图论部分
离散数学测验题--图论部分(优选.)
离散数学图论单元测验题一、单项选择题(本大题共10小题,每小题2分,共20分)1、在图G =<V ,E >中,结点总度数与边数的关系是( )(A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=Vv E v )deg(2、设D 是n 个结点的无向简单完全图,则图D 的边数为( )(A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/23、 设G =<V ,E >为无向简单图,∣V ∣=n ,∆(G )为G 的最大度数,则有(A) ∆(G )<n (B)∆(G )≤n (C) ∆(G )>n (D) ∆(G )≥n4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )(A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )(A) },,,,,,,,,{><><><><><=c d b c d b a b d a E(B) },,,,,,,,,{><><><><><=c d d b c b a b d a E(C) },,,,,,,,,{><><><><><=c d a d c b a b c a E6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的() (A)度数 (B) 出度 (C)最大度数 (D) 入度7、设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .48、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )(A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +29、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。
图论知识点
图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。
图由节点(或顶点)和连接这些节点的边组成。
本文将概述图论的基本概念、类型、算法以及在各种领域的应用。
1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。
边可以是有向的(指向一个方向)或无向的(双向连接)。
1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。
环是一条起点和终点相同的路径。
1.3 度数节点的度数是与该节点相连的边的数量。
对于有向图,分为入度和出度。
1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。
2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。
2.2 简单图和多重图简单图是没有多重边或自环的图。
多重图中,可以有多条边连接同一对节点。
2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。
有向图的连通性称为强连通性。
2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。
3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。
3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。
3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。
4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。
4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。
4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。
5. 结论图论是数学中一个非常重要和广泛应用的领域。
它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
随着科技的发展,图论在新的领域中的应用将会不断涌现。
本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。
图论部分复习题
图论部分一、选择题:1.欧拉回路是(B )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路 2.哈密尔顿回路是(C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路 3.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是(C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边4.下列哪一种图不一定是树(C )。
A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图 5.下列哪个不是两个图同构的必要条件A. 结点数目相等B. 边数相等C. 度数相同的结点数目相同D. 两个图都是平面图 6.在有n 个结点的连通图中,其边数(B )A. 最多有n-1条B. 至少有n-1条C. 最多有n 条D. 至少有n 条 7.下列图为树的是(C )。
A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a G B 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a G C 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 二、填充题:1、n 阶无向完全图K n 的边数是(2)1(-n n ),每个结点的度数是(n-1)。
2、n 个结点的有向完全图边数是(n(n-1)),每个结点的度数是(2n-2)。
3、设有向图G = < V ,E >,},,,{4321v v v v V =的邻接矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010*******1010A , 则1v 的入度)(deg 1v -= 3 ,4v 的出度)(deg 4v +=1 ,从2v 到4v 的长度为2的路有 1 条。
《数据结构图论部分》PPT课件
Page 4
2020/11/24
哥尼斯堡七桥问题
能否从某个地方出发,穿过所有的桥仅一次 后再回到出发点?
Page 5
2020/11/24
七桥问题的图模型
欧拉回路的判定规则:
1.如果通奇数桥的地方多于
C
两个,则不存在欧拉回路;
2.如果只有两个地方通奇数
桥,可以从这两个地方之一
A
B 出发,找到欧拉回路;
V4 是有向边,则称该图为有向图。
Page 9
2020/11/24
简单图:在图中,若不存在顶点到其自身的边,且同 一条边不重复出现。
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
简单图
❖ 数据结构中讨论的都是简单图。
Page 10
2020/11/24
图的基本术语
邻接、依附
DeleteVex(&G, v); 初始条件:图 G 存在,v 是 G 中某个顶点。 操作结果:删除 G 中顶点 v 及其相关的弧。
Page 34
2020/11/24
InsertArc(&G, v, w); 初始条件:图 G 存在,v 和 w 是 G 中两个顶点。 操作结果:在 G 中增添弧<v,w>,若 G 是无向的,则还
Page 2
2020/11/24
• 知识点
– 图的类型定义 – 图的存储表示 – 图的深度优先搜索遍历和广度优先搜索遍历 – 无向网的最小生成树 – 拓扑排序 – 关键路径 – 最短路径
Page 3
离散数学及其应用图论部分课后习题答案
作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。
(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。
(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。
14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。
解答:2()1G n k ∆=--;1()1G n k δ=--。
15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。
解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
浅析离散数学中图论部分多媒体教学
质。 通过把 概念具体 化 , 学生觉 得这些抽 象的概念 就在 使
自己的身边 ,如 在多重 图的基础 上 ,可 以直接 给 出带全
图 , 果节 点表示 城市 。 如 权表 示两城 市 间费用 , 这样 可以
体 3 ] 图论 中存 在大量 外形 优美 而且含 意深 刻 的 根据
图形 的特点 。 图论 教学 中 , 在 采用 多媒体技 术设计 教学课
进行互 动 .实 时地 进行信 息交换 .增强 了学 生 的学 习兴
趣, 提升 了教学效果 。 二、 媒体技 术在图论教 学 中的优势 多
个 无 向图 , 让学 生先 观察4 图 的特点 , 介绍 判断 两 图 个 再
同构的直 观分析法 。经过观察 ,学生发 现两个 图不 仅结 点 之间存在 一一对应 关系 ,而且 这种对应 关系也保 持在
生
中 图 分 类 号 :4 4 G 3
文献标 识码 : A
文 章 编 号 :6 2 5 4 (0 10 — 1 7 0 17 — 6 6 2 1 )3 0 0 — 2
第
三
期
离散 数学是计 算机 、软件工程 等专业 的一 门数学类 核心课程 .通 过离散 数学 的学 习能够 培养学生 的抽象 思 维能力和严 密的逻辑 推理能力 。 在计算机 学科产 生之后 , 这一点表 现得尤为 突 出,其 中图论部 分的相关 内容 表现 得更为 突出 。图论作 为离散 数学 的一部分 , 在形 式语言 、 分布式 系统 、 据库等研 究 中均 有很重要 的应用 。 在实 数 而 际教学 过程 中, 由于图论 内容 概念 多 、 抽象 性 强 , 初学 者
散 数 学是 至 关 重 要 的 。 因此 , 据 图 论 课 的特 点 , 理 运 用 多媒 体 技 术 开 展 课 堂教 学 十 分 必要 , 时 详 细 依 合 同
离散数学中图论部分教学方法在思政教育中的应用
离散数学中图论部分教学方法在思政教育中的应用以“离散数学中图论部分教学方法在思政教育中的应用”为标题,写一篇3000字的中文文章近年来,随着社会的进步和发展,思政教育在中国逐渐受到越来越多的重视和关注。
它不仅是营造一个和谐、文明的社会环境所重要的一环,还是深入推进社会主义核心价值观实施的重要基础。
培养学生的思想政治素质,是学校教育任务的重要组成部分,思政教育在这一过程中发挥着重要的作用。
离散数学是大学数学学科的重要学科,其中图论部分内容是该课程的重要内容。
它被广泛应用于各种学科中,可以用来描述现实问题的结构和关系,表现出对数的统一性和精确性。
这种解释问题的方式和思维模式,具有跨学科性和创新性,可以有效地提高学生的学习水平和思维能力。
为了落实中央关于思想政治教育的要求,教育部发布了《中小学思政课纲》,将把思想政治教育作为核心课程,把培养学生思想政治素质作为重中之重。
离散数学中的图论部分教学方法可以有效地帮助学生学习思政课程,激发学生的学习兴趣,培养其理解能力和运用能力。
首先,图论教学方法可以有效地提高学生实施思政教育的理解能力。
图论能够描述不同概念之间的结构、联系和关系,可以帮助学生把握思政课程的内容,从而增强学生的理解能力。
此外,图论能够有效地帮助学生分析和理解复杂的问题,进而探究教材的基本原理,以便更好地认识、把握思政教育的理论内涵。
其次,图论教学法能够激发学生的学习兴趣。
图论是一种具有跨学科性的学科,可以帮助学生从图形的视角,把握不同学科之间的联系和关系,引起学生求知欲,激发学生学习思政课程的兴趣。
此外,图论教学方法可以更直观地呈现教材内容,从而提高学生的学习效率。
同时,还可以借助图形的视角,让学生对思政教育的内容有更清晰的认识和更深入的理解。
最后,图论教学法可以帮助学生锻炼运用能力。
图论教学方法能够帮助学生更准确、更全面地表达思想政治课程的内容,从而提高学生思政课程的运用能力。
此外,图论教学方法还可以激发学生做推理实验,强化学生自主学习能力,同时也能锻炼学生的创新能力。
离散数学——图论部分习题课
之和为24,而图G中其余点的度数小于3,即图G中其余点的
度数只可能是2或1(由于图G是连通图,所以无零度点). 由此可知,图G中至少有11个顶点: 3个4度点,4个3度点和 4个2度点; 至多有15个顶点: 3个4度点,4个3度点和8个1
度点.
7. 设G1,G2,G3,G4均是4阶3条边的无向简单图,
n ( n 1) 2
即m=n(n-1)/4, 而m为正整数,所以要么n=4k或n=4k+1, 所以不存在3个顶点和6个顶点的自补图.
9. 设有向简单D的度数列为2,2,3,3,入度列为 0,0,2,3,试求D的出度列。 解:设有向简单图D的度数列为2,2,3,3, 对应的顶点分别为v1,v2,v3,v4,
(1)1,1,2,3,5 (3)1,3,1,3,2 答案(2) (2)1,2,3,4,5 (4)1,2,3,4,6
Байду номын сангаас
)
则它们之间至少有几个是同构的? 解: 4阶3条边非同构的无向简单图共有3个,因此 G1,G2,G3,G4中至少有2个是同构的。
8. 是否存在3个顶点和6个顶点的自补图? 解: 由于顶点为n的无向完全图的边数为
n ( n 1) 2
.
设G的自补图为G’,则G与G’的边数相等. 设它们的边数各为m,于是有m+m=
本章重点
一、掌握有关图的基本概念:
邻接 关联 有向图
平行边 多重图
无向图
n阶图
底图
连通图
自回路(环) 简单图
二、掌握图中顶点的度数,握手定理及其推论 定理:设图G是具有n个顶点、m条边的无向图, 其中点集V={v1, v2,… vn }, 则
deg(
i 1
电大离散数学图论部分期末复习辅导Word版
离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
大学_《离散数学》课后习题答案
《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
离散数学图论部分经典试题及答案
离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010*******11100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。
图论复习与思考题
Discrete Mathematics离散数学Discrete Mathematics沈绿珠Statistics Department Xiamen University图论部分复习与思考2010.6Discrete Math. SLZ 经济学院3第四章图的基本概念复习要求1.熟练掌握握手定理及其推论的内容及其应用。
2. 掌握图同构的概念。
3. 加深对简单图、完全图、正则图、子图、补图等概念的理解。
4.深刻理解通路与回路的定义及其分类。
5. 能正确地使用不同的表示法表示通路与回路。
6. 理解同构意义下与定义意义下通路与回路的区别与联系。
7. 深刻理解无向图中两个顶点之间的连通关系、短程线、距离、图的连通性等概念。
2010.6Discrete Math. SLZ 经济学院48. 深刻理解点割集、边割集、9. 理解有向图中,顶点之间的可达、相互可达关系、短程线、距离等概念。
10. 深刻理解有向图的连通性及分类,以及判别定理。
11理解无向图与有向图关联矩阵的概念。
12. 会求无向图与有向图的关联矩阵。
13. 深刻理解有向图的邻接矩阵与可达矩阵的概念。
14. 熟练掌握求有向图的邻接矩阵及各次幂的方法,并利用它们求D 中定义意义下的通路与回路数。
2010.6Discrete Math. SLZ 经济学院5欧拉图与哈密顿图复习要求1.深刻理解欧拉通路与欧拉回路的定义以及它们的区别与联系。
2. 以无向欧拉图为例,进一步理解欧拉图的结构,即,欧拉图是若干个边不重的圈之并。
3.深刻理解本节中给出的哈密顿图的必要条件(定理)和充分条件(定理及其推论)。
4. 利用定理证明某些图不是哈密顿图,利用定理及推论证明某些图是哈密顿图。
5. 要特别注意,不要将哈密顿图的必要条件当充分条件,也不要将充分条件当必要条件。
2010.6Discrete Math. SLZ 经济学院6平面图复习要求1.深刻理解本部分的基本概念:平面图、平面嵌入、平面图的面、次数、极大平面图、极小非平面图、平面图的对偶图、自对偶图等。
离散数学形考任务2图论部分概念及性质
离散数学形考任务2图论部分概念及性质
单项选择题
●如图所示,以下说法正确的是( ).答案是:e是割点
●如图一所示,以下说法正确的是( ) .答案是:{(d, e)}是边割集
●若G是一个汉密尔顿图,则G一定是( ).答案是:连通图
●若G是一个欧拉图,则G一定是( ).答案是:连通图
●设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).答案是:e-v+2
●设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵
生成树.答案是:m-n+1
●设图G=<V, E>,vV,则下列结论成立的是( )
●设无向图G的邻接矩阵为则G的边数为( ).答案是:7
●设无向图G的邻接矩阵为则G的边数为( ).答案是:7
●设有向图(a)、(b)、(c)与(d)如图所示,则下列
结论成立的是( ).答案是:(a)是强连通的
●设有向图(a)、(b)、(c)与(d)如图所示,则下列
结论成立的是( ).答案是:(d)只是弱连通的
●图G如图三所示,以下说法正确的是( ).答案是:{b, c}是点割集
●图G如图四所示,以下说法正确的是( ) .答案是:{(a, d) ,(b, d)}是边割
集。
图论知识点总结笔记
图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。
图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。
在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。
2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。
边是节点之间的连接关系,用来表示节点之间的关联性。
根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。
3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。
对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。
4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。
在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。
5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。
若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。
基于图的连通性,可以将图分为连通图和非连通图。
6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。
子图可以是原图的结构副本,也可以是原图的子集。
二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。
对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。
2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。
对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。
3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。
关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。
三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。
离散数学及其应用图论部分课后习题答案
(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(3)构成了初级通路,因为点不重复;
(4)不构成通路,因为边 不存在;
(5)构成通路,但是不为简单通路和初级通路,因为有重复的边
(6)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(7)构成了初级通路;
(8)简单通路,但是不为初级通路,有重复边。
23、用Dijkstra标号法求图9.22中各图从顶点 到其余各点的最短路径和距离。
解答
步骤
1
2
3
4
5
6
7பைடு நூலகம்
到 最短路为 ,路长为6;
到 最短路为 ,路长为3;
到 最短路为 ,路长为5;
到 最短路为 ,路长为6;
到 最短路为 ,路长为12;
到 最短路为 ,路长为7;
那么对于n阶m条边的无向图G是 棵树组成的森林,在任意两棵树中分别找一点进行连一条边,那么得到的图则为n阶m+1条边的无向图G是 棵树组成的森林,
那么 ,所以 。
方法二:设 棵树中,分别有 个顶点和 条边, ,则有
, , ,即可得证。
19、求图10.17中两个带权图的最小生成树。
解答:
P204:习题十一
16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
解答:
(1)三条边一共提供6度;所以点度序列可能是
①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;
由于是简单图,①②两种情形不可能
《离散数学》图论部分习题
《离散数学》图论部分习题《离散数学》图论部分习题1.已知⽆向图G有12条边,6个3度顶点,其余顶点的度数均⼩于3,问G⾄少有⼏个顶点?并画出满⾜条件的⼀个图形. (24-3*6)/2 +6=92.是否存在7阶⽆向简单图G,其度序列为1、3、3、4、6、6、7.给出相应证明.不存在;7阶⽆向简单图G中最⼤度≤63.设d1、d2、…、d n为n个互不相同的正整数. 证明:不存在以d1、d2、…、d n为度序列的⽆向简单图.Max{d1,d2,…,dn}≥n,n阶⽆向简单图G中最⼤度≤n-14.求下图的补图.5.1)试画⼀个具有5个顶点的⾃补图2)是否存在具有6个顶点的⾃补图,试说明理由。
对于n阶图,原图与其补图同构,边数应相等,均为(n*(n-1)/2)/2,即n*(n-1)/4且为整数,n=4k或n=4k+1,不存在6阶⾃补图。
6.设图G为n(n>2且为奇数)阶⽆向简单图,证明:G与G的补图中奇度顶点个数相等.n(n>2且为奇数),奇度点成对出现7.⽆向图G中只有2个奇度顶点u和v,u与v是否⼀定连通.给出说明或证明。
只有2个奇度顶点u和v,如果不连通,在u和v在2个连通分⽀上,每个分⽀上仅有⼀个奇度顶点,与握⼿引理相⽭盾。
8.图G如下图所⽰:1)写出上图的⼀个⽣成⼦图.2)δ(G),κ(G),λ(G).δ(G)=2,κ(G)=1,λ(G)=2.说明:δ(G)=min{ d(v) | v V } ;κ(G)=min{ |V’| |V’是图G的点割集} ;λ(G)=min{ |E’| |E’是图G的边割集} 9.在什么条件下⽆向完全图K n为欧拉图?n为奇数时10.证明:有桥的图不是欧拉图.假设是欧拉图:桥的端点是u和v,并且图各顶点度均为偶数;桥为割边,删除桥,图不再连通,u和v应该在2各不同的连通分⽀上;且u和v度数变为奇数;由于其他顶点度数均为偶数,则u和v所在的连通分⽀上只有⼀个奇度顶点,与握⼿引理⽭盾。
朱睿大牛:图论基础与网络流习题集锦
网络流习题集锦:路径覆盖
路径覆盖类题目,主要是指这样一类问题:给定一个 图以及一系列行走规则,问如何使用最小的代价将用 一系列按照行走规则的路径覆盖住。 下面我们就来具体问题具体反分析。
网络流习题集锦:股票走势
小L最近迷恋上了炒股,他拿到了n支股票在0到k-1时 刻的价格表。他想要把每只股票的价格根据时刻依次 连成一个走势折线图,以此观察股票的情况。 但是小L不想铺张浪费,所以在每张纸上他不想只画 一条折线,而是把尽量多的折线画到一张纸上,使用 尽量少的纸。两条折线能够画到一张纸上,是要求它 们不相交,包括在端点处。 数据规模: 1≤n≤100,2≤k≤25
思考:如何找到图中的网络流模型?
提示:发现“折线”这一条件的特殊性。
网络流习题集锦:股票走势
解答: 首先考虑如何建图。 假设我们将每只个股都看做一个点,如果A与B可以放 在一张纸上,就连一条边,这样得到了一个无向图。 但是很不幸,这个无向图没有给我们提供任何信息。 考虑到折线一定是连续的,那么两个可以在同一张纸高于 另一只股票的折线,那么连一条有向边,这样我们得 到了一个拓扑图,问题转化成了用最少的链来覆盖这 个有向图,即最小链覆盖。 使用匹配/网络流解决最小链覆盖,由于链上每个节点 都有一个后继节点,那么将每个点拆成两个点排成两 排,若A能到B则从A左向B右连边,那么答案就是n匹配数。
将无向图改造成有向图若某只股票的折线完全高于另一只股票的折线那么连一条有向边这样我们得到了一个拓扑图问题转化成了用最少的链来覆盖这个有向图即最小链覆盖
图论基础与网络流习题集锦
北京大学 朱睿
大纲
图论部分: 1.图论简介 2.生成树与生成树计数 3.欧拉回路与哈密顿回路 4.割与流,匹配
网络流问题部分: 1.习题 2.习题 3.更多的习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论部分一、 填空题1、 一个无向图表示为G=(P ,L ),其中P 是____________的集合,L 是________________________的集合,并且要求________________。
2、各点之间都有边相连的图称为 ;只有点,没有边的图称为 ; 只有一个点的图称为 。
3、若),,,(210n v v v v ⋅⋅⋅是G 中从0v 到n v 的简单路,则需满足 ;。
二、 单项选择题1、 已知图G 的相邻矩阵为 则G有( )。
A. 5点,8边B. 6点,7边C. 5点,7边D. 6点,8边2、 设图G 是有6个顶点的连通图,总度数为20,则从G 中删去( )边后使之变成树。
A .10 B. 5 C. 3 D. 23、已知图G 的相邻矩阵为 则G 的边数与分枝数为( )。
A. 5,3B.4,2C.5,1D.6,4(不知道怎么做)这个题目有问题,关于这个题目怎么做,首先根据邻接矩阵画出简单图,然后就一目了然了。
边数可以直接看出来,如果是无向图,则所有1的个数除以2;如果是有向图,就是所有1的个数。
三、 计算题1、设无向图G=(P ,L ),P={v1,v2…v6},L={(v1,v2),(v2,v2),(v2,v4),(v4,v5),(v3,v4),(v1,v3),(v3,v1)}。
(1) 画出G 的图形;(2) 求出G 中各顶点的度及奇数度顶点的个数。
2、设有5个城市v1,v2,v3,v4,v5,任意两城市之间铁路造价如下:(以百万元为单位)w (v1,v2)=4, w (v1,v3)=7, w (v1,v4)=16, w (v1,v5)=10, w (v2,v3)=13, w (v2,v4)=8, w (v2,v5)=17, w (v3,v4)=3, w (v3,v5,)=10, w (v4,v5)=12试求出连接5个城市的且造价最低的铁路网。
(无答案)3、试用克鲁斯卡尔算法求下图所示权图中的最小生成树。
(无答案)权值为26的没有回路的生成子图均是四、证明题设无向图G中有n个顶点,n-1条边,则G为连通图当且仅当G中无回路。
(无答案)这是书上的定理,自己看书。
一 判断题(每小题1分,共 15分,正确的在括号内写上T ,错误的在括号内写上F)1、 若图G 是自对偶的,则e=2v-2 ( )2、 “离散数学是很有趣的一门课程”,这句话是命题。
( )3、 函数的复合既能交换也能结合。
( )4、 如果A ∨C ⇔B ∨C ,则A ⇔B ( )5、 设G=<V,E>为连通图,且e ∈E,则当e 是G 的割边时,e 才在G 的每棵生成树中。
( )6、 )()(R Q P Q ∨↔→是合式公式。
( )7、 任何阶数为4的群都是阿贝尔群。
( )8、 设G 是简单连通图,且有v 个结点,e 条边,若G 是平面图,则e ≤3v-6。
( )9、 一个循环群的生成元是唯一的。
( )10、 有任意集合A 、B ,则f(A ∩B)⊆f(A)∩f(B)且f(A)∩f(B)⊆f(A ∩B)。
( )11、)()()()())()()((x B x x A x x B x A x ∃∧∃⇔∧∃( ) 12、对任意集合A ,B ,C ,如果A ∈B 以及B ⊆C ,则A ⊆C 。
( ) 13、整数集上的同余类是对整数集的一个划分。
( ) 14、 有限半群中存在等幂元。
( )15、 设<A,*>是一个代数系统,且|A|>1,若该代数系统中存在幺元和零元,则幺元与零元相等。
( )二 、选择题(每小题2分,共 22分)1、 一棵树有两个结点度数为2,一个结点度数为3,三个结点度数为4,则该树有( )片树叶。
A.6B. 7C. 8D.92、图1中v 1到v 4 长度为2的路有( )条A. 1B. 2C. 3D.4v 2v 4v 3v 1图13、设A={1,2,3,4},B={a ,b ,c ,d},f 定义为:{<1,a>,<2,b>,<3,c>,<4,d>},则f ( )。
A.不是函数B.仅为入射函数C.仅为满射函数D.是双射函数4、设F(x):x 是乌鸦;G(x,y):x 与y 一般黑,则“天下乌鸦一般黑”可以符号化为:( )A.)),()()()()((y x G y F x F y x →∧∀∀B.)),()()()()((y x G y F x F y x →∧∃∀C.)),()()()()((y x G y F x F y x →∧∃∃D.)),()()()()((y x G y F x F y x →∧∀∃5、给定下列谓词公式,则是矛盾式的公式为( )A.))()()((x P x P x ⌝→⌝∀B. )()()()(x P x x P x ∃→∀C.)()())()(()()((y Q y y Q y x P x ∀∧∀→∀⌝D.),())((),())((y x P y x y x P y x ∀∃→∃∀6、设有下列四个集合,偏序关系为整除,则是全序关系的为( )A. {3,5,15}B.{1,2,3,6,12}C.{3,4,12}D.{3,9,27,54}7、设集合P={x1,x2,x3,x4,x5}上的偏序关系如图2所示,则下列说法中正确的是( )A 、P 的最大元素为x1 ,无最小元素,极小元素为x4,x5 ,极大元为素x1B 、P 无最大元素,也无最小元素,极小元素为x4,x5 ,极大元为素x1C 、P 的最大元素为x1 ,无最小元素,也无极小元素 ,极大元为素x1D 、P 的最大元素为x1 ,最小元素为x4,x5,极小元素为x4,x5 ,极大元为素x1x 1x 4x 5x 3x 2图28、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的( )性质。
A 、自反性B 、对称性C 、反对称性D 、传递性9、下面给出的一阶逻辑等价式中,( )是错的。
)).(()(.));(()(.);()())()((.);()())()((.x B A x x xB A D x A x x xA C x xB x xA x B x A x B x xB x xA x B x A x A →∀=∀→⌝∃=⌝∀∀∨∀=∨∀∃∨∃=∨∃10、一个公式在等价意义下,下面哪个写法是唯一的( )。
A .析取范式B .合取范式C .主析取范式D .以上答案都不对11、已知图G 的相邻矩阵为 A(G) 则G 有( )。
A. 5点,8边B. 6点,7边C. 5点,7边D. 6点,8边A(G)=三、填空题(每空2分,共 30分)1、n为时,无向完全图K n是欧拉图。
n为时,无向完全图K n仅存在欧拉通路而不存在欧拉回路。
2、如图2,则k(G)= λ(G)= δ(G)=图23、假设X和Y是有穷集合,则从X到Y存在入射的必要条件是4、设P表示命题“8是偶数”,Q表示命题“糖果是甜的”,则命题P→Q的反换式所表示的含义是5、(P∨Q)∧R的对偶式为6、设P(x)表示x是聪明的,M(x)表示x是人,则命题“尽管有人聪明,但未必一切人都聪明”可以符号化为:7、集合{a,{a}}的幂集为:8、令R={<1,2>,<3,4>,<2,2>}和S={<4,2>,<2,5>,<3,1>,<1,3>},则=SR9、设A={a,b,c},R是A上的二元关系,且给定R={<a,b>,<b,c>,<c,a>},则r(R)=10、设I是整数集合,R是同余模3的关系,则I/R=11、设谓词的定义域为}ba,将表达式)),{c,xP∀中的量词消除,写成与之等价x→Q((x)(的命题公式是12、设P(x):x是素数;E(x):x是偶数;O(x):x是奇数;N(x,y):x可以整除y。
则yOyxN∃∀可以译成自然语言为:→yx∧P)((x(,)))())()((四、证明题(第1,2题各5分,第3题8分,共18分)1、证明:若X×Y=X×Z,且X不为空集,则Y=Z。
2、如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑。
所以羊不吃草。
符号化该命题,并用推理理论证明之。
3、设<A,*>是半群,e是左幺元且对每一个x∈A,存在x’∈A,使得x’*x=e。
a)证明:对于任意的a,b,c∈A,如果a*b=a*c,则b=c。
b)通过证明e是A中的幺元,证明<A,*>是群。
五、应用题(第1题5分,第2题10分,共15 分)1、双射函数是密码学中的重要工具,因为在密码体制中大都会同时涉及加密和解密,假设f是由表1定义的,即f(A)=D,f(B)=E,F(C)=S,…等,试找出给定密文“ARDJYLRXBMB”对应的明文。
表1A B C D E F G H I J K L MD E S T I N Y A B C F G H续表1N O P Q R S T U V W X Y ZJ K L M O P Q R U V W X Z2、设有a,b,c,d,e,f,g七个人,他们分别会讲如下各种语言:a会讲英语;b会讲汉语与英语;c会讲英语、西班牙语和俄语;d会讲日语和汉语;e会讲德语和西班牙语;f会讲法语、日语和俄语;g会讲法语和德语。
能否将这七个人的座位安排在圆桌旁,使得每个人均能与他身边的人交谈?。