小学奥数经典例题!(类型归纳+解题思路+例题整理)
小学奥数 最优化问题 知识点+例题+练习 (分类全面)

拓展.小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟。为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了?
拓展.在早晨起床后的1小时内,小欣要完成以下事情:叠被3分钟,洗脸刷牙8分钟,读外语30分钟,吃早餐10分钟,收碗擦桌5分钟,收听广播30分钟。最少需要多少分钟?
课后作业
1.用一只平底锅烙大饼,锅里只能同时放两个。烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?
2、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。他完成这几件事最少需要多少分钟?
3、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水。热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间最少?
例3、五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?
拓展.甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分别是10分钟、16分钟和8分钟。怎样安排,使3人所花的时间最少?最少时间是多少?
例1、 用一只平底锅煎饼,每次只能放两个,煎一个展.烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?
拓展.小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟(每面各需要2分钟)。可小华烙6个大饼只用了6分钟,他是怎样烙的?
(完整版)小学六年级奥数题集锦(7种问题全面)汇总(参考)

(完整版)小学六年级奥数题集锦(7种问题全面)汇总小学六年级奥数题集锦1.工程咨询题1.甲乙两个水管单独开,注满一池水,分不需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,并且打开甲乙两水管,5小时后,再打开排水管丙,咨询水池注满依然要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
假如两队合作,由于彼此施工有妨碍,他们的工作效率就要落低,甲队的工作效率是原来的五分之四,乙队工作效率惟独原来的十分之九。
如今打算16天修完这条水渠,且要求两队合作的天数尽量少,这么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽量少”,因此应该让做的快的甲多做,16天内实在来别及的才应该让甲乙合作完成。
惟独如此才干“两队合作的天数尽量少”。
设合作时刻为x天,则甲独做时刻为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
如今先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
依照“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
(完整)小学一年级奥数题100道带答案有解题过程

(完整)小学一年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________ 1.有3只小猫,又来了2只小猫,现在一共有几只小猫?解:3+2=5(只),思路:原来的3只加上新来的2只就是总共的小猫数量。
2.小明有4个气球,飞走了1个,还剩几个气球?解:4-1=3(个),思路:从总数4个里面去掉飞走的1个,剩下的就是剩余气球数量。
3.花园里有5朵红花,3朵黄花,红花和黄花一共有几朵?解:5+3=8(朵),思路:将红花的数量和黄花的数量相加得到总数。
4.妈妈买了6个苹果,小明吃了2个,还剩下几个苹果?解:6-2=4(个),思路:用总数减去吃掉的数量就是剩余的数量。
5.有2只小鸟在树上,又飞来了3只,现在树上有几只小鸟?解:2+3=5(只),思路:原来的小鸟数量加上飞来的小鸟数量就是现在的总数。
6.教室里有7个小朋友在画画,走了3个,还剩下几个小朋友?解:7-3=4(个),思路:从原有的小朋友数量中减去离开的数量。
7.小红有3颗糖,妈妈又给了她2颗,小红现在有几颗糖?解:3+2=5(颗),思路:原来有的糖加上新得到的糖。
8.盘子里有4个苹果,妈妈又放进去1个,现在盘子里有几个苹果?解:4+1=5(个),思路:原有的苹果数加上新放进去的苹果数。
9.有5只蝴蝶,飞走了2只,又飞来了1只,现在有几只蝴蝶?解:5-2+1=4(只),思路:先减去飞走的,再加上飞来的。
10.小明有2本书,小红有3本书,他们一共有几本书?解:2+3=5(本),思路:将两人的书的数量相加。
11.草地上有4只白兔,3只黑兔,白兔和黑兔一共有几只?解:4+3=7(只),思路:把白兔和黑兔的数量合起来。
12.树上有6个果子,被小鸟吃了3个,还剩下几个果子?解:6-3=3(个),思路:从总数中减去被吃掉的数量。
13.有3朵红花,2朵黄花,1朵蓝花,一共有几朵花?解:3+2+1=6(朵),思路:把三种颜色花的数量相加。
[荐]小学奥数核心公式及经典例题详解
![[荐]小学奥数核心公式及经典例题详解](https://img.taocdn.com/s3/m/14d1e50ce009581b6ad9eb78.png)
小学奥数核心公式及经典例题详解1.鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:①假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)②假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:①假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)②假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)140-80=60(只)60÷6=10(只)鸵鸟:70-10=60(只)。
例3:李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。
鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
例4:一次数学考试,只有20道题。
做对一题加5分,做错一题倒扣3分(不做算错)。
小学奥数小升初常考题型植树问题例题讲解+练习,类型全

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。
路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。
小学奥数。通项归纳 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数。
通项归纳精选练习例题含答案解析(附知识点拨及考点)例1:求1+2+4+8+16+32+64+128+256+512+1024的和。
解析:方法一:令a=1+2+4+8+。
+1024,则2a=2+4+8+16+。
+1024+2048,两式相减,得a=2048-1=2047.方法二:找规律计算得到1024×2-1=2047.答案:2047例2:在一列数:1/3,5/7,9/11,13/15,17/19,21/23中,从哪一个数开始,1与每个数之差都小于1/1000?解析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要1-从n=1000开始,即从2n-1/2n+1开始,满足条件2n-1/2n+1-1999.5,所以从第n=1000开始满足条件。
答案:2n-1/2n+1,n=1000例3:计算:1+1/11+1/111+1/1111+。
+1/.解析:先找通项公式an=1/(10^n-1),原式=1/10+1/110+1/1110+。
+1/xxxxxxx,先通项归纳:an=1/(10^n-1),原式=1/10(1+1/11+1/111+。
+1/),用等比数列求和公式得到原式=175/264.答案:175/264巩固:计算:1+3/2+5/6+7/12+。
+111/2016.解析:先通项归纳:an=(2n-1)/(n(n+1)),原式=1+3/2+5/6+。
+111/2016=1/1+2/4+3/6+。
+56/2016,化简得原式=1/1+1/2+1/3+。
+1/96,用调和级数求和公式得到原式=111/64.答案:111/64.例4】将原式化简:frac{1\cdot2}{1\cdot2\cdot3}\cdot\frac{2\cdot3}{2\cdot3\cdo t4}\cdot\frac{3\cdot4}{3\cdot4\cdot5}\cdots\frac{6\cdot7}{6\cdot7\cdot8}$$frac{1}{3\cdot4}\cdot\frac{2}{4\cdot5}\cdot\frac{3}{5\cdot6 }\cdots\frac{6}{8\cdot9}$$frac{1}{3}\cdot\frac{1}{5}\cdot\frac{1}{7}\cdot\frac{6}{9\c dot4}$$frac{2}{315}$$例5】将原式化简:frac{n^2+1}{2n(n+1)}$$frac{1}{n(n+1)}+\frac{1}{2n}-\frac{1}{2(n+1)}$$巩固】计算:frac{(1+\frac{1}{2})(1+\frac{1}{4})\cdots(1+\frac{1}{2^{1 0}})-1}{\frac{1}{2}\cdot\frac{3}{2}\cdots\frac{2^{10}-1}{2^{10}-2}}$$frac{\frac{3}{2}\cdot\frac{5}{4}\cdots\frac{1025}{1024}}{\ frac{1}{2}\cdot\frac{3}{2}\cdots\frac{1023}{1022}}-1$$ frac{1025}{2^{10}}-1$$frac{513}{512}$$例6】计算:$\frac{1+2}{2}+\frac{2+3}{3}+\frac{3+4}{4}+\cdots+\frac{50+1 }{50}$解析】利用通项公式$a_n=\frac{n+(n+1)}{n}=2-\frac{1}{n}$,则原式$=\sum\limits_{k=1}^{50}a_k=\sum\limits_{k=1}^{50}\left(2-\frac{1}{k}\right)$,将其拆开,得到原式$=50\cdot 2-\sum\limits_{k=1}^{50}\frac{1}{k}$。
50道小学奥数经典题型解题思路及问题详解

40X2+10=80+10=90(米)
答:两队每天修90米。
9.学校买来6张桌子和5把椅子共付455元,已知每张桌 子比每把椅子贵30元,桌子和椅子的单价各是多少元
解题思路:
已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子 同样多,那么总价就应减少30X6元,这时的总价相当于
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子
比一把椅子多288元,一张桌子和一把椅子各多少元
解题思路:
由已知条件可知,一张桌子比一把椅子多的288元,正好
是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价 钱。再根据椅子的价钱,就可求得一张桌子的价钱。
答题:
解:一把椅子的价钱:
288-(10-1)=32(元)
解题思路:
根据已知托运玻璃250箱,每箱运费20元,可求出应付运 费总钱数。根据每损坏一箱,不但不付运费还要赔偿100
元的条件可知,应付的钱数和实际付的钱数的差里有几个
(100+20)元,就是损坏几箱。
答题:解:(20X250-4400) + (10+20)=600-120=5(箱)
答:损坏了5箱。
答:每支铅笔兀。
5•甲乙两辆客车上午8时同时从两个车站出发,相向而行, 经过一段时间,两车同时到达一条河的两岸。由于河上的
桥正在维修,车辆禁止通行,两车需交换乘客,然后按原
路返回各自出发的车站,到站时已是下午2点。甲车每小
时行40千米,乙车每小时行45千米,两地相距多少千米
(交换乘客的时间略去不计)
点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千
米
解题思路:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比 乙多走4X2千米,又知经过4小时相遇。即可求甲比乙每 小时快多少千米。
小学奥数经典题型“年龄问题”解题技巧附例题

小学奥数经典题型“年龄问题”解题技巧附例题01和差型年龄问题解题规律1、解答和差类年龄问题的关键是两人的年龄差是一个不变的量。
2、选择适当的数作为标准,设法把若干个不相等的数变为相等的数(某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
)3、这类题型的基本数量关系是:(和-差)÷2=小数小数+差=大数(和-小数=大数)(和+差)÷2=大数大数-差=小数(和-大数=小数)例题1案例分析:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?解题思路:①年龄差不会变,今年的岁数差13-9=4,几年后也不会改变。
②几年后岁数和是40,岁数差是4,转化为和差问题。
③则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
差倍型年龄问题差倍型年龄问题是指两个数量之间的差和他们之间的倍数关系,随着一个或者两个数量的增加或者减少而发生改变的一类应用题。
02差倍型年龄问题解题规律1、两人的年龄差不变2、两人年龄的倍数每年都会改变,越往后倍数越小3、变倍问题牢固树立抓“不变量”的思想,变倍问题中的不变量,一般有三类,如下:(1)“甲是乙的2倍,甲是丙的3倍”——不变量是甲(2)“甲是乙的3倍,甲给乙2,甲变成乙的2倍”——不变量是甲、乙之和(3)“甲是乙的3倍,甲、乙都减少2,甲变成乙的4倍”——不变量是甲、乙之差(同增同减差不变)4、这类题的数量关系是:差÷(倍数-1)=小数(1倍数)小数×倍数=大数小数+差=大数例题2小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?解题思路:①岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
②差÷(倍数-1)=小数(1倍数)根据公式算出26/(3-1)=13,几年后小军的年龄是13X1=13岁,爸爸的年龄是13X3=39岁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数经典例题!(类型归纳+解题思路+例题整理)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。
例2小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。
例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。
3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。
例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。
那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。
5、差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解(1)杏树有多少棵?124÷(3-1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。
例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。
例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。
6、倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植树多少棵?400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。
例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍?800÷4=200(倍)(2)800亩收入多少元?11111×200=2222200(元)(3)16000亩是800亩的几倍?16000÷800=20(倍)(4)16000亩收入多少元?2222200×20=44444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。