杭电自控实验报告

合集下载

杭电电力电子实验报告

杭电电力电子实验报告

电力电子技术实验报告班级:学号:姓名:指导老师:余善恩、孙伟华实验名称:单相交流调压电路实验全桥DC/DC变换电路实验实验九交流调压电路实验一、实验目的1.加深理解单相交流调压电路的工作原理;2.加深理解交流调压感性负载时对移相范围要求。

二、实验内容1.单相交流调压器带电阻性负载;2.单相交流调压器带电阻—电感性负载。

三、实验线路及原理本实验采用了锯齿波移相触发器。

该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。

晶闸管交流调压器的主电路由两只反向晶闸管组成,见图9-1。

(a) 纯电阻负载(b)电阻电感负载图9-1四、实验设备及仪器1.教学实验台主控制屏;2.NMCL—33B组件;3.NMCL—D3组件;4.NMEL—36组件;5.NMCL—18D组件;6.双踪示波器(自备);7.万用表(自备)。

五、注意事项αϕ时,若脉冲宽度不够会使负载电流出现直流分量,在电阻电感负载时,当<损坏元件。

为此主电路可通过变压器降压供电,这样即可看到电流波形不对称现象,又不会损坏设备。

六、实验方法1. 单相交流调压器带电阻性负载将NMCL —33B 上的两只晶闸管VT1,VT4反并联而成交流电调压器,将触发器的输出脉冲端G1、K1,G3、K3分别接至主电路相应VT1和VT4的门极和阴极。

接上电阻性负载(可采用两只900Ω电阻并联),并调节电阻负载至最大。

NMCL —18D 的给定电位器RP1逆时针调到底,使Uct=0。

调节锯齿波同步移相触发电路偏移电压电位器RP2,使150=︒α。

三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压,使U uv =220V 。

用示波器观察负载电压()=u f t ,晶闸管两端电压U VT =f (t )的波形,调节U ct ,观察不同α 角时各波形的变化,并记录α =60°,90°,120°时的波形。

在实验过程中,欲改变阻抗角,只需改变电阻器的数值即可。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

最新自控实验报告实验三

最新自控实验报告实验三

最新自控实验报告实验三实验目的:1. 理解并掌握自控系统的基本原理和工作机制。

2. 学习如何搭建和调试简单的闭环控制系统。

3. 通过实验数据分析,加深对系统稳定性和响应特性的认识。

实验设备:1. 自动控制系统实验台。

2. 直流电机及调速器。

3. 传感器(如光电编码器)。

4. 数据采集卡及计算机。

5. 相关软件(如LabVIEW、MATLAB等)。

实验步骤:1. 按照实验指导书的要求,搭建闭环控制系统,包括电机、传感器和控制器。

2. 使用数据采集卡连接传感器和计算机,确保数据传输无误。

3. 开启实验软件,设置相应的参数,如控制算法(PID)、采样时间等。

4. 进行系统开环测试,记录电机的响应数据。

5. 切换至闭环模式,调整PID参数,进行系统调试,直至达到预期的控制效果。

6. 收集闭环控制下的数据,并进行分析,绘制系统响应曲线。

7. 分析系统的稳定性、过渡过程和稳态误差等性能指标。

实验结果:1. 系统开环测试结果显示,电机响应存在较大的超调和振荡。

2. 闭环控制调试后,系统响应速度加快,超调量减小,振荡减少。

3. 通过调整PID参数,系统达到较快的响应时间和较小的稳态误差。

4. 实验数据表明,所设计的控制系统能有效改善电机的动态和稳态性能。

结论:通过本次实验,我们成功搭建并调试了一个简单的闭环控制系统。

实验结果表明,合理的PID参数设置对于提高系统性能至关重要。

此外,实验过程中我们也加深了对自动控制系统原理的理解,为后续更复杂系统的设计和分析打下了坚实的基础。

杭电《过程控制系统》实验报告分析解析

杭电《过程控制系统》实验报告分析解析

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。

(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。

三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。

然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

图解法是确定模型参数的一种实用方法。

不同的模型结构,有不同的图解方法。

单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。

如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。

根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。

令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。

杭电自动化单片机实验报告

杭电自动化单片机实验报告

杭电自动化单片机实验报告单片机原理与应用及 C51程序设计实验报告实验名称:单片机技术实验实验一继电器控制输出实验一、实验目的1.掌握STC12C5A16S2单片机的最基本电路的设计;2.了解单片机I/O端口的使用方法;3.了解继电器和蜂鸣器控制电路以及小电压控制大电压的方法。

二、实验要求1.利用STC12C5A16S2单片机的P1.2、P1.3口作按钮S9和S10输入,P1.0和P1.1口作开关量输出,并分别控制一个5V的继电器和蜂鸣器。

2.当S9闭合时,P1.0控制继电器闭合并控制灯泡闪亮;当S9断开时,继电器触电断开,灯泡不亮;3.当S10闭合时,P1.1控制蜂鸣器闭合并发出声音;当S10断开时,蜂鸣器不响。

三、电路四、原理说明Q1、Q2为9012三极管即PNP型,低电平导通,当S9或S10按下时,相应的IO口拉低,当P1.0或P1.1赋0时即可控制继电器的吸合活着蜂鸣器的发声。

五、程序代码#includesbit L1=P1^1;sbit L2=P1^2;sbit L3=P1^3;sbit L0=P1^0;//定义位变量void delay(){int i,j;for(i=0;i<250;i++)for(j=0;j<250;j++);//利用系统时钟,定义延时函数}void main (){int n=20;while(1) //不断循环检测{if(L2==0) //判断S9输入{while(n--){L0=0;delay();L0=1;delay(); //灯泡以2*delay为周期闪亮}n=20;}if(L3==0) //判断S10闭合{while(n--){L1=0;delay();delay(); //蜂鸣器以2*delay为周期发声}n=20;}}}实验二 LED轮换点亮实验一、实验目的1.掌握STC12C5A16S2单片机的I/O电路设计;2.学习SN74HC573数据锁存输出方法。

杭电自动化专业计算机控制系统实验报告

杭电自动化专业计算机控制系统实验报告

实验一、常规PID控制算法仿真仿真框图如下实验参数:shiyanpid Ts=0.1s,b为班号1~5,x为学号后2位,1~45实验要求:(1)画Simulinnk框图(2)设计或凑试PID三个参数,进行仿真(3)使稳态误差为0,且动态性能较满意仿真框图:实验分析:b=1,x=15。

比例系数Kp增大时系统动作灵敏,响应速度加快,过大会使振荡次数增加,系统趋向不稳定,这里取120。

积分环节可以消除稳态误差,Ti减小,系统振荡次数增加,这里取Ki为150。

微分环节可以改善系统动态性能,减小超调和调节时间,这里取Kd为10。

系统在2秒内达到稳态。

实验二、积分分离PID控制算法仿真实验参数:shiyanpidjffl Ts=0.1s,b为班号1~5,x为学号后2位,1~45实验要求:(1)画Simulinnk框图(2)使稳态误差为0,且动态性能较满意(3)尝试不同的积分分离的阈值(比如ε=0,0.1,0.2,……,0.9,1),观察阶跃响应,并确定最佳的阈值实验框图:翻译后Switch模块的说明:如果2输入满足规则,则1通道通过,否则3输入通过。

输入被标号。

1输入通过规则是输入2(偏差e)大于或等于阀值。

第一三输入为数据输入,第二输入为控制输入。

原理:|e(k)|<=ε,ki起作用|e(k)|>ε,ki不起作用,由于阶跃输入,(treshhold )ε=0.1,0.2,……,0.9,1。

由于参数原因去kp=50,ki=kd=0时,曲线最好为了体现ε的作用,积分值不取0,改为Ki=10取不同ε后的曲线ε=0.1ε=0.5ε=1分析:ε=0.1时曲线最好,ε过大起不到积分分离的作用,比如ε=1,总会存在积分作用,ε过小可能是控制不能跳出积分分离的区域,从而只存在PD作用,长时间存在静差。

实验三、不完全微分PID控制算法仿真1、不完全微分PID控制器的阶跃响应实验参数:Shiyanpidbwqwfstep Ts=0.1s,仿真时间设为10s,5s,3s P=1 I=1 D=1滤波器参数a=0.1,0.2,……,0.8,1.2,实验框图:框图1:积分输出:微分输出:可见微分只在第一个单位时间有相应,而且较大框图2:a=0.1时a=0.5时:a=1时:分析:引入惯性环节后,对微分环节对阶跃响应有明显的改善作用。

杭电《过程控制系统》实验报告

杭电《过程控制系统》实验报告

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。

(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。

三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。

然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

图解法是确定模型参数的一种实用方法。

不同的模型结构,有不同的图解方法。

单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。

如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。

根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。

令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。

杭电实验报告模版

杭电实验报告模版

一、实验模块实验名称:____________________实验课程:____________________实验时间:____________________实验地点:____________________实验人员:____________________二、实验标题____________________三、实验目的1. 了解____________________2. 掌握____________________3. 培养____________________四、实验原理____________________五、实验仪器与设备1. 仪器名称:____________________2. 仪器型号:____________________3. 仪器规格:____________________4. 其他设备:____________________六、实验步骤1. 实验步骤一:(1)____________________(2)____________________(3)____________________2. 实验步骤二:(1)____________________(2)____________________(3)____________________3. 实验步骤三:(1)____________________(2)____________________(3)____________________(注:根据实际实验内容,添加相应步骤)七、实验过程1. 实验过程一:(1)____________________(2)____________________(3)____________________2. 实验过程二:(1)____________________(2)____________________(3)____________________3. 实验过程三:(1)____________________(2)____________________(3)____________________(注:根据实际实验内容,添加相应过程)八、实验数据记录与分析1. 实验数据记录:(注:根据实际实验内容,添加数据记录表格)2. 实验数据分析:(注:根据实际实验内容,对实验数据进行分析)九、实验结论1. 实验结果:(1)____________________(2)____________________(3)____________________2. 实验结论:(1)____________________(2)____________________(3)____________________十、实验讨论1. 实验中遇到的问题及解决方法:(1)____________________(2)____________________(3)____________________2. 实验改进建议:(1)____________________(2)____________________(3)____________________十一、实验总结通过本次实验,我了解了____________________,掌握了____________________,培养了____________________。

工作报告之杭电生产实习报告

工作报告之杭电生产实习报告

工作报告之杭电生产实习报告杭电生产实习报告【篇一:杭电生产实习报告2012-2013自动化学院】自动化学院生产实习报告学院专业班级学号学生姓名指导教师学期完成日期自动化学院电气工程与自动化0906**** 0906**** uzip 朱亚萍、杨成忠2013学年第01学期2013年1月04日生产实习将学习的理论知识运用于实践当中,反过来还能检验书本上理论的正确性,有利于融会贯通。

同时,也能开拓视野,完善自己的知识结构,达到锻炼能力的目的。

让我们对本专业知识形成一个客观,理性的认识,从而不与社会现实相脱节。

生产实习是我们自动化专业学习的一个重要环节,是将课堂上学到的理论知识与实际相结合的一个很好的机会,对强化我们所学到的知识和检测所学知识的掌握程度有很好的帮助。

这次生产实习,我们分别去了中国重汽集团杭州发动机有限公司,杭州娃哈哈集团有限公司,杭州和利时自动化有限公司。

一、实习目的初步认识社会,进一步了解货代以及物流运输组织与管理的相关知识,做到学以致用,把从学校学到的理论知识与实际工作中的实践贯穿起来,从社会实践中,逐步完善自我、发展自我,最终完全融入现实生活当中,做一名言出必行、知识与能力兼备、符合社会主义发展目标的合格大学生。

尽管目前不规范的市场经济体制对施工企业参加竞争很不利,但从企业长远的发展方向来看,施工企业走向市场已经是历史的必然。

因此,如何在市场中求生存、求发展,在竞争中取胜就成了电力施工企业必须认真考虑的问题。

学生在校系统地完成了公共基础课、技术基础科和部分专业课的学习后,通过生产实习,是学生进一步巩固和深化学过的基础理论和专业理论知识。

学会运用所学知识分析现场实际问题,培养积极探索和不断进取的创新精神。

本次实习是面向实际,通过走向生产第一线,了解自动化生产线的生产流程,熟悉自动化专业对口工作方向和工作环境,为后续课程的学习和毕业设计打下坚实的基础。

学生通过生产实习,可以进一步接触和认识社会,提高社交能力,树立劳动观念、集体观念纪律观念和创业精神。

杭电过控实验报告

杭电过控实验报告

自动化仪表与过程控制实验报告教师:岳伟挺 .班级: 11062813 .学号: 11226214 .学生姓名:陈逸武 .完成日期: 2013.12.29 .实验一、水箱液位实验一、实验目的1、通过实验了解磁翻板液位计的工作原理以及二线制接线方式。

2、通过实验了解宇电仪表519的操作及设定;能通过519仪表进行液位显示和阀门控制。

3、熟悉掌握控制仪器的参数设置。

4、熟悉掌握电动调节阀的使用及仪表接线方法。

5、熟悉掌握压力液位变送器的安装于仪表接线。

二、实验配置清单表1-1水箱液位定值控制实验配置清单三、实验电器接线图四、实验原理图1-6为单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此当一个单回路控制系统组成好以后,如何整定好控制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P )调节器的系统是一个有差系统,比例度δ的大小不图1-6、 实验控制框仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

杭电《过程控制系统》实验报告

杭电《过程控制系统》实验报告

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。

(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。

三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。

然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

图解法是确定模型参数的一种实用方法。

不同的模型结构,有不同的图解方法。

单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。

如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。

根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。

令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。

自动控制原理实验报告(电子版)

自动控制原理实验报告(电子版)

自动控制原理实验报告课程编号:ME3121023专业班级姓名学号实验时间:一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线18根实验一线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.比例环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节:Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤1、根据原理图构造实验电路。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

自控实验报告_频率法串联超前校正

自控实验报告_频率法串联超前校正

频率法串联超前校正一.实验目的1.了解和掌握二阶系统中的闭环和开环对数幅频特性和相频特性(波德图)的构造及绘制方法。

2.了解和掌握超前校正的原理,及超前校正网络的参数的计算。

3.熟练掌握使用本实验机的二阶系统开环对数幅频特性和相频特性的测试方法。

4.观察和分析系统未校正和串联超前校正后的开环对数幅频特性和相频特性,幅值穿越频率处ωc′,相位裕度γ,并与理论计算值作比对。

二.实验内容及步骤本实验用于观察和分析引入频域法串联超前校正网络后的二阶系统瞬态响应和稳定性。

超前校正的原理是利用超前校正网络的相角超前特性,使中频段斜率由-40dB/dec变为-20dB/dec并占据较大的频率范围,从而使系统相角裕度增大,动态过程超调量下降;并使系统开环截止频率增大,从而使闭环系统带宽也增大,响应速度也加快.1.未校正系统的时域特性的测试未校正系统模拟电路图见图1。

本实验将函数发生器(B5)单元作为信号发生器,OUT输出施加于被测系统的输入端Ui,观察OUT从0V 阶跃+2.5V时被测系统的时域特性。

图1未校正系统模拟电路图未校正系统的开环传递函数为:0.3S)0.2S(16)S(G模拟电路的各环节参数:积分环节(A5单元)的积分时间常数Ti=R1*C1=0.2S,惯性环节(A6单元)的惯性时间常数T=R2*C2=0.3S,开环增益K=R2/R3=6。

实验步骤:注:‘S ST’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。

(连续的正输出宽度足够大的阶跃信号)①在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥3秒(D1单元左显示)。

③调节B5单元的“矩形波调幅”电位器使矩形波输出电压=2.5V(D1单元右显示)。

(1)构造模拟电路:按图3-3-2安置短路套及测孔联线,表如下。

(3)运行、观察、记录:A6(OUT)接CH1×1档,B5(OUT)接CH2×1档。

杭电自控实验报告

杭电自控实验报告

杭电自控实验报告自动控制原理实验报告12063012 班级:姓名:成思屹12063203学号:3.1典型环节的模拟研究 3.1.1典型环节的模拟研究一、实验目的传递函数表达式及输出时域函数了解和掌握各典型环节模拟电路的构成方法、1. 表达式。

了解各项电路参数对典型环节动态特观察和分析各典型环节的阶跃响应曲线,2. 性的影响。

1()观察比例环节的阶跃响应曲比例系KR0R1输Ui计算测量100K4V0.5200K200K4V1100K2V250K200K1V4截图依次如下:2)观察惯性环节的阶跃响应曲线(比例系数K 惯性常数KUi C 输入R1 R0 计算值测量值计算值测量值0.2 1U 1 4V 200K 200K 0.4 2U 10.1100K2V21U50K0.24200K1V 截图依次如下:)观察积分环节的阶跃响应曲线(3 积分常数TiUi 输入C R0 计算值测量值1U200K 2U1U 1U100K 2U截图依次如下:)观察比例积分环节的阶跃响应曲线(比例系K积分常TiUiCR0R1输计算测量计算测量11U200K12U1V200K1U2100K22U截图依次如下:3.1.2二阶系统瞬态响应和稳定性一、实验目的型二阶闭环系统的传递函1.了解和掌握典型二阶系统模拟电路的构成方法及I 数标准式。

型二阶闭环系统的结构参数——无阻尼振荡频率,阻尼比对过渡过程研究I2. 的影响。

的型二阶闭环系统在阶跃信号输入时的动态性能指标MP,TP,TS3.掌握欠阻尼I 计算。

型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,观察和分析I4. MP,TP值,并与理论计算值做对比。

及在阶跃信号输入时的动态性能指标K,填入实验报告(1)计算和观察被测对象的临界阻尼的增计算Ti惯性常T增积分常0.110.20.30.20.1tp填入实验报告)画出阶跃响应曲线,测量超调量Mp,峰值时间(增惯积自阻尼超调M(%峰值时tpK常常频(A3)TTi计算计算测量计算测量A3)A2)计算0.12510.3截图如下:第一张为T=0.1时,Mp的计算;第二张为T=0.1时,tp 计算;第三张为T=0.3时,Mp的计算;第四张为T=0.3时,tp 计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验报告
班级:12063012
姓名:成思屹
学号:
3.1典型环节的模拟研究
3.1.1典型环节的模拟研究
一、实验目的
1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

(1)观察比例环节的阶跃响应曲线
R0 R1 输入Ui
比例系数K
计算值测量值
200K 100K 4V 0.5 200K 4V 1
50K 100K 2V 2 200K 1V 4
截图依次如下:
(2)观察惯性环节的阶跃响应曲线
R0 R1 C 输入Ui
比例系数K 惯性常数K 计算值测量值计算值测量值
200K 200K 1U
4V
1 0.
2 2U 1 0.4
50K 100K
1U
2V 2 0.1 200K 1V 4 0.2
截图依次如下:
(3)观察积分环节的阶跃响应曲线 R0 C
输入Ui 积分常数Ti 计算值 测量值
200K 1U
1U 2U
100K 1U
2U
截图依次如下:
(4)观察比例积分环节的阶跃响应曲线
R0 R1 C 输入Ui
比例系数K 积分常数Ti
计算值测量值计算值测量值
200K
200K
1U
1V
1
2U 1
100K
1U 2
2U 2
截图依次如下:
3.1.2二阶系统瞬态响应和稳定性
一、实验目的
1.了解和掌握典型二阶系统模拟电路的构成方法及I型二阶闭环系统的传递函数标准式。

2.研究I型二阶闭环系统的结构参数——无阻尼振荡频率,阻尼比对过渡过程的影响。

3.掌握欠阻尼I型二阶闭环系统在阶跃信号输入时的动态性能指标MP,TP,TS的计算。

4.观察和分析I型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标MP,TP值,并与理论计算值做对比。

(1)计算和观察被测对象的临界阻尼的增益K,填入实验报告
(2)画出阶跃响应曲线,测量超调量Mp,峰值时间tp填入实验报告
截图如下:
第一张为T=0.1时,Mp的计算;
第二张为T=0.1时,tp 计算;
第三张为T=0.3时,Mp的计算;
第四张为T=0.3时,tp 计算。

3.2线性控制系统的频域分析
3.2.1频率特性测试
一、实验目的:
1.了解线性系统的频率特性的基本概念
2.了解和掌握对数幅频和相频曲线(伯德图)的构造及绘制方法观测幅频特性和相频特性,填入实验报告
输入频率
Hz
幅频特性相频特性
计算值测量值计算值测量值
1.6
4.5
8
12.5
16
幅频特性曲线、相频特性曲线的绘制:截图依次如下:
3.3线性系统的校正与状态反馈
3.3.1频域法串联超前校正
一、实验目的:
1.了解和掌握超前校正的原理
2.了解和掌握利用闭环和开环的对数幅频特性和相频特性完成超前校正网络的参数的计算
3.掌握在被控系统中如何串入超前校正网络,构建一个性能满足指标要求的新系统的方法
超前校正网络的设计:截图如下:。

相关文档
最新文档