工程热力学课件教学PPT作者刘宝兴工程热力学1-8(全套课件齐)课件.
合集下载
工程热力学全套课件(第一章)
突然去掉重物 最终 p2 = p 0 T2 = T0
p
1.
.
p,T
2 v
2、准静态过程
p1 = p0+重物 T1 = T0
假如重物有无限多层 每次只去掉无限薄一层
系统随时接近于平衡态
p0
p
1.
.
.2
p,T v
★ 准静态过程可以在状态参
数坐标图上确切地表示出来。
、 无穷小
定义:准平衡过程—系统经历一系 列无限接近平衡状态的过程。
平衡不一定均匀,但均匀一定平衡
对于单相,平衡态则一定是均匀的
为什么引入平衡概念?
如果系统平衡,则可用一组确切的状 态参数描述系统所处的状态。 如果系统不平衡,则不能! 工程热力学研究的正是这种平衡状态。
二、状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
0.01 水三相点 0 冰熔点
-17.8 -273.15
盐水熔点 0
459.67
0
-459.67
0
温标的换算
T [ K ] t[ C ] 273.15
O
5 t[ C ] (t[ F ] 32) 9 t[ F ] t[ R] 459.67
O
测温仪表
日常:水银温度计,酒精温度计, 工业:热电偶 热电阻 辐射温度计
简单可压缩系统:N = n + 1 =2 绝热简单可压缩系统 N = ?
2、状态方程
状态方程 基本状态参数(p,v,T)之间 的关系 简单可压缩系统:N = 2
v f ( p, T )
f ( p , v, T ) 0
p
1.
.
p,T
2 v
2、准静态过程
p1 = p0+重物 T1 = T0
假如重物有无限多层 每次只去掉无限薄一层
系统随时接近于平衡态
p0
p
1.
.
.2
p,T v
★ 准静态过程可以在状态参
数坐标图上确切地表示出来。
、 无穷小
定义:准平衡过程—系统经历一系 列无限接近平衡状态的过程。
平衡不一定均匀,但均匀一定平衡
对于单相,平衡态则一定是均匀的
为什么引入平衡概念?
如果系统平衡,则可用一组确切的状 态参数描述系统所处的状态。 如果系统不平衡,则不能! 工程热力学研究的正是这种平衡状态。
二、状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
0.01 水三相点 0 冰熔点
-17.8 -273.15
盐水熔点 0
459.67
0
-459.67
0
温标的换算
T [ K ] t[ C ] 273.15
O
5 t[ C ] (t[ F ] 32) 9 t[ F ] t[ R] 459.67
O
测温仪表
日常:水银温度计,酒精温度计, 工业:热电偶 热电阻 辐射温度计
简单可压缩系统:N = n + 1 =2 绝热简单可压缩系统 N = ?
2、状态方程
状态方程 基本状态参数(p,v,T)之间 的关系 简单可压缩系统:N = 2
v f ( p, T )
f ( p , v, T ) 0
《工程热力学》第一章ppt
21
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
《工程热力学》(第四版)配套教学课件
传热面积是影响换热器性能的重要因素。通过优化传热面积,可以 提高换热效率,降低能耗。
流体流动模式
流体流动模式会影响传热系数。合理设计流体流动路径,可以增强 传热效率。
材料选择
材料选择需要考虑流体腐蚀性,耐温性,成本等因素。合适的材料 可以确保换热器寿命和可靠性。
课程总结与反馈
1 1. 课程回顾
回顾课程内容,掌握核心概念。
3 3. 混合物热力学性质
混合物热力学性质包括焓、 熵、吉布斯自由能等,可用 于分析混合物的能量变化。
4 4. 应用
气体和液体混合物在许多工 程应用中发挥重要作用,例 如制冷剂、燃料和化学反应 过程。
化学平衡与化学反应
1
2
3
化学平衡
化学反应达到平衡状态时,正逆反应 速率相等,反应物和生成物的浓度不
功
3
功是能量的另一种形式,它是力作用在物体上所做的功。
内能
4
内能是系统内部所有能量的总和,包括热能、动能和势能。
热力学第二定律
热力学第二定律的表述
热力学第二定律阐述了热量传递的方向性和不可逆性,以及熵增原理。
克劳修斯表述
热量不能自发地从低温物体传递到高温物体,需要外界做功。
开尔文表述
不可能从单一热源吸取热量,全部用来做功,而不引起其他变化。
《工程热力学》第四 版教学课件
本套课件旨在为学习工程热力学课程的学生提供更直观、更易懂的学习体 验。
课件内容涵盖了工程热力学的基础知识,并通过丰富的图文和动画进行讲 解,使学生更容易理解和掌握。
hd by h d
课程简介
课程内容
本课程涵盖了热力学基础、热力学定律、流体性质、传热原理以及常见热力学系统等方面内容。
流体流动模式
流体流动模式会影响传热系数。合理设计流体流动路径,可以增强 传热效率。
材料选择
材料选择需要考虑流体腐蚀性,耐温性,成本等因素。合适的材料 可以确保换热器寿命和可靠性。
课程总结与反馈
1 1. 课程回顾
回顾课程内容,掌握核心概念。
3 3. 混合物热力学性质
混合物热力学性质包括焓、 熵、吉布斯自由能等,可用 于分析混合物的能量变化。
4 4. 应用
气体和液体混合物在许多工 程应用中发挥重要作用,例 如制冷剂、燃料和化学反应 过程。
化学平衡与化学反应
1
2
3
化学平衡
化学反应达到平衡状态时,正逆反应 速率相等,反应物和生成物的浓度不
功
3
功是能量的另一种形式,它是力作用在物体上所做的功。
内能
4
内能是系统内部所有能量的总和,包括热能、动能和势能。
热力学第二定律
热力学第二定律的表述
热力学第二定律阐述了热量传递的方向性和不可逆性,以及熵增原理。
克劳修斯表述
热量不能自发地从低温物体传递到高温物体,需要外界做功。
开尔文表述
不可能从单一热源吸取热量,全部用来做功,而不引起其他变化。
《工程热力学》第四 版教学课件
本套课件旨在为学习工程热力学课程的学生提供更直观、更易懂的学习体 验。
课件内容涵盖了工程热力学的基础知识,并通过丰富的图文和动画进行讲 解,使学生更容易理解和掌握。
hd by h d
课程简介
课程内容
本课程涵盖了热力学基础、热力学定律、流体性质、传热原理以及常见热力学系统等方面内容。
工程热力学第一章基本概念PPT课件
等压过程在工业生产和日常生活中有着广泛的应用。
详细描述
等压过程在各种工业生产过程中发挥着重要作用,如蒸汽机、汽轮机、燃气轮机等热力机械中的工作过程。此外, 在制冷技术、气体压缩、气体分离等领域也广泛应用等压过程。在生活中,等压过程也随处可见,如气瓶的压力 保持、气瓶压力的调节等。
感谢您的观看
THANKS
06
热力学第三定律
绝对零度不能达到原理
绝对零度是热力学的最低温度,理论 上不可能通过任何有限过程达到。
这一定律对于理解热力学的基本概念 和原理非常重要,因为它揭示了热力 学过程不可逆性。
这是由于热力学第三定律指出,熵在 绝对零度时为零,而熵是系统无序度 的量度,因此系统必须经历无限的过 程才能达到绝对零度。
04
热力学第一定律
能量守恒
1 2
能量守恒定律
能量不能凭空产生,也不能消失,只能从一种形 式转化为另一种形式。
热力学能
系统内部能量的总和,包括分子动能、分子位能 和内部势能等。
3
热力学第一定律表达式
ΔU = Q + W,其中ΔU表示系统能量的变化,Q 表示系统吸收的热量,W表示系统对外做的功。
热量与功的转换
是与系统相互作用的其它物质或 能量的总和。
状态与状态参数
状态
描述系统在某一时刻的物理状态,包括宏观和微观状态。
状态参数
描述系统状态的物理量,如压力、温度、体积、内能等。
热力学平衡
热力学平衡
系统内部各部分之间以及系统与外界 之间达到相对静止的一种状态。
热力学平衡的条件
系统内部不存在宏观的净力、净热和 净功。
热力学的应用领域
能源转换
热能转换为机械能: 如内燃机、蒸汽机和 燃气轮机等。
详细描述
等压过程在各种工业生产过程中发挥着重要作用,如蒸汽机、汽轮机、燃气轮机等热力机械中的工作过程。此外, 在制冷技术、气体压缩、气体分离等领域也广泛应用等压过程。在生活中,等压过程也随处可见,如气瓶的压力 保持、气瓶压力的调节等。
感谢您的观看
THANKS
06
热力学第三定律
绝对零度不能达到原理
绝对零度是热力学的最低温度,理论 上不可能通过任何有限过程达到。
这一定律对于理解热力学的基本概念 和原理非常重要,因为它揭示了热力 学过程不可逆性。
这是由于热力学第三定律指出,熵在 绝对零度时为零,而熵是系统无序度 的量度,因此系统必须经历无限的过 程才能达到绝对零度。
04
热力学第一定律
能量守恒
1 2
能量守恒定律
能量不能凭空产生,也不能消失,只能从一种形 式转化为另一种形式。
热力学能
系统内部能量的总和,包括分子动能、分子位能 和内部势能等。
3
热力学第一定律表达式
ΔU = Q + W,其中ΔU表示系统能量的变化,Q 表示系统吸收的热量,W表示系统对外做的功。
热量与功的转换
是与系统相互作用的其它物质或 能量的总和。
状态与状态参数
状态
描述系统在某一时刻的物理状态,包括宏观和微观状态。
状态参数
描述系统状态的物理量,如压力、温度、体积、内能等。
热力学平衡
热力学平衡
系统内部各部分之间以及系统与外界 之间达到相对静止的一种状态。
热力学平衡的条件
系统内部不存在宏观的净力、净热和 净功。
热力学的应用领域
能源转换
热能转换为机械能: 如内燃机、蒸汽机和 燃气轮机等。
工程热力学ppt课件
{
但 T < T0 ,Q不能传回 T 0 。
结论:温差使过程不可逆。
进一步分析,为使Q能传回 T 0 ,需加热泵,但要消耗一 定的功 W泵 ,也不可逆(比较水泵)。
压力差的影响:压力差使过程不可逆。
F α P f
pA > F cos α + f pA = F cos α + f
非准静态过程—nonequilibrium process 非准静态过程 准静态过程, 准静态过程,不可逆 准静态过程, 准静态过程,可逆
定义:工质从中吸取或向之排放热能的物质系统。
热源
{
温度高低
温度变化
{ {
高温热源(热源 — heat source) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir)
变温热源(variational heat reservoir)
3.1 热力系统(热力系、系统、体系)和 外界及边界 系统(thermodynamic system or system)
3.6 热力系示例图
刚性绝热喷管
取红线为系统—闭口系 取喷管为系统—开口系绝热系?
§1-3 工质的热力状态及基本状态数
• 热力学状态— state of thermodynamic system
— 某一瞬间系统所呈现的宏观物理状况
• 状态参数— state of properties
— 描述系统所处状态的宏观物理量 a) .状态参数是宏观量,反映了大量粒子运动的宏观平均效果, 只有平衡态才有统一的状态参数。 常用的状参有:p, T,V,U,H,S等, 其中p,T,V称为基本状态参数。 b)状态参数的特性:状态的单值函数 物理上:与过程无关 dx ∫ dx = 0, ∫abc dx = ∫adc 数学上:其微分是全微分
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
《工程热力学》PPT课件
n从到0,放热→0 →吸热;等温线右内能增加,左内能减少。 例如压缩机压缩过程:K>n>1
第五节 热力学第二定律
重点掌握:
1、热力学第二定律的表述; 2、热力循环的热效率; 3、卡诺循环的热效率。
一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物 体传至高温物体。—热量不可能自发地从冷物体转移到
K= cp/cν:绝热指数
3、参数间的关系: 由 Pvk=常数 →P1v1k=P2v2k →P1/P2=(v2/v1)k 又 Pv=RT →P=RT/v →Tvk-1=常数 →T1/T2=(v2/v1)k-1 →T2=T1(v1/v2)k-1 =T1εk-1 4、过程量的计算: 推出: w=-u q=w+ u q=0
一、定容过程
1、定义:过程进行中系统的容积(比容)保持不变
的过程。
2、过程方程式:ν =常数 3、参数间的关系: 由 PV=RT 知,P/T=常数, 所以: P1/P2=T1/T2, P1/T1=P2/T2 4、过程量的计算: 又 q=Δ u+w, 由 W=∫PdV, 且 dV=0
→ w=0
→ q=Δ u
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
四、课程的特点、要求、学时分配、考核
特点:本课程理论性较强,无多少实物供参照,课堂上的 讲授以理论分析和推导为主。
工程热力学第1章基本概念[1]PPT课件
14
状态参数的微分特征
设 z =z (x , y)
dz是全微分
dzxzy dxyy yx
可判断是否 是状态参数
16
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p 物理中压强,单位: Pa , N/m2 常用单位: 1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa17
3.对于平衡状态,有确定性:非平衡态,则为变化
量。
13
状态参数的特征:
1、状态确定,则状态参数也确定,反之亦 然 2、状态参数的积分特征:状态参数的变化 量与路径无关,只与初终态有关 3、当热力系经历一封闭的状态变化过程, 又回复到原始状态时,状态的参数变化为0. 4、状态参数的微分特征:全微分
但平衡状态是死态,没有能量交换
能量交换
状态变化
如何描述
破坏平衡 31
§1-5 状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
状态公理:对组元一定的闭口系,
独立状态参数个数 N=n+1
32
状态公理
闭口系: 不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
18
绝对压力与相对压力
当 p > pb 当 p < pb
表压力 pe 真空度 pv
状态参数的微分特征
设 z =z (x , y)
dz是全微分
dzxzy dxyy yx
可判断是否 是状态参数
16
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p 物理中压强,单位: Pa , N/m2 常用单位: 1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa17
3.对于平衡状态,有确定性:非平衡态,则为变化
量。
13
状态参数的特征:
1、状态确定,则状态参数也确定,反之亦 然 2、状态参数的积分特征:状态参数的变化 量与路径无关,只与初终态有关 3、当热力系经历一封闭的状态变化过程, 又回复到原始状态时,状态的参数变化为0. 4、状态参数的微分特征:全微分
但平衡状态是死态,没有能量交换
能量交换
状态变化
如何描述
破坏平衡 31
§1-5 状态方程、坐标图
平衡状态可用一组状态参数描述其状态
想确切描述某个热力系,是 否需要所有状态参数?
状态公理:对组元一定的闭口系,
独立状态参数个数 N=n+1
32
状态公理
闭口系: 不平衡势差 状态变化 能量传递
消除一种不平衡势差 达到某一方面平衡 消除一种能量传递方式
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对压力
注意:只有绝对压力 p 才是状态参数
18
绝对压力与相对压力
当 p > pb 当 p < pb
表压力 pe 真空度 pv
工程热力学全部课件pptx
与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
热力学循环
由一系列热力学过程组成的闭合路径,如卡诺循环、布雷顿循环 等。
02 热力学第一定律
能量守恒原理
1
能量不能自发地产生或消失,只能从一种形式转 换为另一种形式。
2
在一个孤立系统中,总能量始终保持不变。
3
能量转换过程中,各种形式的能量在数量上保持 平衡。
热力学第一定律表达式
Q = ΔU + W
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
03 热力学第二定律
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
具有加和性
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04
工程热力学课件_第一章 基本概念
无限薄一层。
过程每一步的不平衡势差都很小。
系统内部随时接近于平衡态——准平衡。
p
1
.
.
.
2
v
空天工程系
30
工程热力学 Engineering Thermodynamics
准静态过程有实际意义:
解决了平衡和变化的矛盾;
既可实现热功转换,又可以用状态参数的变化来描述。
准静态过程的条件:
破坏平衡所需时间
7.热力系统、外界、边界定义?(董天力回答)
8.闭口系统、开口系统、绝热系统、孤立系统?
(李致远回答前两个,陈若雨回答后两个)
9.简单可压缩系统
10.热力状态、状态参数定义?(张希回答)
11.基本状态参数、导得状态参数定义、举例?(任羿霏回答)
空天工程系
19
工程热力学 Engineering Thermodynamics
换算关系: t
= T − 273.15
摄氏温标的每1℃和开尔文温标的每1K是相等的。
空天工程系
14
工程热力学 Engineering Thermodynamics
压力
宏观上:工质垂直作用于器壁单位面积上的力——压力。
微观上:大量分子撞击固体壁面的平均效果。
常用单位:
1 bar = 105 Pa
1 MPa = 106 Pa
闭口系统
闭口系统
开口系统
孤立系统
空天工程系
9
工程热力学 Engineering Thermodynamics
三、其它分类方式
相态
单相系—工质是单一相态(如气相或液相)的物质,水蒸气
多相系—工质是多种相态(如气-液两相或气-液
-固三相等)物质的混合物
过程每一步的不平衡势差都很小。
系统内部随时接近于平衡态——准平衡。
p
1
.
.
.
2
v
空天工程系
30
工程热力学 Engineering Thermodynamics
准静态过程有实际意义:
解决了平衡和变化的矛盾;
既可实现热功转换,又可以用状态参数的变化来描述。
准静态过程的条件:
破坏平衡所需时间
7.热力系统、外界、边界定义?(董天力回答)
8.闭口系统、开口系统、绝热系统、孤立系统?
(李致远回答前两个,陈若雨回答后两个)
9.简单可压缩系统
10.热力状态、状态参数定义?(张希回答)
11.基本状态参数、导得状态参数定义、举例?(任羿霏回答)
空天工程系
19
工程热力学 Engineering Thermodynamics
换算关系: t
= T − 273.15
摄氏温标的每1℃和开尔文温标的每1K是相等的。
空天工程系
14
工程热力学 Engineering Thermodynamics
压力
宏观上:工质垂直作用于器壁单位面积上的力——压力。
微观上:大量分子撞击固体壁面的平均效果。
常用单位:
1 bar = 105 Pa
1 MPa = 106 Pa
闭口系统
闭口系统
开口系统
孤立系统
空天工程系
9
工程热力学 Engineering Thermodynamics
三、其它分类方式
相态
单相系—工质是单一相态(如气相或液相)的物质,水蒸气
多相系—工质是多种相态(如气-液两相或气-液
-固三相等)物质的混合物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究方法
17
参数可以细分成两类,强度参数和广延参数。
强度参数不依赖系统的大小,例如温度和压力。
广延参数依赖于系统的大小,例如质量和体积。
而单位质量的广延参数,如比体积,具有强度参
数的性质。
18
平衡 — 只要系统内各处参数是均匀的,才有确定 的参数值。这时系统就该参数来说是平衡的。
11
直接的能量转换
(1) 燃料电池,它将化学能直接转换成电 能,图1-4示意表示利用氢和氧的燃料 电池。 (2) 热电发生器
12
图1-4示意表示利用氢和氧的燃料电池。
13
地热发电厂 - 蒸汽动力装置的另一种形式 太阳能 必须开发经济实用的一些方法。以 降低储存成本和设计出经济的房屋辅助采 暖系统。
8
图1-2描述一个简单蒸汽动力装置循环。
9
燃气发动机 — 热力学可分析预测可从发动 机得到多少功,如何降低发动机排气污染。 燃气轮机是另一种动力源。 基于微型燃气轮机的冷热电三联供系统, 见图1-3。 如何更有效地将燃料的化学能转换成机械 能?
10
微型燃气轮机的冷热电三联供系统示意图。
4
热力学是一门研究能的科学,是研 究物质性质和能量转换之间关系的基 础工程学科。 热转换成功,或化学能转换成电能 就是能的形式的转换,热力学提供了 对它们进行分析的科学工具。
5
1.1 应用领域
在许多工程系统和其他生活方面常常遇到热力学的应用: 心脏不断地将血液泵到人体全身。 体细胞中的各种能量转换。 体热不停地排放到环境。 一间普通的房屋在某些方面就是一间充满热力学奇妙的
25
图1-5 表示汽缸—活塞压缩过程的p-V 图
26
过程中温度保持不变的过程叫等温过程。 过程中压力保持不变的过程叫等压过程。 过程中比体积保持不变的过程叫等容过程。 热力学循环是两个或更多个过程的总体, 并且终态等于初始状态。
27
稳定就意味着参数不随时间变化,反之就 是不稳定。 稳定流动过程被定义为在该过程中流体稳 定地流过控制容积,这时流体参数可从控 制容积中的一点到另一点发生变化,但是, 在任何固定点、在整个过程中都保持不变。 在稳定流动过程中控制容积的体积V、质 量m 和总能量E 保持不变。
20
状态公理 — 简单可压缩系统的状态完全可 由两个独立的强度参数来给定。
简单可压缩系统 — 没有电、磁、重力、运
动和表面张力作用时的系统。
这些作用是由外力场引起的,对大多数工
程问题是可以忽略不计的。
21
温度与比体积是独立参数,并能一起确定简单可 压缩系统的状态。
温度和压力对单相系统是独立参数。对多相系统
展示厅,图1-1是具有太阳能热水系统的民宅。
许多常用的家用器皿和家用电器都多少用到热力学原理
6
图1-1是具有太阳能热水系统的民宅。
7
典型工程设备及系统:
蒸汽动力发电厂是现代文明基础的动力装 置。图1-2描述一个简单蒸汽动力装置循环。 它需要人们用热力学去加以分析改进 以提高蒸汽动力发电厂的效率。
热力学处理的是平衡状态 — 系统中没有不平衡的 势(或驱动力)。当平衡系统孤立于外界时,就 不经历变化。
除非满足所有有关类型的平衡条件,否则系统就 不处于热力学平衡状态。
19
热平衡 — 整个系统的温度相同,即系统没有引起 热流的驱动力,即温差。 力平衡 — 力平衡与压力有关,系统任何点处没有 压力随时间的变化。 相平衡 — 每相的质量达到平衡含量并维持状态。 化学平衡 — 系统化学组分不随时间变化,即没有 化学反应发生。 稳定状态 — 没有一个系统参数随时间而变。
一个准静态过程可以被看作系统内不平衡势无限 小、过程进行得足够慢的过程。 人们对准静态过程感兴趣,一是因为它分析方便, 二是可以用作与实际过程进行比较的标准。
24
用参数坐标图来分析热力过程是很方便的。图1-5
表示汽缸—活塞压缩过程的p-V 图。
过程途径表示过程中系统经历的一系列平衡状态。 对非准静态过程无法用一个状态来表征整个系统, 所以也没有整个系统的过程途径。非准静态过程 用初态和终态之间的虚线表示。
热力学涉及所有与能有关的问题,掌握热力 学原理对开发利用能源是十分重要的。
14
热力学系统(或称为系统)—
1.2 系统的定义
任何具有确定特性
的物质或空间的整体。
系统的选择由个人决定,如何确定系统需要一定
的技巧。
系统分为两类
— 闭口系统和开口系统。
定量物质,没有
15
闭口系统(也称为控制质量)—
1
工程热力学
精品课程教学课件PPT
2
面向21世纪高等学校课程教材
工程热力学
ENGINEERING THERMODYNAMICS
主 编 刘宝兴 主 审 任禾盛 机械工业出版社
3
第1章 基本概念和定义
1.1 1.2 1.3 1.4 1.5 热力学的应用领域 系统的定义 系统的描述及其性质 比体积和压力 温度
是互相对应的参数。因此温度和压力不足以确定
两相系统的状态。
22
过程 — 系统从一个平衡状态到另一个平衡状态所
经历的任何变化,过程就是系统状态的变化。
途径 — 在一个过程中系统所经过的无数个系统状
态。
一个过程的完整地描述,应说明过程的初态和终 态、过程的途径以及与外界的相互作用。
23
当过程进行中系统随时保持无限接近平衡状态, 就称为准静态过程或准平衡过程。
物质跨越边界。
孤立系统 — 与外界不以任何方式相互作用的闭口 系统。 开口系统(也称为控制容积)— 物质可跨越系统 的边界,是适当选择的空间区域,通常是包围涉 及物质流动的装置设备 外界 — 不在系统中的其他一切事物 边界 — 分开系统和外界的表面
16
1.3
系统的描述及其性质
— 主要是用宏观的方法(经典的方法),微观的 方法(统计的方法)只用于解释某些用宏观方法不能理解 的现象。 状态 — 描述物质如何存在。它具有温度、压力、密度以及 其他宏观参数。 参数是整个系统的特征量,它不取决于系统状态如何变化, 只取决于最终的系统状态。 参数必须是系统的特性。一个系统从一个状态到另一个状 态,参数只取决于状态,与系统经历的状态变化无关。
17
参数可以细分成两类,强度参数和广延参数。
强度参数不依赖系统的大小,例如温度和压力。
广延参数依赖于系统的大小,例如质量和体积。
而单位质量的广延参数,如比体积,具有强度参
数的性质。
18
平衡 — 只要系统内各处参数是均匀的,才有确定 的参数值。这时系统就该参数来说是平衡的。
11
直接的能量转换
(1) 燃料电池,它将化学能直接转换成电 能,图1-4示意表示利用氢和氧的燃料 电池。 (2) 热电发生器
12
图1-4示意表示利用氢和氧的燃料电池。
13
地热发电厂 - 蒸汽动力装置的另一种形式 太阳能 必须开发经济实用的一些方法。以 降低储存成本和设计出经济的房屋辅助采 暖系统。
8
图1-2描述一个简单蒸汽动力装置循环。
9
燃气发动机 — 热力学可分析预测可从发动 机得到多少功,如何降低发动机排气污染。 燃气轮机是另一种动力源。 基于微型燃气轮机的冷热电三联供系统, 见图1-3。 如何更有效地将燃料的化学能转换成机械 能?
10
微型燃气轮机的冷热电三联供系统示意图。
4
热力学是一门研究能的科学,是研 究物质性质和能量转换之间关系的基 础工程学科。 热转换成功,或化学能转换成电能 就是能的形式的转换,热力学提供了 对它们进行分析的科学工具。
5
1.1 应用领域
在许多工程系统和其他生活方面常常遇到热力学的应用: 心脏不断地将血液泵到人体全身。 体细胞中的各种能量转换。 体热不停地排放到环境。 一间普通的房屋在某些方面就是一间充满热力学奇妙的
25
图1-5 表示汽缸—活塞压缩过程的p-V 图
26
过程中温度保持不变的过程叫等温过程。 过程中压力保持不变的过程叫等压过程。 过程中比体积保持不变的过程叫等容过程。 热力学循环是两个或更多个过程的总体, 并且终态等于初始状态。
27
稳定就意味着参数不随时间变化,反之就 是不稳定。 稳定流动过程被定义为在该过程中流体稳 定地流过控制容积,这时流体参数可从控 制容积中的一点到另一点发生变化,但是, 在任何固定点、在整个过程中都保持不变。 在稳定流动过程中控制容积的体积V、质 量m 和总能量E 保持不变。
20
状态公理 — 简单可压缩系统的状态完全可 由两个独立的强度参数来给定。
简单可压缩系统 — 没有电、磁、重力、运
动和表面张力作用时的系统。
这些作用是由外力场引起的,对大多数工
程问题是可以忽略不计的。
21
温度与比体积是独立参数,并能一起确定简单可 压缩系统的状态。
温度和压力对单相系统是独立参数。对多相系统
展示厅,图1-1是具有太阳能热水系统的民宅。
许多常用的家用器皿和家用电器都多少用到热力学原理
6
图1-1是具有太阳能热水系统的民宅。
7
典型工程设备及系统:
蒸汽动力发电厂是现代文明基础的动力装 置。图1-2描述一个简单蒸汽动力装置循环。 它需要人们用热力学去加以分析改进 以提高蒸汽动力发电厂的效率。
热力学处理的是平衡状态 — 系统中没有不平衡的 势(或驱动力)。当平衡系统孤立于外界时,就 不经历变化。
除非满足所有有关类型的平衡条件,否则系统就 不处于热力学平衡状态。
19
热平衡 — 整个系统的温度相同,即系统没有引起 热流的驱动力,即温差。 力平衡 — 力平衡与压力有关,系统任何点处没有 压力随时间的变化。 相平衡 — 每相的质量达到平衡含量并维持状态。 化学平衡 — 系统化学组分不随时间变化,即没有 化学反应发生。 稳定状态 — 没有一个系统参数随时间而变。
一个准静态过程可以被看作系统内不平衡势无限 小、过程进行得足够慢的过程。 人们对准静态过程感兴趣,一是因为它分析方便, 二是可以用作与实际过程进行比较的标准。
24
用参数坐标图来分析热力过程是很方便的。图1-5
表示汽缸—活塞压缩过程的p-V 图。
过程途径表示过程中系统经历的一系列平衡状态。 对非准静态过程无法用一个状态来表征整个系统, 所以也没有整个系统的过程途径。非准静态过程 用初态和终态之间的虚线表示。
热力学涉及所有与能有关的问题,掌握热力 学原理对开发利用能源是十分重要的。
14
热力学系统(或称为系统)—
1.2 系统的定义
任何具有确定特性
的物质或空间的整体。
系统的选择由个人决定,如何确定系统需要一定
的技巧。
系统分为两类
— 闭口系统和开口系统。
定量物质,没有
15
闭口系统(也称为控制质量)—
1
工程热力学
精品课程教学课件PPT
2
面向21世纪高等学校课程教材
工程热力学
ENGINEERING THERMODYNAMICS
主 编 刘宝兴 主 审 任禾盛 机械工业出版社
3
第1章 基本概念和定义
1.1 1.2 1.3 1.4 1.5 热力学的应用领域 系统的定义 系统的描述及其性质 比体积和压力 温度
是互相对应的参数。因此温度和压力不足以确定
两相系统的状态。
22
过程 — 系统从一个平衡状态到另一个平衡状态所
经历的任何变化,过程就是系统状态的变化。
途径 — 在一个过程中系统所经过的无数个系统状
态。
一个过程的完整地描述,应说明过程的初态和终 态、过程的途径以及与外界的相互作用。
23
当过程进行中系统随时保持无限接近平衡状态, 就称为准静态过程或准平衡过程。
物质跨越边界。
孤立系统 — 与外界不以任何方式相互作用的闭口 系统。 开口系统(也称为控制容积)— 物质可跨越系统 的边界,是适当选择的空间区域,通常是包围涉 及物质流动的装置设备 外界 — 不在系统中的其他一切事物 边界 — 分开系统和外界的表面
16
1.3
系统的描述及其性质
— 主要是用宏观的方法(经典的方法),微观的 方法(统计的方法)只用于解释某些用宏观方法不能理解 的现象。 状态 — 描述物质如何存在。它具有温度、压力、密度以及 其他宏观参数。 参数是整个系统的特征量,它不取决于系统状态如何变化, 只取决于最终的系统状态。 参数必须是系统的特性。一个系统从一个状态到另一个状 态,参数只取决于状态,与系统经历的状态变化无关。