通信原理抽样定理

合集下载

通信原理抽样定理

通信原理抽样定理

通信原理抽样定理通信原理抽样定理是一项重要的通信技术原则,它是指对于一个连续时间信号进行抽样时,必须按照一定的规则进行抽样,才能够准确地还原出原始信号的信息。

本文将对通信原理抽样定理进行详细的解释。

一、连续信号与离散信号在通信系统中,信号通常被分为连续信号和离散信号两种类型。

连续信号是指在时间上呈连续变化的信号,例如声音信号、视频信号等。

而离散信号则是指信号经过采样后,在时间上呈现出间断的特点,例如数字音频、数字图像等。

二、抽样定理的原理通信原理抽样定理是基于傅里叶变换的原理得出来的。

傅里叶变换是将时域信号转化为频域信号的一项数学技术。

在信号的频域表示中,信号的频率为离散的,而抽样定理是建立在这个基础上的。

在进行信号采样时,必须按照一定的规则进行采样,这样才能够准确地还原出原始信号。

通常采用的规则是在一段时间内等间隔地进行采样,所采集的数据称为采样数据。

一个连续信号在被采样时,若满足采样频率大于两倍的信号最高频率,则可以通过采样信号得到原始信号的全部信息。

这就是通信原理抽样定理的核心原理。

三、抽样频率通信原理抽样定理中,抽样频率的选择对于信号的还原具有重要的影响。

一般来说,抽样频率越高,得到的离散信号就越接近原始连续信号,还原的信息也就越准确。

但是,过高的抽样频率会导致信号处理所需的计算量增加和数据存储量增大,同时也会增加系统成本。

抽样频率的选择既要考虑信号本身的特点,还要考虑计算量和存储量等实际因素。

在各种应用中,针对不同类型的信号和系统要求,通常计算出最优的抽样频率。

四、抽样信号的重构在实际应用中,原始连续信号往往是由离散信号采样得到的。

还原连续信号则需要通过离散信号进行重构。

重构方法有多种,其中常用的是插值法。

插值法是一种基于已知点的数值计算方法,用于估算未知点坐标的数值。

在进行插值重构时,需要确定合适的插值函数和插值点。

插值函数通常选用多项式函数,并尽可能将插值点均匀、密集地分布在原信号的采样区间内。

通信原理实验四 抽样定理与PAM调制解调实验

通信原理实验四 抽样定理与PAM调制解调实验

实验四抽样定理与PAM调制解调实验实验内容1.抽样定理实验2.脉冲幅度调制(PAM)及系统实验一.实验目的1. 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的特点。

2. 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二.实验电路工作原理(一)电路组成脉冲幅度调制实验系统如图4-1所示,由输入电路、调制电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成,如图4-2所示。

图4-1 脉冲振幅调制电路原理框图(二)实验电路工作原理1.输入电路该电路由发送放大、限幅电路等组成。

该电路还用于PCM(一)、PCM (二)、增量调制编码电路中。

由限幅二极管D601、D602组成双向限幅电路,防止外加输入信号幅度过大而损坏后面调制电路中的场效应管器件。

电路电原理图如4-2所示。

2.PAM调制电路调制电路见图4-2中的BG601。

这是一种单管调制器,采用场效应管3DJ6F,利用其阻抗高的特点和控制灵敏的优越性,能很好的满足调制要求。

取样脉冲由该管的S极加入,D极输入音频信号,由于场效应管良好的开关特性,在TP602处可以测到脉冲幅度调制信号,该信号为双极性脉冲幅度信号,不含直流分量。

3DJ6的G极为输出负载端,接有取样保持电路,由R601、C601以及R602等组成,由开关K601来控制,在做调制实验时,K601的2端与3端相连,能观察其取样定理的波形。

在做系统实验时,将K601的1端与2端相连,即与解调滤波电路连通。

3.脉冲发生电路该部分电路详见图4-2所示,主要有两种抽样脉冲,一种由555及其它元件组成,这是一个单谐振荡器电路,能产生极性、脉宽、频率可调的方波信号,可通过改变CA601的电容来实现输出脉冲频率的变化,以便用来验证取样定理,另一种由CPLD产生的8KHz抽样脉冲,这两种抽样脉冲通过开关K602来选择。

可在TP603处很方便地观测到脉冲频率变化情况和输出的脉冲波形。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。

由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。

在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒。

图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。

实验器材:
示波器、函数信号发生器、导线、面包板。

实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。

2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。

5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。

6.将采样频率设置为30kHz,并观察波形。

7.继续提高采样频率直至可清晰观察到原始信号的波形。

实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。

在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。

实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。

在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。

通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。

通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

抽样定理

抽样定理

抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。

抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。

E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。

此外,V。

A. Kotelnikov也对该定理做出了重要贡献。

采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。

采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。

如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。

限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。

抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。

高于或处于奈奎斯特频率的频率分量将导致混叠。

大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。

采样过程中应遵循的定律也称为抽样定理和抽样定理。

抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。

抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。

1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。

1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。

抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。

抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。

《通信原理抽样定理》课件

《通信原理抽样定理》课件

奈奎斯特频率
定义奈奎斯特频率,它是信号 采样频率的两倍。
采样定理
给出抽样定理的数学表达式: 采样频率 ≥ 2 × 信号最高频率
重建滤波器
引入重建滤波器,用于恢复原 始信号。
抽样定理的应用举例
1
图像压缩
2
介绍抽样定理在图像压缩算法明抽样定理在无线通信中的应用,如 蜂窝网络和卫星通信。
音频编码
说明抽样定理在音频编码中的应用,例 如MP3。
视频传输
解释抽样定理在视频传输中的重要性, 包括流媒体和视频会议。
抽样定理的适用范围和限制
1 频域限制
解释抽样定理在频域上的限制,包括信号频谱的最高频率。
2 信噪比要求
说明抽样定理对信噪比有要求,高信噪比可放宽抽样定理的限制。
3 采样定理的实现
通信系统中的抽样问题
说明在通信系统中抽样的重要性和挑战。
直观实例
通过直观的实例帮助听众理解抽样定理。
抽样定理的定义和原理
抽样定义
解释抽样是什么,包括对连续信 号进行离散化的过程。
别名现象
说明抽样频率不足会引发别名现 象。
奈奎斯特准则
介绍奈奎斯特准则,它是抽样定 理的核心原理。
抽样定理的数学表达式
介绍实际系统中如何满足抽样定理的要求。
抽样定理的实际意义
数据传输
说明抽样定理如何保证数据在信 号传输中的可靠性。
信号处理
介绍抽样定理在信号处理中的重 要性,如滤波和解调。
通信技术发展
解释抽样定理对通信技术发展的 推动作用。
总结和应用建议
总结
总结抽样定理的重要性和应用。
应用建议
提供一些建议,如如何避免抽样问题,优化信号采 样。

抽样定理

抽样定理

抽样定理抽样的分类:(1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理;(2) 用来抽样的脉冲序列是等间隔的还是非等同间隔的,又分为均匀抽样定理和非均匀抽样定理;(3) 抽样的脉冲序列是冲击序列还是非冲击序列,又分为理想抽样和实际抽样。

低通型连续信号抽样定理抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。

低通型连续信号的抽样定理:一个频带限制在(0,)H f 赫内的时间连续信号()m t ,若以12H f 的间隔对他进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

说明:抽样过程中满足抽样定理时,PCM 系统应无失真。

这一点与量化过程有本质区别。

量化是有失真的,只不过失真的大小可以控制。

低通型连续抽样定理证明设()m t 的频带为(0,)H f ,图中将时间连续信号()m t 和周期性冲激序列()T t δ相乘,用()s m t 表示此抽样函数,即()()()s T m t m t t δ=假设()m t 、()T t δ、()s m t 的频谱分别为()M ω、()T δω、()s M ω。

按照频域卷积定理,1()[()()]2s T M M ωωδωπ=因为 2()()T S n n T πδωδωω∞=-∞=-∑ 2S Tπω=所以, 1()[()*()]s s n M M n T ωωδωω∞=-∞=-∑由卷积关系,上式可写成1()()s s n M M n T ωωω∞=-∞=-∑ 上式表明,已抽样信号()s m t 的频谱()s M ω是无穷多个间隔为s ω的()M ω相迭加而成。

这表明()s M ω包含()M ω迭全部信息。

带通型抽样定理。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。

本实验旨在通过实际操作验证抽样定理在通信原理中的应用,加深对抽样定理的理解,掌握其实际应用方法。

二、实验原理。

抽样定理是指在一定条件下,对信号进行抽样采集后,可以准确还原原始信号。

在通信原理中,抽样定理是确保数字信号可以通过采样准确地表示模拟信号的重要基础。

三、实验仪器与材料。

1. 示波器。

2. 信号发生器。

3. 电缆。

4. 电脑。

5. 实验电路板。

四、实验步骤。

1. 将信号发生器与示波器连接,调节信号发生器输出频率为50Hz;2. 将示波器触发方式设置为自动触发;3. 调节示波器的水平和垂直灵敏度,使波形在示波器屏幕上居中显示;4. 通过示波器观察信号波形,并记录采样率;5. 逐渐增大信号发生器的频率,观察波形的变化;6. 将实验数据导入电脑,进行数据处理和分析。

五、实验结果与分析。

通过实验操作,我们得到了不同频率下的信号波形,并记录了相应的采样率。

在数据处理和分析过程中,我们发现随着频率的增大,如果采样率不足,将会出现混叠现象,导致信号失真。

这验证了抽样定理的重要性,即采样频率必须大于信号频率的两倍,才能准确还原原始信号。

六、实验总结。

通过本次实验,我们深刻理解了抽样定理在通信原理中的重要性,了解了采样率对信号重建的影响。

在实际应用中,我们需要严格按照抽样定理的要求进行信号采样,以确保数字信号能够准确地表示模拟信号。

七、实验感想。

本次实验使我对抽样定理有了更深入的理解,也增强了我对通信原理的实际操作能力。

通过实验,我意识到理论知识与实际操作相结合的重要性,也更加重视了实验数据的准确性和分析的重要性。

八、参考文献。

[1] 《通信原理》,XXX,XXX出版社,2018年。

[2] 《电子技术基础》,XXX,XXX出版社,2017年。

以上为本次实验的报告内容,希望能对大家的学习和实践有所帮助。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。

通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。

1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。

抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。

本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。

2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。

该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。

3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。

3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。

然后,将该模拟信号通过电缆连接到示波器上进行观测。

在示波器上观测到的信号即为模拟信号的采样结果。

3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。

这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。

4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。

实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。

4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。

例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。

5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。

通信原理-抽样定理(PAM)实验报告

通信原理-抽样定理(PAM)实验报告
3、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V左右。
4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT—————— 抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
通信原理-抽样定理(PAM)实验报告
实验目的
1、掌握抽样定理的概念。
2、掌握模拟信号抽样与还原的原理及实现方法。
3、了解模拟信号抽样过程的频谱
实验要求
按照实验指导书完成实验内容
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
(2)示波器双踪观测“抽样信号”与“PAM输Hz等典型频率值时“PAM输出”测试点波形及频谱的区别。
这里可采用频谱分析仪或数字存储示波器的频谱分析功能进行信号频谱分析。

通信原理课程设计——模拟信号的抽样

通信原理课程设计——模拟信号的抽样

一、基本原理1.1抽样定理抽样时时间上连续的模拟信号变成一系列时间上离散的抽样序列的过程。

抽样定理要解决的事,能否由此抽样序列无失真的恢复出模拟信号。

对一个频带受限的、时间连续的模拟信号抽样,当抽样速度达到一定的数值时,那么根据它的抽样值就能无失真恢复原模拟信号。

也就是说,若要传输模拟信号,不一定要传输模拟信号本身,只需要传输由抽样得到的抽样即可。

因此,抽样定理是模拟信号数字化的理论依据。

抽样的过程是将输入的模拟信号与抽样信号相乘,通常抽样信号时一个周期为T 的周期脉冲信号,抽样后得到的信号称为抽样信号。

理想的抽样为()∑⎪⎪⎭⎫ ⎝⎛-=nT t s nT t δδ其中(){ss t t T f t 1,0010===≠δ称为抽样速率。

因此抽样后信号为 ()()()()()sk sT s nT t nT x t t x t x -==∑∞-∞=δδ1.2低通抽样定理一个频带限制在()H f ,0内的连续信号()t x ,如果以()H sf T 2\1≤ 秒的时间间隔对它进行均匀抽样,则()t x 将被所得到的抽样值完全确定,可以由抽样值序列无失真地重建原始信号。

()H s f T 2\1=是抽样的最大间隔,称为奈奎斯特间隔。

低通信号的抽样可以从频域来理解,抽样的时域、频域对照如图4-3所示,根据频域卷积定理,()t x 的频域表达式为()()()[]()()()∑∑∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-*=*=n ssn s sT s n X T n X T X X ωωωωδωωδωπω1121由上式可见,在s ω的整数倍(n=⋅⋅⋅±±,,21)处存在()ωX 的复制谱。

如图4—3(c )所示,抽样后信号的频谱是原信号频谱平移s nf 后叠加而成,因此如果不发生频谱重叠,可以通过低通滤出原信号。

如果抽样频率H s ωω2<,即抽样间隔()H s f T 2/1>,则抽样信号的频谱会发生混叠现象,此时不可能无失真地重建原始信号。

通信原理抽样实验报告

通信原理抽样实验报告

一、实验目的1. 理解通信原理中抽样定理的基本概念;2. 掌握抽样定理在模拟信号数字化过程中的应用;3. 了解模拟信号抽样后的特性及其对信号传输的影响;4. 熟悉实验仪器和实验方法。

二、实验原理抽样定理(Nyquist-Shannon采样定理)指出,如果一个信号在频域中的最高频率分量为\( f_m \),为了能够无失真地恢复原信号,抽样频率\( f_s \)必须满足以下条件:\[ f_s \geq 2f_m \]其中,\( f_s \)为抽样频率,\( f_m \)为信号最高频率分量。

当抽样频率满足上述条件时,原信号可以通过低通滤波器从抽样信号中无失真地恢复出来。

三、实验仪器与设备1. 信号发生器:用于产生不同频率和幅度的正弦信号;2. 示波器:用于观察和测量信号波形;3. 抽样器:用于对模拟信号进行抽样;4. 低通滤波器:用于从抽样信号中恢复原信号。

四、实验步骤1. 使用信号发生器产生一个频率为\( f_m \)的正弦信号;2. 将正弦信号输入到抽样器中,设置抽样频率\( f_s \)为\( 2f_m \);3. 使用示波器观察抽样后的信号波形;4. 通过低通滤波器从抽样信号中恢复原信号;5. 比较恢复后的信号与原信号,分析恢复效果。

五、实验结果与分析1. 当抽样频率\( f_s = 2f_m \)时,恢复后的信号与原信号基本一致,表明抽样定理在实验中得到了验证;2. 当抽样频率\( f_s < 2f_m \)时,恢复后的信号与原信号存在较大差异,说明抽样频率过低会导致信号失真;3. 当抽样频率\( f_s > 2f_m \)时,恢复后的信号与原信号基本一致,但抽样频率过高会浪费带宽资源。

六、实验总结通过本次实验,我们深入理解了通信原理中抽样定理的基本概念,掌握了抽样定理在模拟信号数字化过程中的应用。

实验结果表明,抽样频率的选择对信号恢复质量具有重要影响。

在实际应用中,应根据信号特性和传输需求选择合适的抽样频率,以实现信号的高效、准确传输。

通信原理抽样定理

通信原理抽样定理
s s

11
抽样信号的频谱
抽样信号的频谱
m(t ) M () T (t ) T () ms (t ) M s ()
ms (t ) m(t ) T (t )
2 T ( ) Ts
n
( n )
s

1 M s ( ) M ( n s ) Ts


M TS M S H
根据时域卷积定理,得到:
ms (t )
n
m(nTs ) (t nTs )

m(t ) TS [ms (t ) h(t )]
15
信号恢复
H m(t ) TS m( nTs ) (t nTs ) Sa ( H t ) n
如电话、电视等通信业务,其信源输出的消息都是模拟 信号。
若要利用数字通信系统传输模拟信号,一般需要三个步
骤:
(1)把模拟信号数字化,即模数转换(A/D)
(2)进行数字方式传输 (3)把数字信号还原为模拟信号,即数模转换(D/A)
3
模拟信号的数字传输
模拟信号数字化传输的系统框图
模拟 信息源 抽样、量 化、编码 数字 通信系统 译码和 低通滤波
模拟随机信号
数字随机序列
数字随机序列
模拟随机信号
A/D转换中有三个基本过程:抽样、量化、编码。
4
e 模拟信号
e
抽样
t
t 0 t 2 t4 t1
量化 等级 0 1 2 3 4 量化 电平 二进制 编码 实际抽样 值
t
量化
5
6 7 8
9
0V 0.2V 0.4V 0.6V 0.8V 1.0V 1.2V 1.4V 1.6V 1.8V

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。

本实验旨在通过实际操作,验证和理解抽样定理在通信原理中的重要性和应用。

二、实验原理。

抽样定理是指在进行信号采样时,采样频率必须至少是信号最高频率的两倍,才能够准确地还原原始信号。

否则,会产生混叠失真,导致信号无法正确恢复。

抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。

三、实验器材。

1. 示波器。

2. 信号发生器。

3. 低通滤波器。

4. 电缆、连接线等。

四、实验步骤。

1. 将信号发生器输出正弦波信号,频率为f,幅度适当。

2. 将示波器设置为触发模式,连接到信号发生器输出端。

3. 调节示波器的水平和垂直位置,使得正弦波信号在屏幕上能够完整显示。

4. 逐渐增加信号发生器的频率,直到正弦波信号出现混叠失真。

5. 记录混叠失真出现时的频率值,并计算出最小采样频率。

五、实验结果。

通过实验,我们得到了信号发生器产生正弦波信号的频率和最小采样频率的数值。

实验结果表明,在通信原理中,抽样定理的重要性不可忽视。

只有在满足抽样定理的条件下,才能够准确地还原原始信号,避免混叠失真的发生。

六、实验结论。

抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。

在实际工程中,我们需要根据信号的最高频率来确定采样频率,以确保信号的准确恢复和传输。

本次实验的结果再次验证了抽样定理的重要性,为我们在通信原理中的应用提供了重要的参考。

七、实验感想。

通过本次实验,我们更加深刻地理解了抽样定理在通信原理中的重要性和应用。

在今后的学习和工作中,我们将会更加严格地遵循抽样定理,以确保通信系统的稳定和可靠。

八、参考文献。

[1] 《数字通信原理》,XXX,XXX出版社,2018年。

[2] 《通信工程基础》,XXX,XXX出版社,2017年。

以上就是本次实验的全部内容,谢谢阅读!。

通信原理实验-抽样定理

通信原理实验-抽样定理

学生实验报告)实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。

见图4。

如果fs<fH,就会出现频谱混迭的现象,如图5所示。

在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。

采用标准抽样频率fs=8KHZ。

改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

验证抽样定理的实验方框图如图6所示。

在图8中,连接(8)和(14),就构成了抽样定理实验电路。

由图6可知。

用一低通滤波器即可实现对模拟信号的恢复。

为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ2、多路脉冲调幅系统中的路际串话~多路脉冲调幅的实验方框图如图7所示。

在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。

分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。

N路抽样脉冲在时间上是互不交叉、顺序排列的。

各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。

本实验设置了两路分路抽样电路。

多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。

图7 多路脉冲调幅实验框图冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。

这样大的衰减带来的后果是严重的。

但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。

但我们知道平顶抽样将引起固有的频率失真。

PAM信号在时间上是离散的,但是幅度上趋势连续的。

而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。

本实验仅提供一个PAM系统的简单模式。

3、多路脉冲调幅系统中的路标串话路际串话是衡量多路系统的重要指标之一。

路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南农业大学课程论文
学院:班级:
姓名:学号:
课程论文题目:基于SystemView的抽样定理验证仿真设计与分析课程名称:
评阅成绩:
评阅意见:
成绩评定教师签名:
日期:年月日
f
H
f t )
(f H
f
H
f L
f L
基于SystemView 的抽样定理验证的仿真设计与分析
学生: ()
摘 要:本文阐述了抽样定理的基本原理,并利用SystemView 动态仿真软件进行抽样定理验证的仿真设计。

在SystemView 动态仿真软件上分别建立了低通、带通信号的采样与恢复的仿真系统,通过设置不同的采样频率,分别得到了两种信号在不同频率的情况下信号的恢复波形,通过源信号波形与恢复波形比较,并观察信号的失真程度,从而直观地验证抽样定理。

关键词:抽样定理;低通滤波器;带通滤波器;抽样脉冲
一、引言
SystemView 是ELANIX 公司推出的一个用于现代工程与科学系统设计及仿真的动态系统分析平台。

从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,SystemView 在友好而功能齐全的窗口环境下,为用户提供了几百种功能模块,能满足各种各种功能的实现。

SystemView 的库资源十分丰富,包括含若干图标的基本库(Main Library)及专业库(Optional Library),基本库中包含多种信号源、接收器、加法器、乘法器,各种函数运算器等;专业库有通信(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF /Analog)等;在系统设计和仿真分析方面,SystemView 还提供了一个真实而灵活的窗口用以检查、分析系统波形。

在窗口内、可以通过鼠标方便地控制内部数据的图形放大、缩小、滚动等。

另外,分析窗口还带有一个功能强大的“接受计算器”。

可以完成对仿真运行结果的各种运算、谱分析、滤波[1]。

综上,SystemView 是一个功能强大、用途广泛的软件,特别适合于系统的仿真与设计。

本文使用SystemView 构建通、带通信号的采样与恢复的仿真系统,并通过其分析窗口观察比较源信号波形和恢复波形,从而验证了抽样定理。

二、抽样定理概述
抽样定理是模拟信号数字化传输的理论基础,它告诉我们:如果对某一带宽的有限
时间连续信号(模拟信号)进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢复原信号。

也就是说,要传输模拟信号不一定传输模拟信号本身,只需传输按抽样定理得到的抽样值就可以了。

对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。

对上限频率为的低通型信号,低通抽样定理要求抽样频率应满足[2]:
(1) 对下限频率为
f L
、上限频率为
的带通型信号,带通抽样定理要求抽样频率满
足:
(2)
其中,公式(1)
为一个频带限制在 内的时间连续信号 的
上限频率。

公式(2) 为信号带宽,n
为整数时, 。

当 时,无论带通型信号的和为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。

两种信号的抽样与恢复,只要抽样频率分别满足公式(1)和公式(2),抽样后恢复的波形就不会
]1[2n
k
B f s +⋅≥H s
f f 2≥),0(f H L H f f B -=1
0<≤k nB
f H =
产生失真。

抽样定理在实际应用中应注意在抽样前后模拟信号进行滤波,把高于二分之一抽样频率的频率滤掉。

三、低通、带通抽样定理在SystemView 上的仿真 (一)仿真设计
低通、带通信号的采样与恢复系统模型如图1所示。

低通、带通信号的采样与恢复原理基本一致,都是采用一定的抽样频率对连续信号进行采用并恢复。

其中差异是采用的滤波器不同,低通信号采用的是低通滤波器,带通信号则为带通滤波器。

低通信号的采样脉冲频率为源信号的最高频率的两倍以上,带通信号的采样脉冲则为源信号的两倍带宽以上,这样设置的采样频率不会产生失真,否则产生失真。

图1 低通、带通信号的采样与恢复系统模型[3]
(二)系统构建
由系统模型建立对应的SystemView 仿真电路如图2所示,图中被采样的模拟信号源(图符0)是幅度为1V ,频率为100HZ 的正弦波,抽样脉冲(图符3、16)为脉宽为1us 矩形脉冲,抽样器用乘法器(图符2、13)替代。

图符1、4均为上截止频率为100HZ 的低通滤波器,图符8、9、20、12、14、21均为放大倍数为10的增益器,图符11为上截止频率为120HZ ,下截止频率为100HZ 的带通滤波器,图符21为上截止频率为130HZ ,下截止频率为90HZ 的带通滤波器,图符5、6、7、10、17、18、19均为分析窗口。

为验证低通信号抽样与恢复不失真的条件,分别选取了100HZ 、500HZ 、1000HZ 等不同的抽样频率,而带通信号的抽样频率分别选取了20HZ 、40HZ 、100HZ 等不同的频率,两种信号分别对原输入信号波形与抽样恢复后的波形进行观察和分析,从而直接地验证低通、带通信号抽样定理。

信号源 信号源处 理 低 通
滤波器
恢复信号 抽样脉冲1
信号源处 理
抽样脉冲2 带 通 滤波器
恢复信号
图2 低通、带通信号抽样与恢复的仿真系统
四、信号源波形与恢复后波形的分析比较与抽样定理的验证
我们选取不同的采样频率,通过计算分析窗口比较原波形与恢复后的波形,来验证抽样定理。

图3为低通信号抽样频率为100HZ的信号源与恢复波形叠加比较,通过分析比较我们很容易看出当抽样频率为100HZ时,恢复后的信号波形产生失真。

图4为低通信号抽样频率为500HZ的信号源与恢复波形叠加比较,满足抽样频率大于信号源最高频率的两倍,恢复后的波形没有产生失真。

图5为低通信号抽样频率为100HZ的信号源与恢复波形叠加比较,抽样频率过大,恢复后的波形产生失真。

图3 低通信号抽样频率为100HZ的波形叠加比较
图4低通信号抽样频率为500HZ的波形叠加比较
图5低通信号抽样频率为100HZ的波形叠加比较
带通信号依然通过采用不同的抽样频率来比较波形和验证抽样定理。

图6为带通信号抽样频率为20HZ的信号源与恢复波形叠加比较,不满足抽样频率大于两倍信号源的带宽,产生失真。

图7为带通信号抽样频率为20HZ的信号源与恢复波形叠加比较,满足抽样频率大于两倍信号源的带宽,不产生失真。

图8为带通信号抽样频率为100HZ的信号源与恢复波形叠加比较,抽样频率过大,恢复后的波形产生失真。

图6 带通信号抽样频率为20HZ的波形叠加比较
图7带通信号抽样频率为40HZ的波形叠加比较
图8带通信号抽样频率为100HZ的波形叠加比较
五、结论
SystemView具有完整的功能模块库,具有友好的界面窗口,简单易学。

本文利用SystemView动态仿真软件通过选取不同的采样频率,分别验证低通、带通信号的抽样定理当满足抽样频率大于两倍信号源最高频率以及大于两倍信号源的带宽时,恢复后的波形不产生失真,反之,产生失真,因此抽样定理得以验证。

参考文献:
[1]燕丽红.抽样定理的SystemView仿真与实现[J]. 价值工
程, 2012,31(5:146-147.DOI:10.3969/j.issn.1006-4311.2012.05.090
[2]汪英,杨喜,张勇华等.低通信号的采样与重建及其SystemView仿真[J].现代电子技术,2006,29(14):129-130,133.DOI:10.3969/j.issn.1004-373X.2006.14.046.
[3]黄慎和.抽样定理的验证[J].重庆工商大学学报(自然科学
版),2003,20(2):64-67.DOI:10.3969/j.issn.1672-058X.2003.02.018.。

相关文档
最新文档