变压器的冷却方式有几种
主变冷却方式
主变冷却方式主变冷却方式是指电力系统中用于冷却主变压器的方法和设备。
主变冷却的有效性直接影响着主变的运行和寿命,因此选择适当的主变冷却方式非常重要。
以下是几种常见的主变冷却方式及其特点的相关参考内容。
1. 前风冷却方式:前风冷却方式是将冷却器安装在主变绝缘框架的前面,利用气流进行冷却。
这种方式具有结构简单、容易实施、占地面积小等优点。
但是,前风冷却方式对环境要求较高,需要有足够大的通风量,同时也容易受到环境温度的影响。
2. 管路冷却方式:管路冷却方式是通过在主变绕组和油箱之间安装冷却器,利用强制气流进行冷却。
这种方式具有冷却效果好、稳定可靠等优点,适用于大容量主变。
但是,管路冷却方式的实施比较复杂,需要设计和维护冷却器的管路系统。
3. 油冷却方式:油冷却方式是将冷却器安装在主变油箱内,通过循环泵将油引入冷却器进行冷却。
这种方式具有冷却效果好、维护方便等优点,适用于中小容量主变。
但是,油冷却方式需要在主变设计阶段就仔细考虑冷却器的位置和冷却油路的布置,同时还需要定期进行油的维护和更换。
4. 水冷却方式:水冷却方式是通过将冷却器与主变绕组或油箱直接接触,利用水的冷却能力进行散热。
这种方式具有冷却效果好、不受环境温度影响等优点,适用于大容量主变。
但是,水冷却方式需要有足够的水源,并且需要设备专门的水冷却系统。
5. 无油冷却方式:无油冷却方式是利用绝缘气体对主变绕组进行冷却的方法。
这种方式具有减少绝缘油的使用量、环境友好等优点,适用于环境要求较高、对污染要求严格的场合。
但是,无油冷却方式需要有专门的冷却设备和控制系统,并且需要对绝缘气体进行密封和循环。
综上所述,主变冷却方式有前风冷却方式、管路冷却方式、油冷却方式、水冷却方式和无油冷却方式等几种常见的方式。
每种方式都有其特点和适用场合,选择适当的主变冷却方式需要综合考虑主变的容量、环境条件、设备的成本和维护的难易程度等因素。
只有选择合适的冷却方式,才能保证主变的正常运行和延长其寿命。
变压器冷却系统冷却方式的表示是什么
变压器冷却系统冷却方式的表示是什么电力变压器的冷却系统包括两电阻部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证外热传导中的热散到变压器外。
根据变压器容量的大小,介质和循环种类的不同,变压器装配不同的冷却方式。
一、冷却方式的表示变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下:例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环二、变压器的冷却方式油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫木炭循环水冷式等几种。
1、油浸自冷式油浸液氢自冷式冷却系统没有特殊的空气冷却设备,油在电阻器内自然循环,传至和绕组所发出的热量依靠油的对流作用铁芯油箱壁或水箱。
按变压器容量的深浅,又可分为三种有所不同的结构:1.1、平滑式箱壁。
容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是事实上平滑的;1.2、散热筋式箱壁。
在平滑箱弯曲壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器;1.3、散热管或散热器式冷却。
容量更大一点儿的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,水箱散热器通过法兰与油箱连接,是可拆部件。
图1所示为带有散热管的油浸自冷式变压器的油流路径。
变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。
冷油在散热管内下降,由管的下端再流入下端变压器油缸下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。
油浸自冷式冷却系统结构非常简单、可靠性高,广泛用于容量10,000kVA以下的变压器。
2、油浸风冷式油浸风冷式冷却系统,也称油自然循环、强制风冷式冷却系统。
它是在电气设备油箱的风扇各个散热器旁安装一个至几个风扇,把氧气的自然对流作用改变为强制对流作用,以增强散热器的散热能力。
变压器冷却方式
变压器冷却方式变压器是电力系统中必不可少的设备之一,它起着将电力转换为适合传输和分配的电压的作用。
在运行过程中,变压器会产生大量的热量,如果不进行有效的散热,会导致设备过热、损坏甚至起火。
因此,选择合适的冷却方式对于变压器的正常运行至关重要。
本文将针对常见的变压器冷却方式进行讨论。
1. 自然风冷却自然风冷却是最常见也是最简单的一种冷却方式。
变压器通常安装在通风良好的地方,通过自然对流的方式进行散热。
变压器外壳设计有许多散热片,利用空气流动在散热片间产生对流热交换,将变压器内部产生的热量散发到空气中。
这种方式适用于小型变压器或者运行负载较小的情况。
2. 强制风冷却强制风冷却是在自然风冷却的基础上增加了风扇系统,通过强制对流来加速热量的散发。
一般情况下,变压器内部设置有风扇,它们可以通过空气对流将热量迅速从变压器内部带走。
这种冷却方式适用于中小型变压器,特别是在环境温度较高或变压器运行负荷较大的情况下,可以提高冷却效果,防止设备过热。
3. 油冷却油冷却方式是将变压器内部的绕组和铁芯完全浸泡在冷却油中,通过油的循环流动来吸收和散发热量。
这种方式具有较高的冷却效果,可以适应大功率变压器的散热需求。
冷却油通常是绝缘的,除了具有冷却功能之外,还能提高绝缘性能,保护变压器的安全运行。
4. 水冷却水冷却方式是采用水作为冷却介质,通过水的流动来带走变压器产生的热量。
水冷却方式具有较高的散热能力,可以适应大功率和超高压变压器的需求。
相比于油冷却方式,水冷却方式更加环保,可以实现循环利用。
但是水冷却系统的设计和维护成本较高,需要考虑到水的供应和排放问题。
5. 油-水混合冷却油-水混合冷却是将油冷却和水冷却两种方式相结合的一种冷却方式。
它的原理是通过冷却油和冷却水的热交换来实现散热效果。
在设计中,通常将油和水分别流过变压器内部的不同部位,以达到最佳的冷却效果。
这种冷却方式相对于单独采用油冷却或水冷却,能够提供更高的散热能力。
变压器常用的冷却方式有以下几种
变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。
2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。
3、强迫油循环风冷50000~90000kVA、220kV产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供冷却器使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
冷却方式的标志对于干式变压器,冷却方式的标志按GB6450的规定。
对于油浸式变压器,用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。
C的合成绝缘液体;K燃点大于300。
C的绝缘液体;1燃点不可测出的绝缘液体。
注:燃点用“克利夫兰开口杯法”试验。
第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。
第三个字母表示外部冷却介质:A空气;W水。
第四个字母表示外部冷却介质的循环方式:N自然对流;F强迫循环(风扇、泵等)。
变压器冷却方式标准代号
变压器冷却方式标准代号变压器是电力系统中常见的电气设备,用于将高电压变换为低电压或低电压变换为高电压。
在变压器的运行过程中,会产生大量的热量,如果不及时散热,会导致变压器温度过高,影响其正常运行,甚至损坏设备。
因此,变压器的冷却方式非常重要。
变压器的冷却方式通常由国际电工委员会(IEC)制定的标准代号来表示。
这些标准代号是根据变压器的冷却介质和冷却方式来命名的。
下面是一些常见的变压器冷却方式标准代号:1. AN:自然冷却自然冷却是指变压器通过自然对流来散热。
变压器的外壳通常设计成散热片状,增加表面积以提高散热效果。
这种冷却方式适用于小型变压器或运行环境温度较低的情况。
2. AF:强制风冷强制风冷是指通过风扇强制对变压器进行冷却。
变压器内部设置有风道,风扇通过风道将冷却空气吹入变压器内部,加速热量的散发。
这种冷却方式适用于中小型变压器或运行环境温度较高的情况。
3. AA:强制风冷和自然冷却的组合强制风冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过风扇强制冷却。
这种冷却方式适用于大型变压器或运行环境温度变化较大的情况。
4. FA:强制水冷和自然冷却的组合强制水冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过水冷系统进行冷却。
水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。
这种冷却方式适用于大型变压器或运行环境温度较高的情况。
5. FN:强制水冷强制水冷是指变压器通过水冷系统进行冷却。
水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。
这种冷却方式适用于大型变压器或运行环境温度较高的情况。
除了上述几种常见的冷却方式标准代号外,还有一些其他的冷却方式,如强制油冷、自冷式干式变压器等。
不同的冷却方式适用于不同的变压器类型和运行环境,选择合适的冷却方式可以提高变压器的散热效果,延长设备的使用寿命。
总之,变压器的冷却方式标准代号是根据变压器的冷却介质和冷却方式来命名的。
变压器常用的冷却方式有以下几种
变压器常用的冷却方式有以下几种公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV 及以下的产品; 50000kVA及以下、产品。
2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。
3、强迫油循环风冷 50000~90000kVA、220kV产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
冷却方式的标志对于,冷却方式的标志按GB6450的规定。
对于,用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质:O 矿物油或燃点不大于300。
C的合成绝缘液体;K 燃点大于300。
C的绝缘液体;1 燃点不可测出的绝缘液体。
注:燃点用“克利夫兰开口杯法”试验。
第二个字母表示内部冷却介质的循环方式:N 流经冷却设备和绕组内部的油流是自然的热对流循环;F 冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D 冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。
变压器冷却系统最全讲解
变压器冷却系统最全讲解电力变压器的冷却系统包括两部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证介质中的热散到变压器外。
根据变压器容量的大小,介质和循环种类的不同,变压器采用不同的冷却方式。
一、冷却方式的表示表1 冷却种类的表示变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下:表2 变压器的冷却方式表示方法例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环二、变压器的冷却方式6天前电气专家联盟油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式等几种。
1、油浸自冷式油浸自冷式冷却系统没有特殊的冷却设备,油在变压器内自然循环,铁芯和绕组所发出的热量依靠油的对流作用传至油箱壁或散热器。
按变压器容量的大小,又可分为三种不同的结构:1.1、平滑式箱壁。
容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是完全平滑的;1.2、散热筋式箱壁。
在平滑箱壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器;1.3、散热管或散热器式冷却。
容量更大些的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,散热器通过法兰与油箱连接,是可拆部件。
图1所示为带有散热管的油浸自冷式变压器的油流路径。
变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。
冷油在散热管内下降,由管的下端再流入变压器油箱下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。
油浸自冷式冷却系统结构简单、可靠性高,广泛用于容量10,000kVA以下的变压器。
图1 油浸自冷式变压器油流路径1一油箱;2一铁芯与绕组;3一散热管2、油浸风冷式油浸风冷式冷却系统,也称油自然循环、强制风冷式冷却系统。
变压器常用的冷却方式有以下几种
变压器的冷却方式变压器的冷却方式是由冷却介质和循环方式决定的;由于油浸变压器还分为油箱内部冷却方式和油箱外部冷却方式,因此油浸变压器的冷却方式是由四个字母代号表示的。
第一个字母:与绕组接触的冷却介质。
O--------矿物油或燃点大于300℃的绝缘液体;K--------燃点大于300℃的绝缘液体;L--------燃点不可测出的绝缘液体;第二个字母:内部冷却介质的循环方式。
N--------流经冷却设备和绕组内部的油流是自然的热对流循环;F--------冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D--------冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环;第三个字母:外部冷却介质。
A--------空气;W--------水;第四个字母:外部冷却介质的循环方式。
N--------自然对流;F--------强迫循环(风扇、泵等)。
ONAN冷却方式为内部油自然对流冷却方式,即通常所说的油浸自冷式。
ONAF:油浸强迫风冷OFAF:强迫油循环强迫风冷ODAF:强迫油导向循环强迫风冷例如:变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kV A及以下、35kV及以下的产品;50000kV A及以下、110kV产品。
2 、油浸风冷12500kV A~63000kV A、35kV~110kV产品;75000kV A以下、110kV产品;40000kV A及以下、220kV产品。
3、强迫油循环风冷50000~90000kV A、220kV产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MV A及以上产品采用。
变压器 冷却方式 变压器油
变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF);强迫油循环水冷(OFWF);强迫导向油循环风冷(ODAF);强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1 油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。
2 油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。
3 强迫油循环风冷50000~90000kVA、220kV产品。
4 强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。
产生气体原因:内部局部过热,放电等,都会造成变压器油分解,而产生气体.中频电炉用变压器发热量按1%考虑。
如8800kVA变压器发热量为88kW。
电源柜为0.5%,即8800kW发热量为44kW。
变压器冷却(transformer cooling)变压器运行时,绕组和铁心中的损耗所产生的热量必须及时散逸出去,以免过热而造成绝缘损坏。
对小容量变压器,外表面积与变压器容积之比相对较大,可以采用自冷方式,通过辐射和自然对流即可将热量散去。
自冷方式适用于室内小型变压器,为了预防火灾,一般采用干式,不用油浸。
由于变压器的损耗与其容积成比例,所以随着变压器容量的增大,其容积和损耗将以铁心尺寸三次方增加,而外表面积只依尺寸的二次方增加。
因此,大容量变压器铁心及绕组应浸在油中,并采取以下各种冷却措施。
油浸自冷绝大多数配电变压器和许多电力变压器都采用这种方式。
容量较小的变压器,光滑油箱表面就足以将油冷却;中等容量变压器,油箱表面要做成皱纹形以增加散热面,或加装片式或扁管散热器,使油在散热器中循环流动;大容量变压器油箱表面应加设辐射散热器。
变压器的四种冷却方式
变压器的四种冷却方式变压器是电力系统中常用的电力设备,它的工作原理是利用电磁感应原理,将输入电压变换为输出电压。
在变压器运行时,会产生一定的热量,如果不能及时散热,就会影响变压器的使用寿命。
因此,变压器需要进行冷却,常见的变压器冷却方式有四种,分别是自然冷却、强制风冷却、强制油冷却和强制水冷却。
自然冷却是指变压器在运行时,通过自然对流和辐射的方式散热。
这种方式适用于小型变压器,通常不需要专门的冷却设备,只需要将变压器放置在通风良好的环境中即可。
自然冷却的优点是结构简单、维护成本低,但是由于散热效率相对较低,所以适用于小型变压器。
强制风冷却是指通过风扇将空气强制循环冷却变压器。
这种方式适用于中小型变压器,通常在变压器外部安装风扇,通过风扇将空气吹到变压器表面,加速热量的散发。
强制风冷却的优点是散热效率高、使用寿命长,但是需要专门的风冷装置,增加了成本和维护难度。
强制油冷却是指通过油泵将变压器内部的冷却油强制循环冷却。
这种方式适用于大型变压器,通常在变压器内部安装散热器和油泵,通过油泵将冷却油循环流动,以达到高效散热的目的。
强制油冷却的优点是散热效率高、使用寿命长,但是需要专门的油冷装置,增加了成本和维护难度。
强制水冷却是指通过水泵将水强制循环冷却变压器。
这种方式适用于大型变压器,通常在变压器内部安装散热器和水泵,通过水泵将水循环流动,以达到高效散热的目的。
强制水冷却的优点是散热效率高、使用寿命长,但是需要专门的水冷装置,增加了成本和维护难度。
变压器冷却方式的选择应根据变压器的规模和使用环境来确定。
不同的冷却方式各有优缺点,在选择时需要综合考虑。
只有选择了合适的冷却方式,才能确保变压器的正常运行和长寿命。
变压器冷却器异常
变压器冷却器异常1.变压器冷却方式变压器冷却方式有油浸风冷、油浸自冷、强迫油循环风冷却、强迫循环水冷却等多种形式,较常见的有油浸风冷和强迫油循环风冷却。
油浸风冷靠热油自循环,通过散热器散热;而强迫油循环风冷却则是采用潜油泵使油循环,再通过散热器散热进行冷却。
2.变压器强迫油循环风冷却系统的主要故障形式1)风冷交流电源故障。
2)风扇电动机热耦烧坏。
3)风扇电动机烧损、轴承破损、风扇刮叶。
4)油泵故障。
3.冷却器异常的现象及处理(1)冷却器动力电源消失1)异常现象:警铃响,主控盘发出“主变冷却器电源故障”等信号。
由于故障时的具体原因不同,所发的信号有所不同。
2)处理方法:①主变压器两组动力电源消失将造成冷却器全停,变压器温度将逐步升高。
②如果站用变压器故障引起冷却器全停,应先恢复站用变压器的供电,再逐步进行处理。
③如果站用电屏电源熔断器熔断引起冷却器全停,应先检查冷却器控制箱内电源进线部分是否存在故障,及时排除故障。
故障排除后,将各冷却器选择开关置于“停止”位置,再强送动力电源,若成功后再逐路恢复各组冷却器的运行;若不成功,应仔细检查所用电源是否正常及所用冷却器控制箱的电缆是否完好。
④如果由于冷却器控制箱电源自动切换回路造成全停,应及时手动投入备用电源,尽快恢复冷却器的运行。
⑤若工作、备用电源均故障,短时难以处理,应立即汇报调度,申请调度转移负载或做其他处理。
⑥故障发生后运行人员应加强对变压器油温的监视,防止油温过高烧损变压器或缩短使用寿命。
(2)分组冷却器故障1)异常现象:警铃响,主控盘发出“冷却器故障”或“备用冷却器投入”等信号,现场检查冷却器有热耦动作,主冷却器异常运行、声音异常等情况。
2)处理方法:①首先检查有备用冷却器投入的现象,然后将故障冷却器控制开关置于“停止”位置,再根据负载、温度等情况调整各组冷却器的运行。
②如现场未发现有“工作”位置的冷却器停运,则检查各组冷却器的油流继电器的动作情况,如果发现有未动作的,则将该组冷却器控制开关置于“停止”位置,备用冷却器返回停运,然后将该组冷却器停运,汇报有关部门进行处理。
变压器常用的冷却方式
变压器常用的冷却方式变压器常用的冷却方式有以下几种:油浸自冷(ONAN);油浸风冷(ONAF);强迫油循环风冷(OFAF);强迫油循环水冷(OFWF);强迫导向油循环风冷(ODAF);强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1 油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。
2 油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。
3 强迫油循环风冷50000~90000kVA、220kV产品。
4 强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供冷却器使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。
C的合成绝缘液体;K燃点大于300。
C的绝缘液体;1燃点不可测出的绝缘液体。
注:燃点用“克利夫兰开口杯法”试验。
第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。
第三个字母表示外部冷却介质:A空气;W水。
第四个字母表示外部冷却介质的循环方式:N自然对流;F强迫循环(风扇、泵等)。
变压器的连接组标号Y表示星形连接,中性点不引出;Y0表示星形连接(新国标用YN yn表示),中性点引出;△表示三角形连接;老国标中高低压都用大写字母,新国标高压侧用大写字母,低压侧用小写字母。
不同电压等级变压器冷却方式
不同电压等级变压器冷却方式一、引言在电力系统中,变压器是不可或缺的重要设备之一,它主要用于变换电压,以便实现电能传输和分配。
变压器的正常运行离不开有效的冷却系统,因为变压器在工作过程中会产生大量的热量,如果不能及时有效地散热,将会导致变压器过热甚至发生故障。
本文将介绍不同电压等级变压器的冷却方式,包括油浸冷却、风冷和水冷。
二、油浸冷却油浸冷却是一种常见的变压器冷却方式,尤其适用于中低压等级的变压器。
变压器的线圈和铁芯都被浸泡在绝缘油中,通过油的循环流动,将产生的热量传递给油,然后通过散热器将热量散发到周围空气中。
油浸冷却具有散热效果好、可靠性高的特点,但需要定期检查和更换绝缘油,且占地面积较大。
三、风冷风冷是一种常用的变压器冷却方式,适用于中压等级的变压器。
风冷变压器采用风扇将周围空气吹向变压器的散热器,通过强制对流的方式将热量带走。
风冷变压器不需要使用绝缘油,减少了维护成本,但由于依赖于自然风力或风扇,散热效果受到环境温度和风速的影响。
四、水冷水冷是一种高效的变压器冷却方式,主要适用于高压等级的变压器。
水冷变压器利用水来吸收和带走变压器产生的热量,通过水循环流动,将热量传递给冷却水,然后通过换热器将热量散发到周围环境中。
水冷变压器散热效果好,可靠性高,并且可以适应大功率变压器的散热需求,但需要专门的水冷系统,增加了设备成本和维护工作量。
五、比较分析油浸冷却、风冷和水冷是常见的变压器冷却方式,它们各有优缺点。
油浸冷却具有散热效果好、可靠性高的特点,适用于中低压等级的变压器;风冷变压器不需要使用绝缘油,减少了维护成本,但散热效果受到环境温度和风速的影响,适用于中压等级的变压器;水冷变压器散热效果好,可适应大功率变压器的散热需求,但需要专门的水冷系统,增加了设备成本和维护工作量,适用于高压等级的变压器。
六、结论根据变压器的电压等级不同,可以选择不同的冷却方式。
油浸冷却适用于中低压等级的变压器,具有散热效果好、可靠性高的特点;风冷适用于中压等级的变压器,不需要使用绝缘油,减少了维护成本;水冷适用于高压等级的变压器,散热效果好,可适应大功率变压器的散热需求。
变压器冷却方式分类
变压器冷却方式分类
1. 嘿,你知道吗,变压器冷却方式那可是有好几种呢!就好像人有不同的乘凉办法一样。
油浸自冷式,就像是大热天里静静待在树荫下的人,让油自然地散热,比如那些老小区里的变压器很多就是这样的。
2. 还有风冷式呢!这就好比在热天里吹着小风扇,加速空气流动来降温呀,一些小型的变压器就常用这种方式呢,你说神奇不神奇?
3. 哎呀,水冷式也很有意思啊!这不就跟人冲个凉水澡来降温一样吗?一些大型的变压器就会用到这种厉害的方式哦。
4. 强油风冷式,那可厉害了!就像给发热的机器配上了强力风扇,呼呼地吹,让热量快速跑掉,一些工厂里的变压器就是这样工作的呢。
5. 强油水冷式呢,哇,就像是给机器来了个高级的水冷系统,高效又厉害,好多重要的电力设施都靠它来保持冷静呢!
6. 还有一种叫导向风冷式,就好像给风指了个明确的方向,专门往需要的地方吹,这种方式也挺特别的,在一些特定场合可好用了。
7. 最后说说导向水冷式,这就好比给水流也定了个方向,让水冷更精准更有效呀!你想想,是不是很有意思呢?总之,变压器冷却方式真的是各有各的妙处,太神奇啦!
我的观点结论:变压器冷却方式丰富多样,每一种都有其独特的适用场景和优势,共同保障着电力系统的正常运行。
变压器的冷却方式有几种教学提纲
变压器的冷却方式有几种教学提纲一、概述变压器作为电力系统中的重要设备之一,其正常运行需要保持合适的工作温度。
因此,对变压器进行冷却是至关重要的。
变压器的冷却方式可以分为几种不同的类型,包括自然冷却、强制冷却和液体冷却。
本文将详细介绍这几种常见的变压器冷却方式。
二、自然冷却自然冷却也被称为自冷却或者自然通风冷却。
这种冷却方式基于空气对变压器散热的作用。
自然冷却分为两种类型:干式自然冷却和湿式自然冷却。
1.干式自然冷却干式自然冷却适用于小功率的变压器,其特点是变压器的外壳不带有冷却器,仅依靠自然通风来散热。
这种冷却方式的优点是结构简单,无需额外的冷却设备,因此造价低廉。
但是,由于依赖自然通风,其散热能力受到温度、空气流动以及变压器构造的影响。
2.湿式自然冷却湿式自然冷却适用于大功率的变压器,其特点是变压器的外壳带有冷却器,且冷却器通入冷却冷水。
这种冷却方式的优点是冷却效果好,可靠性高,适用于恶劣环境下的变压器。
但是,相对于干式自然冷却,湿式自然冷却的成本较高。
三、强制冷却强制冷却是通过外部设备的帮助,引入强制空气流动来提高散热能力。
主要的强制冷却方式包括风扇冷却和液力风扇冷却。
1.风扇冷却风扇冷却使用电动风扇,通过强制空气流动来提高变压器的散热能力。
这种冷却方式适用于小型和中型的变压器,其结构简单、成本较低。
但是,在需要长时间运行时,风扇冷却可能会导致噪音和振动问题。
2.液力风扇冷却液力风扇冷却利用液力传动来带动风扇,通过强制空气流动来达到散热的目的。
这种冷却方式适用于大型变压器,具有较大的冷却能力。
液力风扇冷却相对于传统风扇冷却的优势在于噪音和振动较小,能够提供更好的散热效果。
但是,液力风扇冷却的成本相对较高。
四、液体冷却液体冷却是指通过将冷却剂引入变压器内部,利用冷却剂的良好导热性能来实现散热的方式。
主要的液体冷却方式包括油冷却和水冷却。
1.油冷却油冷却是目前应用最广泛的液体冷却方式之一,特点是稳定性好、冷却效果佳。
变压器冷却方式
变压器的冷却方式是由冷却介质和循环方式决定的。
干式变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF);油浸变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。
变压器常用的冷却方式有以下几种:1、油浸自冷(ONAN);2、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1、油浸自冷31500kVA及以下、35kV及以下的产品;50000kVA及以下、110kV产品。
2 、油浸风冷12500kVA~63000kVA、35kV~110kV产品;75000kVA以下、110kV产品;40000kVA及以下、220kV产品。
3、强迫油循环风冷50000~90000kVA、220kV产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 、强迫导向油循环风冷或水冷(ODAF或ODWF)75000kVA及以上、110kV产品;120000kVA及以上、220kV产品;330kV级及500kV级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供冷却器使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
油浸式变压器冷却方式选择油浸式变压器可有自冷式、风冷式、强油风冷或水冷式冷却方式可供选择。
随着低损耗技术的发展,采用油浸、自冷式冷却的容量上限制在增加,40000kVA及以下额定容量的变压器可选用油浸自冷冷却方式。
优点是不要辅助供风扇用的电源,没有风扇所产生的噪声,散热器可直接持在变压器油箱上,也可集中装在变压器附近,油浸自冷式变压器的维护简单,始终可在额定容量下运行。
如选用可膨胀式散热器,变压器可不装储油柜并可设计成全密封型,维护量更少了,一般可在2500kV及以下配电变压器上采用。
变压器常用的冷却方式有以下几种资料
变压器常用的冷却方式有以下几种变压器常用的冷却方式有以下几种: 1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下: 1、油浸自冷 31500kVA及以下、35kV 及以下的产品; 50000kVA及以下、110kV产品。
2 、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。
3、强迫油循环风冷 50000~90000kVA、220kV产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。
5 、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品;120000kVA及以上、220kV产品; 330kV级及500kV级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供冷却器使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
冷却方式的标志对于干式变压器,冷却方式的标志按GB6450的规定。
对于油浸式变压器,用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质:O矿物油或燃点不大于300。
C的合成绝缘液体;K燃点大于300。
C的绝缘液体;1燃点不可测出的绝缘液体。
注:燃点用“克利夫兰开口杯法”试验。
第二个字母表示内部冷却介质的循环方式:N流经冷却设备和绕组内部的油流是自然的热对流循环;F冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。
变压器常用的冷却方式有以下几种
变压器常用的冷却方式有以下几种:1 、油浸自冷(ONAN);2 、油浸风冷(ONAF);3、强迫油循环风冷(OFAF);4、强迫油循环水冷(OFWF);5、强迫导向油循环风冷(ODAF);6、强迫导向油循环水冷ODWF)。
按变压器选用导则的要求,冷却方式的选择推荐如下:1 、油浸自冷31500kVA 及以下、35kV 及以下的产品;50000kVA 及以下、产品。
2、油浸风冷12500kVA 〜63000kVA、35kV〜110kV 产品;75000kVA 以下、110kV 产品;40000kVA 及以下、220kV产品。
3、强迫油循环风冷50000〜90000kVA、220kV 产品。
4 、强迫油循环水冷一般水力发电厂的升压变220kV 及以上、60MVA 及以上产品采用。
5 、强迫导向油循环风冷或水冷(ODAF 或ODWF)75000kVA 及以上、110kV 产品;120000kVA 及以上、220kV 产品;330kV 级及500kV 级产品。
选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。
即使空载也不能长时间运行。
因此,应选择两个独立电源供使用。
选用强油水冷方式时,当油泵冷却水失去电源时,不能运行。
电源应选择两个独立电源。
冷却方式的标志对于,冷却方式的标志按GB6450 的规定。
对于,用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质:O 矿物油或燃点不大于300。
C 的合成绝缘液体;K燃点大于300。
C的绝缘液体; 1 燃点不可测出的绝缘液体。
注:燃点用“克利夫兰开口杯法”试验。
第二个字母表示内部冷却介质的循环方式:N 流经冷却设备和绕组内部的油流是自然的热对流循环; F 冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环; D 冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫导向循环。
第三个字母表示外部冷却介质:A 空气;W 水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器的冷却方式有几
种
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
变压器的冷却方式有几种各种冷却方式的特点是什么
电力变压器常用的冷却方式一般分为三种:油浸自冷式、油浸风冷式、强迫油循环。
油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。
而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。
加装风冷后可使变压器的容量增加30%~35%。
强迫油循环冷却方式,又分强油风冷和强油水冷两种。
它是把变压器中的油,利用油泵打入油冷却器后再复回油箱。
油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。
这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。
什么叫变压器
变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。
变压器的主要部件有:
(1)器身:包括铁芯,线圈、绝缘部件及引线。
(2)调压装置:即分接开关,分为无载调压和有载调压装置。
(3)油箱及冷却装置。
(4)保护装置:包括储油柜、油枕、防爆管、吸湿器、气体继电器、净油器和测温装置。
(5)绝缘套管。
变压器铭牌上的额定值表示什么含义
变压器的额定值是制造厂对变压器正常使用所作的规定,变压器在规定的额定值状态下运行,可以保证长期可靠的工作,并且有良好的性能。
其额定值包括以下几方面:(1)额定容量:是变压器在额定状态下的输出能力的保证值,单位用伏安(VA)、千伏安(kVA)或兆伏安(MVA)表示,由于变压器有很高运行效率,通常原、副绕组的额定容量设计值相等。
(2)额定电压:是指变压器空载时端电压的保证值,单位用伏(V)、千伏(kV)表示。
如不作特殊说明,额定电压系指线电压。
(3)额定电流:是指额定容量和额定电压计算出来的线电流,单位用安(A)表示。
(4)空载电流:变压器空载运行时激磁电流占额定电流的百分数。
(5)短路损耗:一侧绕组短路,另一侧绕组施以电压使两侧绕组都达到额定电流时的有功损耗,单位以瓦(W)或千瓦(kW)表示。
(6)空载损耗:是指变压器在空载运行时的有功功率损失,单位以瓦(W)或千瓦(kW)表示。
(7)短路电压:也称阻抗电压,系指一侧绕组短路,另一侧绕组达到额定电流时所施加的电压与额定电压的百分比。
(8)连接组别:表示原、副绕组的连接方式及线电压之间的相位差,以时钟表示。
常用变压器有哪些种类各有什么特点
一般常用变压器的分类可归纳如下:
(1)按相数分:
1)单相变压器:用于单相负荷和三相变压器组。
2)三相变压器:用于三相系统的升、降电压。
(2)按冷却方式分:
1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。
2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
(3)按用途分:
1)电力变压器:用于输配电系统的升、降电压。
2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
3)试验变压器:能产生高压,对电气设备进行高压试验。
4)特种变压器:如电炉变压器、整流变压器、调整变压器等。
(4)按绕组形式分:
1)双绕组变压器:用于连接电力系统中的两个电压等级。
2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
3)自耦变电器:用于连接不同电压的电力系统。
也可做为普通的升压或降后变压器用。
(5)按铁芯形式分:
1)芯式变压器:用于高压的电力变压器。
2)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。
发电机受潮时,如何进行干燥处理
发电机在进行就地干燥时,一定要做好必要的保温和现场安全措施,具体措施如下:(1)如果干燥现场温度较低,可以用帆布将发电机罩起来,必要时还可用热风或无明火的电器装置将周围空气温度提高。
(2)干燥时所用的导线绝缘应良好,并应避免高温损坏导线绝缘。
(3)现场应备有必要的灭火器具,并应清除所有易燃物。
(4)干燥时,应严格监视和控制干燥温度,不应超过限额。
干燥时,发电机各处的温度限额为:
(1)用温度计测量定子绕组表面温度为85℃。
(2)在最热点用温度计测量定子铁芯温度为90℃。
(3)用电阻法测量转子绕组平均温度应低于120~130℃。
干燥时间的长短由发电机的容量、受潮程度和现场条件所决定,一般预热到65~70℃的时间不得少12~30小时,全部干燥时间不低于70小时。
在干燥过程中、要定时记录绝缘电阻、绕组温度、排出空气温度、铁芯温度的数值,并绘制出定子温度和绝缘电阻的变化曲线,受潮绕组在干燥初期,由于潮气蒸发的影响,绝缘电阻明显下降,随着干燥时间的增加,绝缘电阻便逐渐升高,最后在一定温度下,稳定在一定数值不变。
若温度不变,且再经3~5小时后绝缘电阻及吸收比也不变。
用摇表测量转子的绝缘电阻大于1MΩ时,则可认为干燥工作结束。
发电机在现场干燥时,多采用以下几种方法:
(1)定子铁损干燥法:此法是干燥发电机最常见的方法。
在定子线圈铁芯上绕上励磁线圈,并通入380V的交流电,使定子产生磁通依靠其铁损来干燥定子。
(2)直流电源加热法:转子干燥多用此法。
向转子线圈通入直流电,利用铜损所产生的热量加热转子绕组。
(3)短路电流干燥法:采用此法,需将发电机定子绕组出口处三相短路,然后使发电机组在额定转速运转,通过调节励磁电流,使定子绕组电流随之上升、利用发电机自身电流所产生的热量,对绕组进行干燥。
运行中的发电机频率过低将对发电机有什么影响
正常运行中的发电机,其频率偏差应在额定值的±周/秒范围之内,当运行中的发电机频率低于此范围时,将对发电机有下列影响:
(1)由于频率下降,致使发电机转子转速降低,导致发电机两端风扇鼓风的风压下降,所以风量减少,导致发电机定、转子线圈和铁芯的温度升高。
(2)由于频率降低时,发电机的端电压也将随之降低,要想维持端电压正常水平、则必须增大转子励磁电流,转子电流增大以后,将使转子和励磁绕组的温度增高。
运行中的发电机,当转子绕组发生两点接地故障时,会出现哪些现象为什么
当运行中的发电机转子绕组发生两点接地故障时,将出现下列现象:
(1)励磁电流突然增大。
(2)功率因数增高甚至进相。
(3)定子电流增大,电压降低。
(4)转子产生剧烈振动等现象
产生以上现象的原因,主要有以下几点:
(1)由于转子绕组两点接地后。
转子接地点之间的绕组将被短路,这就使绕组直流电阻减小,所以励磁电流增大。
(2)若绕组被短路的匝数较多,则主磁通将大量减少,致使发电机向电网输送的无功功率迅速下降,致使发电机的功率因数增高,甚至进相,同时,也将可能引起定子电流增大。
(3)由于转子部分绕组短路,破坏了发电机的磁路平衡,所以将引起发电机产生剧烈的振动。
发电机在运行中失磁是什么原因引起的失磁后配电盘上的表计都有什么反映
发电机在运行中突然失磁的主要原因是由于励磁回路断路引起的。
造成励磁回路断路有以下原因:
(1)灭磁开关受振动而跳闸。
(2)磁场变阻器接触不良。
(3)励磁机磁场线圈断线。
(4)整流子严重冒火或自动电压调整器故障。
当发电机失磁后,配电盘上各表计将出现以下现象:
(1)转子励磁电流突然变为零或接近于零。
(2)励磁电压接近于零。
(3)发电机电压和母线电压比原来降价。
(4)定子电流表指示升高。
(5)功率因数表指示进相。
(6)无功功率表指示负值。
有哪些原因能够造成发电机定子绕组在运行中损坏
造成发电机定子绕组在运行中损坏的原因主要有以下几点:
(1)由于定子绝缘老化、受潮或局部有缺陷造成定子绝缘在运行电压或过电压下被击穿。
(2)由于定子接头过热或铁芯局部过热造成定子绕组绝缘烧毁引起绝缘击穿。
(3)突然短路的电动力造成绝缘损坏。
(4)由于运行中转子零件飞出或端部固定零件脱落等引起绝缘损坏。
发电机振荡失步将出现哪些现象怎样处理
发电机振荡失步将出现下列现象:
(1)定子电流超出正常值,电流表指针将激烈地撞挡。
(2)定子电压表的指针将快速摆动。
(3)有功功率表指针在表盘整个刻度盘上摆动。
(4)转子电流表指针在正常值附近快速摆动。
(5)发电机发出鸣叫声,且叫声的变化与仪表指针的摆动频率相对应。
(6)其他并列运行的发电机的仪表也有相应的摆动
发电机振荡失去同步时,值班人员应注意①要通过增加励磁电流来产生恢复同步的条件;②要适当地调整该机的负荷,以帮助恢复同步;③当整个电厂与系统失去同步时,该电厂的所有发电机都将发生振荡,除设法增加每台发电机的励磁电流外,在无法恢复同步的情况下,为使发电机免遭持续电流的损害,应按规程规定,在2分钟后将电厂与系统解列。
同步发电机有哪些内部损耗
同步发电机的内部损耗主要包括铁损、铜损、机械损耗及附加损耗等四部分。