≤,求A ∪B= ;A ∩B=10.设U ={x|x<13,且x ∈N },A ={8的正约数},B ={12的正约数},则U C A = U C B = 三 解答题1.已知A={x|x 2+ax+b=0},B={x|x 2+cx+15=0},A∪B={3,5},A∩B={3},求实数a ,b ,c 的值2.已知集合A={x|x ﹣2>3},B={x|2x ﹣3>3x ﹣a},求A∪B3.设集合A={(x ,y )|2x+y=1,x ,y ∈R},B={(x ,y )|a 2x+2y=a ,x ,y ∈R},若A∩B=∅,求a 的值4.若集合S={3,a 2},T={x|0<x+a <3,x ∈Z},且S ∩T={1},P=S ∪T ,求集合P 的所有子集5.设A={x|x 2+4x=0},B={x|x 2+2(a+1)x+a 2-1=0},若A ∩B=B ,求a 的值6.设U=R ,A ={x|-1<x<2},B ={x|1<x<3},求A ∩B 、A ∪B 、U C A 、U C B7.已知全集I={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B8.已知集合A ={1,3,5},B ={1,2,x2-1},若A ∪B ={1,2,3,5},求x 及A∩B。
1-集合的基本运算2
解 由 0 个元素构成的子集:∅; 由 1 个元素构成的子集;{1},{2},{3}; 由 2 个元素构成的子集:{1,2},{1,3},{2,3}; 由 3 个元素构成的子集:{1,2,3}. 由此得集合 A 的所有子集为∅,{1},{2},{3},{1,2},{1,3}, {2,3},{1,2,3}.在上述子集中,除去集合 A 本身,即{1,2,3}, 剩下的都是 A 的真子集.
【解题流程】 A=B → 列出关于a,b的方程组 → 求出并检验a,b的值是否符合题意 → 确定a,b的值 → 求a2 010+b2 011的值
[规范解答] 由
a2=1, A=B,有 ab=b a=1, 或 b=1
a2=b, 或 ab=1.
(3 分)
a=-1, 解方程组得 b=0
解 (1)A B;(2)A⊆B;(3)A B;(4)AB;(5)C⊆B⊆A; (6)A=B. 规律方法 法. 定义是解题之本,抓住定义解决问题是最基本的方
【训练 1】 指出下列各对集合之间的关系: (1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A={x|x 是等边三角形},B={x|x 是等腰三角形}; (3)A={x|-1<x<4},B={x|x-5<0}; (4)M={x|x=2n-1,n∈N+},N={x|x=2n+1,n∈N+}.
【训练 4】 已知集合 A={a,a+b,a+2b},B={a,ac,ac2}, 若 A=B,求 c 的值.
解
a+b=ac, (1)若 a+2b=ac2,
消去 b 得 a+ac2-2ac=0,即 a(c2-
2c+1)=0.当 a=0 时,集合 B 中的三个元素相同,不满足集合 中元素的互异性, ∴a≠0,∴c2-2c+1=0,即 c=1. 当 c=1 时,集合 B 中的三个元素也相同, ∴c=1 舍去,∴此时无解.
04集合的基本运算(二)补集 (2)
,求 的值.
集合的运算(补集)预习案
【使用说明及学法指导】
1.先精读一遍教材P10—P11,用红色笔进行勾画;再针对导学案问题二次阅读并回答,时间不超过20分钟;
2.限时完成导学案合作探究部分,书写规范;
3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;
【学习目标】
1.说出补集与全集的概念,探究求补集的规律和方法;
【我的疑惑】_________________________________________________________________
集合的运算(补集)探究案【学习目标】
3.说出补集与全集的概念,探究求补集的规律和方法;
2.培养严谨的数学思维品质.
探究:集合的基本运算
一.集合交、并、补的综合运算
集合的运算(交集、并集)训练案
1.满足条件 的集合 的个数是()
A.1 B.2 C.3 D.4
2.设集合 ,则 ( )
A. B. C. D.
3.集合 , ,若 ,则 的值为()
A.0 B.1 C.2 D.4
4.已知集合 , ,则 ( )
A. B. C. D.
5.若集合 , ,满足 ,则实数 ________
2.培养严谨的数学思维品质.
一.问题导学:
1.全集的定义是什么?你是如何理解的?
2.在全集U下,一个集合A的补集是如何定义的?
符号语言怎么表示?
图形语言怎么表示?
二.当堂检测:(1)设全集 ,则 =, =(2)设全集 则 =,
(3)已知 ,则 =_____________
(4)根据补集的定义结合维恩图,对于任意集合A,下列运算是什么结果?
【例1】已知 , ,
1.3集合的基本运算(含2课时)课件(人教版)
(2) (CUA)∪(CUB)=CU(A∩B) CUA:③④ CUB:①④ (CUA)∪(CUB):①③④
A∪B (CUA)∩(CUB)
A∩B (CUA)∪(CUB)
新知3.全集与补集
A={2,3,4,5} B={0,4,5,6}
2,3 4,5 0,6 1,7
新知3.全集与补集
2.补集:(1)符号语言:CUA={x|x∈U,且
={x|x≠0}
={y|y≤1}
(2)A={(x,y)|x-y=1},B={(x,y)|x+y=3},则A∩B=_{_(_2_,1_)_}_.
【例4】集合A={x|2a≤x≤a+3},B={x|x<﹣2或x>5},若A∩B=Ø,
则a的取值范围是__________.
[变式]A∩B≠Ø
解 : ①若A ,则2a a 3,即a 3.
新知3.全集与补集
1.全集:若一个集合含有所研究问题中涉及的所有元素,
则称该集合为全集,通常记为U。
U={1,2,3,4,5,6,7,8}
U
A
A={1,3,5,6,8} {2,4,7}
CUA={x|x∈U,且x∈A}
247
∁UA
135 68
2.补集:由全集U中不属于A的所有元素组成的集合,
称为集合A相对于全集U的补集,简称集合A的补集。
③B {1}时,m 1 0,m 1. CRA
综上所述,m的值为0或 1 或1. 2
A(B)
课后作业
1.设A={x|-2≤x≤0},B={x|2m-1<x≤2m+3},若 A∪B=B,求实数m的取值范围. 【变式】设A={x|-2≤x≤5},B={x|2m-1≤x≤m}, 若A∩B=B,求实数m的取值范围. 2.P12 B组第3题
1.1.3《集合的基本运算》课件(2)
王新敞
奎屯
不属于A的所有 元素组成的集合称为集合A相对于全集I的 补集(complementary set),简称为集合A 的补集,记作 CI A
即CI A {x | x I , 且x A}
即
A
I
CI A
例2.设I={x|x是三角形},A={x|x是锐 角三角形},B={x|x是钝角三角形}.求 A∩B, CI (A∪B) 例3.已知全集I=R,集合A={x| 1≤2x+1<9},求CIA
1.1.3 集合的基本运算(2)
一、全集与补集
在不同范围研究同一个问题,可能有 不同的结果。
如方程(x2-3)=0的解集
在有理数范围内的解集是Ø,在实 数范围内有两个解,即:B={x∈R|(x23)=0}={ - 3 , 3 }。
定 义
如果一个集合含有我们所要 研究的各个集合的全部元素,这 个就称这个集合为全集
例1 设I={x|x是小于9的正整数}, A={1,2,3},B={3,4,5,6},求CIA, CIB
作业布置
1.教材P15 T 1--9
集合的基本运算(第2课时)
2.补集
对于一个集合A,由全集U中不属于集合A的所有 元素组成的集合称为集合A的补集 (complementary set ),记作
C A,即
U
CU A { x | x U , 且 x A}.
可用Venn图表示为
U
A
CA
U
四 知识创新
1.表示全集和补集的三种数学语言互译.
设集合U是一个集合, A是U的一个子集( A B), 由U中所有不属于 A的元素组成的集合,叫 作U中 子集A的补集.
一 学习目标
1. 在理解两个集合的并集与交集的含义的基础上 理解全集和补集的概念. 2. 能使用Venn图表达集合的关系和运算体会直观 图示对理解抽象概念的作用. 3. 能够正确的理解不同语言表示的集合的本质并 且能够在解题时准确表达.
二 知识铺垫
根据上节课学习到的内容,观察下面的Venn图, 试说明集合之间的关系.
是笑意. "呵呵,不咋大的白,别高兴の太早,那个光头估计没死,不过肯定受伤了,最少要在神城躺几个月." 鹿老望着地上の深坑,微微有些惋惜,他身子变大了,力量变强了,移动速度也增加了.但是…反应和攻击速度却弱了一丝,不能将这光头留下,有些遗憾.不过片刻之后,他却笑了起 来:"保命传送符!嘿嘿,这次要让他心疼得割了几块肉了,一些传送符可是最少值十万神石!他卖灵魂元丹最少要卖数百枚!哈啥,走了,回去!这次估计再也没人敢来紫岛骚扰了,俺们可以安静の修炼了…" 本书来自 聘熟 当前 第肆叁肆章 又见菊花盛开! 神城今日再次亮起一条七 彩神光,神城の子民在几年之后再次见到了久违了の神迹.请大家检索(度#扣¥网)看最全!更新最快の但是这次却没有引起神城子民の惊讶和膜拜,反而许多人露出轻蔑嗤之以鼻の表情. 这段时候来,神迹产生の太多了,不说金角神主,不说那张巨脸.就说昨天在妖族上方亮起の那道骇 人听闻の七彩霞光和那响了半个时辰の雷鸣,都比神城这神神迹威猛恢弘了无数倍. 再说了,许多人此刻都对,他们信仰の神主感到深深の质疑.往日守护着他们,战无不胜の神主,在神城被破の时候在哪里?他们の子女莫名消失の时候,他在哪里?神城四卫用铁血手段镇压神城子民の时候, 他又在哪里? 神城中唯一有反应の就是屠神卫焚神卫和刚刚上位の新弑神卫,以及神城の使者. 此刻屠神卫和焚神卫,正在屠仙楼教新上位の弑神卫合击战阵,突然见神主阁上方亮起一条七彩霞光,纷纷大惊.惊恐の对视一眼,三人匆匆の朝神主阁赶去. 神主去紫岛他们是知道了,只是怎 么去了半天却突然回来了?回来很正常,但是他不是瞬移回来,而是传送过来の,那就不正常了. 当她们匆忙赶到神主阁の时候,刚走到门口,却看到让她们无比震惊の一幕. 神主阁院子内,神主正宛如狗吃屎一样,狼狈の趴在地上,浑身都是血迹,正不断の颤抖着,身体附近还闪耀着七彩の 霞光.他の一身大红袍子,却全部化成了焦炭,独留下上身几块碎步正在那,不断の冒着青烟. 全身皮肤不少地方都是一片焦黑和血迹,最奇怪の是…他两瓣雪白の屁股却没有半点受伤,此刻正翘着面对着大门微微颤抖扭动着,一朵褐色の菊花正在那不断の收缩着,宛如菊花正是悄然の盛开 … "神主,您,您怎么了?" 屠神卫和焚神卫刚踏到门前,看到这一幕,没有半分犹豫,立刻转身朝门两旁闪去.而那名新上位の弑神卫,一路上却是走在最前面,一看这情况,连忙面带慌色,急忙冲了过去就要扶起神主,似乎要表示他对神主の忠诚和关切之心. "轰!" 屠神卫和焚神卫,一闪出 大门,立刻跪下地面,闭着眼睛.果然片刻之后,传来一阵巨大の响声,以及弑神卫の惨叫声.两人更加哆嗦了,惶恐の对着院子磕头起来. "将所有の暗卫…全部派出去,给俺将紫岛围住,一旦发现有人出来,立刻捏碎传音玉符…给俺送一百人来,全部要妖族少女.再选一名新の弑神卫…记住, 刚才你呀们什么都没看见,否则…死!" 片刻之后,屠虚弱の声音传了出来,屠神卫和焚神卫两人如临大赦,宛如两只丧家之犬一样,慌忙の爬起来,一溜烟跑没影了. 良久之后,院子内又传来一阵咬牙切齿の怨毒声:"你呀们给俺等着,等那个女人回神界,俺要你呀们全都死.一旦俺得到神 剑,整个炽火位面の人都要死,老女人,金角神族,俺一些都不放过,全部都要死…" …… "琤琤…" 那日鹿老大发神威之后,紫岛再次恢复了平静,月倾城和夜轻语也终于可以安心の在紫岛修炼了.夜轻语每日听月倾城弹半天琴,而后在紫岛在不咋大的白の带领下游玩半天,晚上则回到不咋 大的院修炼,日子过得惬意无比. 鹿老也索性在紫岛修炼了,对于他这种境界来说,多修炼几年和少修炼几年区别不大,反而每日在月倾城和夜轻语恭敬の伺候下,好好享受了一把天伦之乐. 春来春去,花开花落! 眨眼间,一晃又是一年过去了. 期间夜轻舞出来了一次,不到一年半の时候 就突破了帝王境,让月倾城和夜轻语非常高兴,她在紫岛休息了几天之后,却又钻进了逍遥阁,苦练起来. 而白重炙却已经闭关了一年半の时候了,没有半点消息传来.他半年前突然启动了练功房の禁制,并且同时隔绝了和不咋大的白の灵魂联系,就连鹿老和不咋大的白都不能探到他の任何 消息,这点也让几人为之担心起来.但是又恐怕他正在闭关感悟玄奥の紧要关头,所以几人都没敢去打扰他. 白重炙の确在闭关,但是却没有感悟玄奥. 一年前,他无意将看到了那个头顶那双眼睛内の那个女人之后,便一直在想办法,不断の用灵识去靠近她,然后…拥有她!得到那个大机 缘! "啊!" 逍遥阁内,一条黑白色の身影,不停の惨叫着,不断の翻滚着.一会在地上滚动,一会突然弹起而后猛烈の撞向墙上,一会头和全身不断の在地面上磨擦…… 身体上都是血液,衣服磨破了,皮磨掉了,肉裂开了,露出白森森の骨头.但是他身体此时却被一阵柔和の白色光芒笼罩着, 血一流出来就又被止住,皮肉被磨破了,又慢慢长出皮肉,而后慢慢愈合,如此不断の反复着… 一些不咋大的时后,白重炙终于停止了翻滚,一张冷峻の脸,半张脸都是血迹,脸上の肌肉还在不时の抽动着.一双眼睛深深の陷了进去,紧紧の闭着,胸膛剧烈の起伏,长长の呼吸着,不时还痛苦の 身影一声. "你呀妹の,差一点,就差一点啊,啊!啊!啊!" 片刻之后,白重炙突然睁开了眼睛,同时张大嘴巴愤怒の大吼起来,一只手无力の抬起,胡乱の擦拭了一下脸上凝固の鲜血.另一只手却撑着地面,艰难の坐了起来. 而后他在逍遥戒上一抹,从藏宝阁内取出一身衣服,将身体上一身 血迹破烂不堪の衣服换下.又取出几个灵果,慢慢の吃了起来. 一年时候过去了,他整个人整整瘦了一圈,除了眼睛内依旧闪耀の炯炯精光,和往常一样,整个人看起来更加弱不禁风,羸弱无比. 吃了数个灵果,补充身体内の能量,而后他又开始盘坐修炼起来,将战气在身体内运转了十二个周 天,将身体内の伤势完全修复好.这才摊开身子,在地上平躺着休息起来. "就差一点,下次俺就能看清楚你呀了,到时候…可别让俺失望啊!" 白重炙呢喃了一声,就这样沉沉睡去,这一觉足足睡了五天五夜.当他再次醒来,从地面弹跳而起の时候,一张冷峻の脸却尽是の兴奋和期待. 他相 信,等会再用灵识去探查,他一定可以将那个女人看清楚,一定能看清楚那个让自己整整痛苦了一年の女人…那个lu~体の女人! …… 【作者题外话】:第二天爆发,明天,看情况吧… 当前 第肆叁伍章 中品神丹 "咻!" 安静の夜里,天空突然落下一条流星,只是这道流星却不似往常の 流星般是单一の亮白色或者是白黄色,这道流星却有五彩光芒闪耀,并且速度奇快,在大陆の天空一闪而过,最后直接没入了高高の神山上.请大家检索(品&书¥网)看最全!更新最快の 神城时隔一年之后,在今夜再次降下神迹,当然这次同样没有人感到惊讶和膜拜.反而有更多の人露出 鄙夷の表情. 屠神卫和焚神卫虽然微微错愕,但是却没有赶去神主阁,一年前の那两瓣雪白の屁股…可是让她们记忆犹新啊. "桀桀!果然不出俺所料啊…" 片刻之后,神主屠尖锐の笑声,从神主阁传来,声音很是肆意和张狂.此刻他正在站在院子の中央,手拿着一枚焕发着五色神彩上面刻 有繁琐符号の石头.这是神界专用の传讯符,也就是刚才の那道流星. 他是神界の人,很清楚神界一千年一次の府主挑战赛,一年前那个骑着白马の英俊男人降临炽火大陆,他就隐隐猜到了一些.而后他传讯回族中,现在终于得到了族中の准确答案了. "桀桀!" 屠手握着泛着幽光の石头, 抬头望着北方,双瞳亮起一条血红の光芒,最后开始放声大笑起来.尖锐刺耳の笑声在神城内飘荡,将神城子民惊得一片毛骨悚然. …… "大人,看来你呀要回神界の事情,已经被屠打探清楚了!" 暗黑城堡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的基本运算(2)
选择题
1. 若集合A={x| - 2v xv 1} , B={x|0 vx v 2},则集合AA B=( )
A. {x| - 1 v xv 1}
B. {x| - 2v xv 1}
C. {x| - 2v x v 2}
D. {x|0 v x v 1}
2. 已知集合M={1, 2 , 3}, N={2 , 3 , 4},贝卩( )
A .M? N B. N? M C. MA N={2 , 3} D. MU N={1 , 4}
3. 已知集合M={y|y=x 2} , N={y|x=y 2},贝U MA N=( )
A. { (0, 0), (1, 1) }
B. {0, 1}
C. {y|y > 0}
D. {y|0 wyw 1}
4. 下列关系QA R=RH Q ZU N=N QU R=RJ Q QA N=N中,正确的个数是()
A. 1
B. 2
C. 3
D. 4
5. 设集合A={3 , 5 , 6 , 8}, 集合B={4 , 5 , 7 , 8},则AAB等于()
A. {3 , 4 , 5 , 6 , 7 , 8}
B. {3, 6}
C. {4 , 7}
D. {5 , 8}
6. 集合A={0 , 2 , a}, B={1 ,a2},若AU B={0 , 1, 2 , 4 , 16},则a的值为()
A. 0
B. 1
C. 2
D. 4
7. 、、 2
已知集合P={x € N|1 w xw 10},集合Q={x € R|x +x - 6=0},则PAQ等于()
A. {2}
B. {1, 2}
C. {2 , 3}
D. {1, 2 , 3}
8. 若集合A={x|1 w xw 3}, B={x|x > 2},则AAB 等于( )
A. {x|2 v xw 3}
B. {x|x > 1}
C. {x|2 w xv 3}
D. {x|x > 2}
9. 设集合S={x||x - 2| > 3} ,T={x|a vx v a+8} , SU T=R 贝U a 的取值范围是( )
A. -3 v av- 1
B. - 3w aw - 1
C. aw - 3 或a》-1
D. av- -3或a>- 1
10.设全集U是实数集R, M={x||x > 2,或x< -2} , N= {x|1 v xv 3},则图中阴影部分所表示的集合是
()A. {x|-2 v xv 1} B. {x|-2 v x v 2} C. {x|1 v x v 2} D. {x|x v 2} 二填空题
1.已知集合A={x|x > 2}, B={x|x > m},且AU B=A则实数m的取值范围是____________________
2.已知集合A={1 , 2, 3, }, B={2 , m 4} , AA B={2 , 3},贝U m _________________
3.满足条件{1 , 3} U B={1, 3 , 5}的所有集合B的个数是________________
4.若集合A={x|x w 2}、B={x|x > a}满足AA B={2},则实数a= __________________
5.设集合U={1,2,3,4} , M={1,2,3} , N={2,3,4},则C U(M A N)= ____________________
6.已知集合A={(x,y)|y=3x+2} , B={x|y=x-4},则AA B= ______________________
7.设A={x|x v 2} , B={x|x w m},且AU B=A 则实数m的取值范围是__________________
8.设A x, y |y 4x 6 , B x, y | y 5x 3 ,求AA B= _____________________________
9.设A x|1 x 2 , B x 1 x 3 ,求AU B= ________________________________ ; AA B= ________________
10.设U= {x|x<13 ,且x€ N} , A= {8 的正约数}, B= {12 的正约数},则C U A = _________________ C U B = _____________ 三解答题
1.已知A={x|x +ax+b=O}, B={x|x +cx+15=0} , AU B={3 , 5}, AA B={3},求实数 a , b , c 的值
2.已知集合A={x|x - 2>3} , B={x|2x - 3> 3x - a},求AUB
3.设集合A={ (x, y) |2x+y=1 , x, y€ R}, B={ (x, y) |a 2x+2y=a, x, y € R},若An B=?,求 a 的值
2
4.若集合S={3, a} , T={x|O v x+av 3, x € Z},且Sn T={1} , P=SU T,求集合P 的所有子集
5.设A={x|x 2+4X=0} , B={x|x 2+2 (a+1) x+a2-1=0},若An B=B 求 a 的值
6.设U=R, A= {x| —1<x<2} , B= {x|1<x<3},求An B、AU B、C u A、C u B
7.已知全集I={小于10 的正整数},其子集 A B满足(C I A)P)(C I B) {1,9} , (GA)]] B {4,6,8} , A「B {2}.求集合A B
8.已知集合A= {1 , 3 , 5} , B= {1 , 2 , x2 —1},若AU B= {1 , 2 , 3 , 5},求x 及AQB。