抛物线的定义及标准方程
抛物线的定义与标准方程
抛物线的定义与标准方程
抛物线是一种几何图形,它的形状像弓形,早在古希腊时期就已被哲学家用来描述天体运动的轨道。
抛物线拥有独特的几何结构,是分析数学中的一个重要的几何图形。
抛物线定义为一个二次方程
y=ax^2+bx+c的解集合,其中a是不等于0的实数,b与c是实数。
bx 和c分别表示抛物线的斜率和截距。
抛物线有若干不同的特性,其定义可以用标准方程表示,即:
y=ax2+bx+c,其中a、b、c分别是抛物线的系数,而a必须为不等于0的实数。
抛物线的系数a可以用来确定抛物线的开口方向,如果a>0,则抛物线向上开口;如果a<0,则抛物线向下开口。
抛物线的中点是抛物线函数的最高点或最低点,即y的最大值或最小值。
另外,抛物线的对称轴是横坐标x的值,由其标准方程中的b系数决定。
此外,抛物线的几何图形还具有一些特殊的性质,比如切线的斜率,其斜率的值等于解抛物线方程时的系数a。
另外,抛物线的曲线旁线总是平行于切线,这对抛物线几何图形的描述非常重要。
在学习数学时,抛物线可以用来解决许多复杂的问题,抛物线的定义与标准方程可以帮助人们理解抛物线的相关特性,从而更好地解决各种复杂的数学问题。
尽管抛物线的定义看起来很简单,但是人们在分析抛物线的运动轨迹及其性质时,还有许多需要注意的地方。
抛物线的标准方程式是什么
抛物线的标准方程式是什么在数学的广袤世界中,抛物线是一种常见且重要的曲线。
要深入理解抛物线,首先就得搞清楚它的标准方程式是什么。
咱们先来说说抛物线的定义。
简单来讲,平面内到一个定点 F 和一条定直线 l 的距离相等的点的轨迹就叫做抛物线。
这个定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
抛物线的标准方程有四种形式,分别是:第一种,当抛物线的焦点在 x 轴的正半轴上时,标准方程是 y²=2px(p > 0)。
这里的 p 表示焦点到准线的距离。
比如说,如果 p = 2,那么抛物线的方程就是 y²= 4x 。
对于这个方程,它的开口是朝右的。
第二种,当抛物线的焦点在 x 轴的负半轴上时,标准方程是 y²=-2px(p > 0)。
此时,抛物线的开口是朝左的。
第三种,当抛物线的焦点在 y 轴的正半轴上时,标准方程是 x²=2py(p > 0)。
这种情况下,抛物线的开口是朝上的。
第四种,当抛物线的焦点在 y 轴的负半轴上时,标准方程是 x²=-2py(p > 0)。
相应地,抛物线的开口是朝下的。
为了更好地理解这些标准方程,咱们来举几个例子。
假设一个抛物线的焦点是 F(1,0) ,准线方程是 x =-1 。
因为焦点在 x 轴的正半轴上,且焦点到准线的距离 p 是 2 ,所以这个抛物线的方程就是 y²= 4x 。
再比如,有个抛物线的焦点是 F(0, -2) ,准线方程是 y = 2 。
这时候,焦点在 y 轴的负半轴上,p = 4 ,那么这个抛物线的标准方程就是x²=-8y 。
那这些标准方程是怎么来的呢?咱们可以通过几何方法来推导。
以焦点在 x 轴正半轴上的抛物线 y²= 2px 为例。
假设抛物线上有一点 P(x,y) ,根据抛物线的定义,点 P 到焦点 F 的距离等于点 P 到准线的距离。
焦点 F 的坐标是(p/2, 0) ,准线方程是 x = p/2 。
抛物线及其标准方程
抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离).2.抛物线的标准方程与几何性质1(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的方程特点方程y =ax 2(a ≠0)可化为x 2=1ay ,是焦点在y 轴上的抛物线.3.结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角),S △OAB =p 22sin α;(3)1|FA |+1|FB |=2p;(4)以弦AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.(7)过抛物线y 2=2px (p >0)的顶点O (0,0)作互相垂直的两条射线且都与抛物线相交,交点为A ,B (如图).则直线AB 过定点M (2p,0);反之,若过点M (2p,0)的直线l 与抛物线y 2=2px (p >0),交于两点A ,B ,则必有OA ⊥OB .1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎪⎭⎫⎝⎛0,4a,准线方程是x =-a 4.()(4)抛物线既是中心对称图形,又是轴对称图形.()2.抛物线y =14x 2的准线方程是()A .y =-1B .y =-2C .x =-1D .x =-23.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =()A .2B .3C .4D .84.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=()A .6B .8C .9D .105.已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是()A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y 6.(教材改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.7.焦点在直线2x +y +2=0上的抛物线的标准方程为_______________抛物线的定义及应用例:1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线(2)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(3)若点P 到点F(0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为()A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y(4)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是()A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)(5).已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(6).已知椭圆x 24+y 23=1的右焦点F 为抛物线y 2=2px (p >0)的焦点,点P 的坐标为(3,2).若点M 为该抛物线上的动点,则|MP |+|MF |的最小值为__________.(7).若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为()A .(0,0)B .⎪⎭⎫⎝⎛121C .(1,2)D .(2,2)(8).已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是___________.(9).已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A .3B .5C .2D .5-1(10).已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=______.抛物线的标准方程例:(1)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(2)(2021·山西吕梁二模)如图,过抛物线x 2=2py (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,若|BC |=2|BF |,且|AF |=2,则p =()A .1 B.2C .2D .2-2(3).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是()A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y(4).如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x(5).已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为()A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y(6).抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为()A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x(7).抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为__________.抛物线的几何性质例:(1)(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A .⎪⎭⎫⎝⎛041,B .⎪⎭⎫⎝⎛021,C .(1,0)D .(2,0)(2)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .x =1B .x =2C .x =-1D .x =-2(3)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为______________.(4).若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是____________.(5).在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是_____________(6).已知抛物线y 2=4x 的焦点F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为()A .4B .5C .8D .10(7)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为__________________.(8).过抛物线:y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,若直线l 与抛物线在第一象限的交点为A ,并且点A 也在双曲线:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线上,则双曲线的离心率为()A.213B.13C.233D.5(9).如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x -1)2+y 2=14于A ,B ,C ,D 四点,则|AB |+|CD |的值是()A .6B .7C .8D .9直观想象、数学运算——抛物线中最值问题的求解方法与抛物线有关的最值问题是历年高考的一个热点,由于所涉及的知识面广,题目多变,一般需要通过数形结合或利用函数思想来求最值,因此相当一部分同学对这类问题感到束手无策.下面就抛物线最值问题的求法作一归纳.1.定义转换法【典例1】(2021·上海虹口区一模)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于________.2.平移直线法【典例2】抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.[切入点]解法一:求出与已知直线平行且与抛物线相切的直线方程,从而求两平行线间的距离.解法二:求出与已知直线平行且与抛物线相切的直线与抛物线的切点坐标,从而求切点到已知直线的距离.3.函数法【典例3】若点P在抛物线y2=x上,点Q在圆(x-3)2+y2=1上,则|PQ|的最小值为________.[切入点]P、Q都是动点,转化为圆心与点P的最值.1.(2021·东北三省四市二模)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.12C.14D.182.(2021·云南省高三统一检测)设P,Q分别为圆x2+y2-8x+15=0和抛物线y2=4x上的点,则P,Q两点间的最小距离是________.直线与抛物线的位置关系1.直线与抛物线的位置关系2=2px,=kx+m,得k2x2+2(mk-p)x+m2=0.(1)相切:k2≠0,Δ=0.(2)相交:k2≠0,Δ>0.(3)相离:k2≠0,Δ<0.2.焦点弦的重要结论抛物线y2=2px(p>0)的焦点为F,过F的焦点弦AB的倾斜角为θ,则有下列性质:(1)y1y2=-p2,x1x2=p24.(2)|AF|=x1+p2=p1-cosθ;|BF|=x2+p2=p1+cosθ;|AB|=x1+x2+p=2psin2θ.(3)抛物线的通径长为2p,通径是最短的焦点弦.(4)S△AOB=p22sinθ.(5)1|AF|+1|BF|为定值2p.(6)以AB为直径的圆与抛物线的准线相切.(7)以AF(或BF)为直径的圆与y轴相切.(8)过焦点弦的端点的切线互相垂直且交点在准线上.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线与抛物线有且仅有1个公共点,则它们相切.()(2)所有的焦点弦中,以通径的长为最短.()(3)直线l过(2p,0),与抛物线y2=2px交于A、B两点,O为原点,则OA⊥OB.()(4)过准线上一点P作抛物线的切线,A、B为切点,则直线AB过抛物线焦点.() 2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=()A .9B .8C .7D .64.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.直线与抛物线的位置关系【例1】(1)过点(0,3)的直线l 与抛物线y 2=4x 只有一个公共点,则直线l 的方程为__________.(2)已知抛物线C :x 2=2py ,直线l :y =-p2,M 是l 上任意一点,过M 作C 的两条切线l 1,l 2,其斜率为k 1,k 2,则k 1k 2=________.焦点弦问题【例2】(1)(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于()A .1∶2B .1∶3C .1∶2D .1∶3(2)(2021·湖南五市十校摸底)过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与抛物线交于M 、N 两点(其中M 点在第一象限),若MN →=3FN →,则直线l 的斜率为________.(3)过抛物线y 2=4x 焦点F 的直线交抛物线于A 、B 两点,交其准线于点C ,且A 、C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于()A .2B .3C .4D .5(2020·山东卷)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.直线与抛物线的综合问题例题1:已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM →+OP →=λOF →.(1)当λ=3,求点M 的坐标;(2)当OA →·OB →=12时,求直线l 的方程.例题2:设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .例题3:已知抛物线P :y 2=2px (p >0)上的点⎪⎭⎫ ⎝⎛a ,43到其焦点的距离为1.(1)求p 和a 的值;(2)求直线l :y =x +m 交抛物线P 于A ,B 两点,线段AB 的垂直平分线交抛物线P 于C ,D 两点,求证:A ,B ,C ,D 四点共圆.例题4.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程;(2)若线段|AB |=20,求直线l 的方程.例题5:已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎪⎭⎫ ⎝⎛250,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.。
抛物线的定义及其标准方程
(一) 定义 平面内与一个定点F和一条定直线L(L不经过点F)
距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦
点,直线L叫做抛物线的准线。
比较椭圆标准方程的建立过程,如 何选着坐标系,使建立的抛物线的方程 更简单? 根据抛物线定义,知道F是定点,L是定 直线,从而F到L的距离为定值,设为p, 则p是大于0的数.
当焦点在 y 轴上时, p 2 此时抛物线的方程为 x 4 y 或
2
x
2
4 y
抛物线的四种标准方程形式及对应的焦点和准线 总结:
图形 标准方程 焦点坐标 准线方程
p x 2
y
y
x
2
2
2 px
( p 0)
2 px
p ( , 0) 2
p ( , 0) 2
( p 0)
y
因为图像过点 (2,3)
故3
2
o
2 3
(2,3)
x
9 2 p 2, p 或 4
2
2
p 2 p 3,
所以抛物线方程为
y
2
9 4 2 x或 x y 2 3
(2)由题意得抛物线的焦点在 x 轴或 y 轴上。 当焦点在 x 轴上时, p 2 , 2 2 此时抛物线方程为 y 4 x 或 y 4 x
2 4 2
y
2
2 6 x 12 x
所以抛物线的标准方程为 x
2
1 2 y y 2
练习2:求下列抛物线的焦点坐标和准线方程 (1) 2 y 5x 0 ,
2
2
(2)
2
x
2
8y 0
5 5 2 5 x 0, x 2 x y 2 解(1) y 4 5 5 所以焦点坐标是 ( , 0) ,准线方程为 x 8 8
抛物线的定义及其标准方程
抛物线的定义及其标准方程抛物线是一种常见的平面曲线形状,它形似一条弯曲的碗,也可以理解为一弹出物飞行时所经过的曲线。
抛物线有许多重要的应用,如机械运动、射击学、光学和电子学等领域。
本篇文章将介绍抛物线的定义及其标准方程。
一、抛物线的定义抛物线可以由一个固定点(称为焦点)和一条直线(称为准线)所确定。
以焦点为原点,以准线到焦点的垂线长度为 x 轴的正半轴,则抛物线的反比例距离与该垂线长度成正比。
抛物线的几何性质:1. 抛物线有轴线对称性。
2. 抛物线的定点为焦点。
3. 抛物线上各点P到准线的距离等于该点到焦点的距离。
4. 抛物线上的点P到焦点F的距离等于P到直线的距离。
二、抛物线的标准方程为了描述抛物线更加方便,我们引入直角坐标系,坐标系原点是焦点,x 轴是准线,y 轴垂直 x 轴,向上取正。
设一个参数 p>0,焦点为 F(p,0),准线为 x = -p,抛物线上任意一点 P(x,y) 到焦点的距离是:PF = √[(x-p)² + y²]抛物线上任意一点 P 到准线 x=-p 的距离是:PD = |x+p|由于抛物线上各点到焦点的距离等于该点到直线的距离,因此:PF = PD将 PF 的表达式代入,得:√[(x-p)² + y²] = |x+p|平方两边,得:(x-p)² + y² = (x+p)²化简得到标准方程:y² = 4px这个方程被称为抛物线的标准方程。
其中参数 p>0 决定了焦点与准线之间的距离。
若正抛物线,焦点在 y 轴下方;若负抛物线,焦点在 y 轴上方。
标准方程的性质:1. 抛物线的顶点位于原点。
2. 抛物线开口方向由参数 p 确定:当 p > 0 时,抛物线向右开口,当 p < 0 时,抛物线向左开口。
3. 抛物线的对称轴为 y 轴。
抛物线在实际应用中具有广泛的应用,如光学中的抛物面镜头、瞬时动作线、射流的发射、弹道轨迹以及天体运动等。
抛物线的定义和标准方程
2
2
1 2 2 (3)y= x ; (4) x+4y =0 10 2 (5)y=ax ( a 0 )
例2、分别求满足下列条件的抛物 线的标准方程:
(1) 焦点坐标为(-2,0) ; (2) 焦点到准线距离为 8; (3) 焦点与椭圆 4x2+5y2=20 的一个焦点相同; (4) 焦点在 y 轴上,且抛物线上一点(-3,m) 到焦点的距离是 5 (5) 经过点 P(4,-2)
p ( , o) 2
p (0, ) 2
p (0, ) 2
p x 2
p y 2
o y o
x
l l
x
x 2 py ( p 0)
2
x 2 py ( p 0)
2
p y 2
例1、先判断下列抛物线的开口方向, 再求出它们的焦点坐标和准线方程:
(1) y =6x; (2)y= -2x ;
例 3、点 M 与点 F(4,0) 的距离比它到直线 l:x+5=0 的距离小 1,求点 M 的轨迹 方程,并在轨迹上求到 F 距 离等于 5 的点的坐标。
抛物线的定义和标准方程
北京师大二附中 赵昕
抛物线的定义:
平面内与一定点F和一条定直线l的 距离相等的点的轨迹叫抛物线 定点F叫抛物线的焦点 定直线l叫做抛物线的准线
图形
标准方程
焦点坐标
p ( ,0 ) 2
准线方程
p x 2
l
o y
y x
y 2 2 px ( p 0)x Nhomakorabeal
y
o
y 2 2 px ( p 0)
抛物线的定义及标准方程
抛物线的定义及标准方程一、抛物线的定义1. 定义内容- 平面内与一定点F和一条定直线l(F∉ l)的距离相等的点的轨迹叫做抛物线。
点F叫做抛物线的焦点,定直线l叫做抛物线的准线。
2. 定义理解要点- 强调“平面内”这一前提条件,因为在空间中满足到定点与定直线距离相等的点的轨迹是一个抛物面。
- 焦点F不在准线l上,如果F∈ l,则轨迹为过F且垂直于l的直线。
二、抛物线的标准方程1. 建立坐标系推导标准方程- 设抛物线的焦点为F,准线为l,过点F作准线l的垂线,垂足为K,以线段FK的中点O为坐标原点,FK所在直线为x轴建立直角坐标系。
- 设|FK| = p(p>0),则焦点F的坐标为((p)/(2),0),准线l的方程为x =-(p)/(2)。
- 设抛物线上任一点M(x,y),根据抛物线的定义,点M到焦点F的距离等于点M到准线l的距离。
- 点M到焦点F的距离| MF|=√((x - frac{p){2})^2+y^2},点M到准线l的距离| x+(p)/(2)|。
- 由√((x - frac{p){2})^2+y^2}=| x+(p)/(2)|,两边平方可得(x-(p)/(2))^2 + y^2=(x + (p)/(2))^2,展开并化简得y^2=2px(p>0),这就是抛物线的一种标准方程,它表示焦点在x轴正半轴上的抛物线。
2. 其他几种标准方程形式- 当焦点在x轴负半轴上时,设焦点F(-(p)/(2),0),准线l的方程为x=(p)/(2),按照上述推导过程可得抛物线方程为y^2=-2px(p > 0)。
- 当焦点在y轴正半轴上时,设焦点F(0,(p)/(2)),准线l的方程为y =-(p)/(2),设抛物线上一点M(x,y),根据定义可得√(x^2)+(y-(p)/(2))^2=|y+(p)/(2)|,化简后得到x^2=2py(p>0)。
- 当焦点在y轴负半轴上时,设焦点F(0,-(p)/(2)),准线l的方程为y=(p)/(2),可得抛物线方程为x^2=-2py(p>0)。
抛物线的标准方程公式
抛物线的标准方程公式
抛物线是一种非常常见的曲线形状,它在物理学、数学和工程学中都有着广泛
的应用。
在本文中,我们将讨论抛物线的标准方程公式,以及如何通过这个公式来描述抛物线的形状和特征。
首先,让我们来看一下抛物线的定义。
抛物线是一种平面曲线,其在一个平面
上对称,且其轨迹上任意一点到定点的距离与该点到直线的距离成比例。
在数学上,抛物线可以用标准方程来描述,其一般形式为:
y = ax^2 + bx + c。
在这个方程中,a、b和c分别代表了抛物线的形状和位置。
其中,a决定了抛
物线的开口方向和大小,b决定了抛物线在x轴上的平移,c则决定了抛物线在y
轴上的平移。
接下来,让我们来看一些具体的例子,来说明如何使用标准方程公式来描述抛
物线。
假设我们有一个抛物线,其标准方程为:
y = 2x^2 + 3x + 1。
通过这个方程,我们可以得到很多关于这个抛物线的信息。
首先,由于a的值
为2,所以这个抛物线是向上开口的。
其次,由于b的值为3,所以这个抛物线在
x轴上向左移动了3个单位。
最后,由于c的值为1,所以这个抛物线在y轴上向
上移动了1个单位。
除了描述抛物线的形状和位置外,标准方程公式还可以帮助我们求解抛物线的
焦点、直径和焦距等重要参数。
这些参数对于抛物线在物理学和工程学中的应用具有重要意义。
总之,抛物线的标准方程公式是描述抛物线形状和特征的重要工具,通过这个公式,我们可以清晰地了解抛物线的开口方向、位置和其他重要参数。
希望本文对你理解抛物线有所帮助。
抛物线定义及标准方程
抛物线定义及标准方程抛物线是二次函数的图象,它是平面上到定点的距离等于到定直线的距离的点的轨迹。
在日常生活中,我们经常可以看到抛物线的形状,比如喷泉中水流的轨迹、抛出的物体的运动轨迹等。
抛物线的研究对于理解物体的运动规律、建立数学模型等都具有重要的意义。
抛物线的标准方程是y=ax^2+bx+c,其中a、b、c为常数,a≠0。
抛物线的开口方向取决于a的正负,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
现在我们来详细了解一下抛物线的定义及标准方程。
首先,我们来看抛物线的定义。
如前所述,抛物线是平面上到定点的距离等于到定直线的距离的点的轨迹。
这个定点叫做焦点,定直线叫做准线。
在平面直角坐标系中,抛物线的焦点通常在y轴上,坐标为(0, p),准线为y=-p。
根据这个定义,我们可以得出抛物线的数学表达式。
其次,我们来推导抛物线的标准方程。
假设抛物线上有一点P(x, y),它到焦点的距离为PF,到准线的距离为PM。
根据抛物线的定义,我们可以得到PF=PM,即√(x^2+(y-p)^2)=|x|。
将这个方程进行整理化简,就可以得到抛物线的标准方程y=ax^2+bx+c。
最后,我们来看一些抛物线的性质。
首先,抛物线的对称轴是与x轴平行的直线,它通过焦点并且与抛物线的开口方向垂直。
其次,抛物线的顶点坐标为(-b/2a,c-b^2/4a)。
最后,抛物线的焦距为|4a|p。
这些性质可以帮助我们更好地理解抛物线的形状和特点。
总之,抛物线是二次函数的图象,它具有很多重要的数学性质和物理意义。
通过学习抛物线的定义及标准方程,我们可以更好地理解它的形式和特点,为后续的数学学习和物理研究打下基础。
希望本文能够帮助大家更好地理解抛物线,欢迎大家批评指正。
抛物线的定义及标准方程(新)
一、定义
定点F与定直线l的 位置关系是怎样的?
平面内与一个定点F和一条定直线l
l
的距离相等的点的轨迹叫做抛物线。
N
定点F叫做抛物线的焦点。
M· ·F
定直线l 叫做抛物线的准线。
(定点F不在直线上)
二、标准方程
l
· N M ·F
如何建立直角 坐标系?
?想一想
二、标准方程
地,翠绿の原始森.林占据着这里大概三成左右の面积,甚至这颗星辰の直径都和地球差不多,而且海洋占七成の面积,陆地占三成左右.这里の气压,还有重力系统都和地球十分相似,只是这颗星辰周围,没有太阳,没有月亮罢了.它の光源,似乎来自自己.在这颗星辰の北面,根汉发现了壹颗巨型の土 晶石,这块淡白色の土晶石,就是这里有光の真正の原因,也给予了这颗星辰提供了能量.根汉直接穿透了这里の大气层,看到了这里の风景,结果这第壹眼,就看到了下面陆地上,壹片连绵の有些像长城壹样の建筑.在下面の陆地上,绵延了有大概三四千里之长."乖乖."根汉想大叫出声,甚至都想叫出 长城の名字了,这种亲切感让他十分振奋,好些年没有这样の兴奋の感觉了.<b>(正文叁00叁古星)叁00肆灵狐..ilou.o叁00肆根汉直接穿透了这里の大气层,看到了这里の风景,结果这第壹眼,就看到了下面陆地上,壹片连绵の有些像长城壹样の建筑.在下面の陆地上,绵延了有大概三四千 里之长."乖乖."根汉想大叫出声,甚至都想叫出长城の名字了,这种亲切感让他十分振奋,好些年没有这样の兴奋の感觉了.他往下飞了飞,离近了壹些,看到了这长古城墙の全貌.很显然这里不会是长城,只是壹条类似于长城の建筑,和长城壹样,也是沿着山脉建造の,只不过却比地球上の长城要威武 得多了.因为这条古城墙几乎都是建在千米以上の山峰上,壹路连绵了数千里,直到现在还保存着比较完整,只有少数路段出现了壹些损毁.这样の东西,壹般の普通人是绝对建造不出来の,根汉大概也能看出来,这应该是壹些修行者所为.不过似乎这古城墙也不是壹下子就建成の,所以并不会是特别 强大の修行者所为,强大の修行者如他壹样の强者の话,举手之间就能弄出这样の东西来了,不需要这样子麻烦.正好这里地势高,根汉用天眼看了看这四周看哪家强?阅读网の环境,整个星辰将近壹半の地方,都被他用天眼给看到了.这里の确是有生灵の气息,只不过都十分の弱小,有壹些飞行走兽在 这壹带生存,比之前の那颗小小の海洋小星要强得多了.这里の生灵至少也有数千万吧,只不过像人类壹样の高级生命却很少,几乎都是壹些兽类了.不过根汉还是发现了,在北侧大概二千里の地方,有壹座小山峰.半山腰中有壹个山洞,根汉在那里发现了壹个小家伙,这是壹只小灵狐.他壹瞬间就出现 在了那里,出现在了小灵狐の身边."叽."小灵狐倒是十分の聪明,壹下子就跳到了根汉の怀里,向根汉献殷勤了.尽管这是它第壹回见到根汉这样の人类,但是却十分の主动,直接向根汉投怀送抱了."你叫什么名字?"根汉试着用元灵之音问她.小灵狐还真の就听得懂:"咱叫灵尔.""灵尔?"根汉十分惊 讶,然后笑着对她说:"看来你听得懂咱说の话.""恩恩."灵尔兴奋の点头,在根汉の怀里拱来拱去,就像当年白清清化作の小白狐那样,在根汉の怀里占他の便宜.根汉问她:"你怎么在这里了?你不是这里出生の吗?""咱是在这里出生の哦,只不过咱也不知道咱の父母是谁,咱为什么会说话."灵尔明 显有些难受,她の聪慧程度很高,自主意识很强.她说:"这里の同伴们,都听不懂咱说の话,咱这些年也壹直壹个人在这里生活.""壹个人?"根汉心中壹怔,心想难道这灵狐是什么人所化の吗?要不然她怎么知道壹个人,而不是壹只狐呢?当然这样の话他现在没有去问灵尔,而是问灵尔:"灵尔,那你知 道这颗星辰以前の过往吗?这里来过什么人吗?""咱也不知道,咱知道の很有限."灵尔说."那你在这里多久了?"根汉问.灵尔道:"在这里好像有壹千多年了,从咱在这里出生开始,就壹直呆在这个山洞里,咱没有出去过.""哦,那你愿意跟着咱走吗?"根汉问她.灵尔连忙说:"当然了,大哥哥,哦不,主人, 咱跟着你,以后都跟着你.""叫咱大哥哥吧."根汉笑了笑说,这小家伙倒是很会顺道爬,他笑着问她:"你不怕咱是坏人呀?""灵尔可不管,只要对灵尔好就行了,对别人随便你怎么坏."小家伙の回答,令根汉无以言对.不过想想也是了,自己对别人坏与她有什么关系呢,这小家伙还是真挺自私の嘛.根汉 带着她飞离了这座山洞,离别前,这小家伙也对这里,好像丝毫没有眷恋之心.她也不知道自己为何会出生在这里,自己の父母是谁,只是出生之后便孤独の壹个人在这里生活着,在那座小小の山洞中生活了上千年了.至于这小灵狐の血脉,根汉也觉得很奇怪,连自己の天眼也无法看穿,不知道是什么血 脉.但是可以肯定の是,这小家伙绝对不会是凡种,天生就带有意识在这里苏醒之后,便认得自己,认自己为亲人.这可不是壹般の小灵宠,根汉也不是因为她の血脉可能很强,才收留の她,而是因为有缘,在这无尽の星空中,自己遇到の第壹个纯粹の生命体,这可是天大の缘分.小家伙跟着根汉在这星辰 上转了壹大圈,兴奋の嗷嗷直叫,因为她の实力可没有这么强大.没想到过,会有这么强大の壹个大哥哥,好像天上の仙人壹样,带着她壹下子出现在这里,壹下子出现在那里,太厉害了.最后根汉又带着她,来到了这块土晶石の面前.土晶石坐落在两座万米の高山中间,这里面有壹个小峡谷,而这块土晶 石就被嵌在这中间了.只不过根汉能够看到,这块土晶石表面有着明显の破坏の痕迹,所以光亮消失了许多了,几乎都快要黯淡掉了.灵尔趴在根汉の领口,对根汉说:"大哥哥,这就是这颗星辰の能量来源了,所有の生命都是以它而生存の,若是没有了它,这里就会变成壹个死寂之地了.""哦."根汉自 然也看得出来,至于这小家伙上哪尔知道の,现在根汉也搞不清楚.她其实就和小紫倩,还有伊莲娜尔那样差不多,都是记忆缺失の生灵.只不过她现在还不如最开始の小紫倩了,比小紫倩还要更混沌,也许也是需要时间慢慢来恢复の,前面遇到了两位了,现在再遇到壹只灵尔这样の小灵狐,根汉也就不 觉得再有什么可奇怪の了.根汉仔细の观察这块土晶石,以及这附近の地貌还有风水.结果他还真发现了壹些猫腻,在这两侧の两座高山の下面,连着数十条犬牙交错の灵脉.<b>(正文叁00肆灵狐)叁005紫倩苏醒..ilou.o叁005只不过她现在还不如最开始の小紫倩了,比小紫倩还要更混沌,也 许也是需要时间慢慢来恢复の,前面遇到了两位了,现在再遇到壹只灵尔这样の小灵狐,根汉也就不觉得再有什么可奇怪の了.根汉仔细の观察这块土晶石,以及这附近の地貌还有风水.结果他还真发现了壹些猫腻,在这两侧の两座高山の下面,连着数十条犬牙交错の灵脉.这些灵脉好像全部枯死了现 在,而且看这样子并不是自然枯死の,而是被什么东西给吸干了灵气,瞬间就被枯死了.所以根汉才能想像得出来,为何这里还保留有壹些原始の自然の东西,但是却没有更高级の生命体了,可能与这个有关系,有什么东西,可能是什么原因导致这里の灵脉枯死了.灵脉瞬间枯死,被吸走之后,那些高级 生命体便无法再生存太久了,所以全部死绝了.隔了好多好多年之后,这里才重新出现了壹些低级の生�
抛物线的定义及其标准方程
抛物线的定义及其标准方程抛物线是一种常见的二次曲线,其形状与开口向上或开口向下的弓形极为相似。
抛物线有着广泛的应用,例如在物理学、工程学、建筑学等领域中都有着重要的地位。
一、抛物线的定义抛物线可以定义为:过定点且不垂直于定直线的所有点到定点距离与该点到定直线距离之差相等的点的集合。
简单来说,就是抛物线上任何点到它的焦点距离减去它到抛物线的准线(即过抛物线的焦点且垂直于直线)距离的差值为常数,成为焦距。
抛物线的准线垂直于抛物线的轴线。
二、抛物线的标准方程一般来说,抛物线的标准方程为y = ax² + bx + c,其中a不等于0。
如果我们规定焦点位于y轴上,且顶点为原点,那么这个抛物线的标准方程将为y = ax²。
这个标准方程中的a值决定了抛物线的形状。
如果a大于0,则抛物线开口向上,如果a小于0,则抛物线开口向下。
当a = 0时,标准方程变为y = bx + c,这是一条线性函数。
可以通过把上述标准方程与完美的抛物线的三个关键点联系起来,以确定它的形状。
这些基本关键点包括:焦点、顶点和准线交点。
三、抛物线的性质1. 抛物线对称性: 由于抛物线具有对称性,因此任何垂直于抛物线轴线的直线与抛物线的交点都会沿着轴线形成一个对称点。
2. 抛物线焦点: 抛物线的焦点是距离准线的焦距相等的所有点的集合。
抛物线的焦点与准线相等的距离通常被称为焦距,通常用字母f表示。
3. 抛物线顶点: 抛物线的顶点是抛物线开口处的点。
如果抛物线开口向上,则顶点的y坐标为抛物线函数的最小值。
如果抛物线的开口向下,则顶点的y坐标为抛物线函数的最大值。
4. 抛物线的交点: 如果直线y = mx + b与抛物线相交,那么它将与抛物线在两个位置相交。
交点公式为x = (-b +√(b² - 4ac))/ (2a)和x = (-b -√(b² - 4ac))/ (2a)。
五、总结抛物线是一种非常基础的二次曲线,在工程数学中经常被使用。
抛物线及其标准方程
p ( ,0 ) 2 p ( ,0) 2 p (0, ) 2 p (0, ) 2
p x 2 p x 2 p y 2 p y 2
y
l
O
F
x
y
F O
l y l
O F
x
x
课堂新授
例.(1)已知抛物线的标准方程是 y2=6x,
求它的焦点坐标和准线方程。
(2)已知抛物线的焦点坐标是F(0,-2), 求它的标准方程。
抛物ቤተ መጻሕፍቲ ባይዱ及其标准方程(一)
课堂新授
定义:平面内与一个定点F和一条定直线l 的
距离相等的点的轨迹叫做抛物线。
点F叫做抛物线的焦点, 直线l 叫做抛物线的准线。
l y M
K
o
F
x
图
l y
O
形
标准方程
焦点坐标
准线方程
F
x
y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0)
课堂练习
1.根据下列条件写出抛物线的标准方程:
(1) 焦点是F(0,3),
1 (2) 准线方程是x=- , 4
(3) 焦点到准线的距离是2.
课堂练习
2.求下列抛物线的焦点坐标和准线方程: (1) y2=-10x (2) x2=-8y
(3)
y2=-
5 x 2
(4)–x2+6y=0
(6) y=-3x2
(5) 2y2+3x=0
课堂练习
3.点M与点F(0,-2)的距离比它
到直线l:y-3=0的距离小1,
求点M的轨迹方程。
课堂练习
4.已知抛物线的焦点为(3,3),
抛物线的标准方程及性质
抛物线的标准方程及性质一、抛物线定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。
其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系?点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 则P 〉0 求抛物线的方程解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴 设︱KF ︱= p 则F (0,2p ),l :x = —2p 。
设抛物线上任意一点M (X ,Y )定义可知 |MF|=|MN| 即:2)2(22px y P x +=+-化简得 y 2 = 2px (p >0) 二、标准方程把方程 y 2 = 2px (p >0)叫做抛物线的标准方程,其中F (2P ,0),l :x = — 2P而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式。
1.四种抛物线的标准方程对比图形 标准方程焦点坐标准线方程)0(22>=p px y⎪⎭⎫ ⎝⎛0,2p 2p x -=)0(22>-=p px y⎪⎭⎫⎝⎛-0,2p 2px =)0(22>=p py x⎪⎭⎫ ⎝⎛2,0p2py -=)0(22>-=p py x⎪⎭⎫ ⎝⎛-2,0p2py =2、怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来? 顶点在原点三、抛物线的性质设抛物线的标准方程y 2=2px (p >0),则(1)范围:抛物线上的点(x ,y )的横坐标x 的取值范围是x ≥0。
,在轴右侧抛物线向右上方和右下方无限延伸。
(2)对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴。
抛物线和它的轴的交点叫做抛物线的顶点.(3)顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。
抛物线的标准方程及相关公式
抛物线的标准方程及相关公式抛物线是我们在初中时就接触到的一个概念,大部分人都知道它是一种平面曲线,但是具体的表达方式可能不是所有人都能记得清。
其实,抛物线也可以用一种简单的标准方程来表达,下面我会详细介绍这个方程以及与抛物线相关的公式。
一、抛物线的定义抛物线是一种平面曲线,其数学定义是所有到定点距离与到定直线距离相等的点的轨迹,其中定点称为焦点,定直线称为准线。
在我们的日常生活中,许多自然现象都可以使用抛物线来描述,比如炮弹的轨迹、跳水运动员的姿态等等。
二、抛物线的标准方程在数学中,抛物线可以用一种简单的标准方程表示。
这个方程是:y = ax² + bx + c其中 a、b、c 都是常量,具体的数值由抛物线的形状以及位置决定,下面我将逐一解释这些常量。
① aa 是抛物线的开口方向和开口大小的决定因素。
如果a 大于0,那么抛物线开口向上,开口大小取决于 a 的大小;如果 a 小于 0,那么抛物线开口向下,开口大小同样取决于 a 的大小。
如果 a 等于 0,那么抛物线就变成了一条水平直线,这个时候抛物线不存在焦点和准线。
② bb 是抛物线在 x 轴上方的截距,也称抛物线的对称轴。
如果 b等于 0,那么抛物线就与 y 轴对称,即为偶函数。
如果 b 不等于 0,那么抛物线就可以沿着 y 轴方向平移,改变抛物线的位置。
③ cc 是抛物线在 y 轴上的截距。
如果 c 等于 0,那么抛物线的焦点就位于原点。
通过上述的分析,我们已经可以根据抛物线的形状和位置来确定 a、b、c 的数值,进而得到抛物线的标准方程。
三、与抛物线相关的公式在学习抛物线的过程中,还有许多与它相关的公式需要掌握。
①抛物线在 x 轴的范围根据抛物线的表现形式,我们可以得到其在 x 轴的范围为:x ∈ [-∞,∞]这个范围表明了抛物线在 x 轴上可以取到任何一个实数。
②抛物线的对称轴抛物线的对称轴就是它的顶点,顶点的 x 坐标可以通过以下公式计算出来:x = -b/2a根据这个公式,我们可以得到抛物线的顶点坐标。
抛物线及其标准方程
即:
MF MH
l
1
H
M
定点F------焦点 定直线l--------- 准线
· · F
想一想? 当直线l经过定点F,则点
M的轨迹是什么? 经过点F且垂直于l的直线
F
l
·
如何求点M的轨迹方程?
M
H
想 一 想 ?
求曲线方 程的基本 步骤是怎 样的?
F ·
l
建系
设点 列式
找关系 化简、证明
[1]建系
P 即 2 得p=4 2
∴所求的标准方程为x2= -8y
总结: 求抛物线标准方程的一般步骤: (1)确定抛物线的形式. 注意:焦点或开 (2)求p值 口方向不定,则 (3)写抛物线方程 要注意分类讨论
例2 已知抛物线的焦点坐标是F(0,-2)
求它的标准方程。
2=-8x y (1)焦点是F(-2,0),它的标准方程_______.
2、一次项的系数的符号 x 2 py 决定了抛物线的开口方 p 0 向.
2
四种抛物线的标准方程对比 图形 标准方程
y 2 px
2
p 0
2
抛物线的标准方程的 形式上的共同特点?
如何根据抛物线的标 y 2 px 准方程来判断抛物线 p 0 的焦点位置,开口方 向? 2 x 2 py 1 、焦点在一次项字母 p 0 对应的坐标轴上. 2、一次项的系数的符号 2 x 2 py 决定了抛物线的开口方 p 0 向.
变式:
2=8y x (2)准线方程是y = -2,它的标准方程_______.
(3)焦点到准线的距离是2,它的标准方程 _____. 2 2
x =±4y 、y =±4x
抛物线的定义及标准方程
抛物线的定义及标准方程抛物线是一种常见的二次曲线,其定义和标准方程是初中数学中的重要内容。
抛物线在物理学、工程学和数学中都有着广泛的应用,因此了解抛物线的定义及标准方程对于学习和工作都是非常重要的。
首先,我们来看一下抛物线的定义。
抛物线是平面上到定点(焦点)的距离与到定直线(准线)的距离相等的点的轨迹。
这意味着抛物线是由一定点和一条直线确定的轨迹,其形状呈现出一种特殊的曲线形态。
在平面直角坐标系中,抛物线通常是关于y轴对称的,其开口方向可以向上或向下。
接下来,我们来看一下抛物线的标准方程。
一般来说,抛物线的标准方程可以表示为:y = ax^2 + bx + c。
其中,a、b、c为常数,且a不等于0。
这个方程描述了抛物线的一般形式,通过调整a、b、c的数值,我们可以得到不同位置和形状的抛物线。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
而当a等于0时,这个方程描述的是一条直线,而不是抛物线。
除了一般形式的标准方程之外,我们还可以通过顶点和焦点来确定抛物线的标准方程。
通过平移和缩放的操作,我们可以将抛物线的顶点平移到坐标原点,并且使得焦点在y轴上,这样就可以得到抛物线的标准方程。
这种方法可以更直观地理解抛物线的形状和特征。
总的来说,抛物线的定义及标准方程是数学中的重要概念,它们不仅在学术研究中有着重要的地位,同时也在实际生活和工作中有着广泛的应用。
通过理解和掌握抛物线的定义及标准方程,我们可以更好地应用它们解决实际问题,同时也可以更深入地理解数学中的相关知识。
希望本文的介绍可以帮助大家更好地理解抛物线的相关概念,为进一步学习和工作中的应用打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
H
M
F
2020/2/27
实验
一、抛物线定义
平面内与一个定点F和一条定直线l(l不
经过点F)的距离相等的点的轨迹叫做抛物线
其中 定点F叫做抛物线的焦点
定直线 l 叫做抛物线的准线
l
M
H· ·F
定义告诉我们:
1、判断抛物线的一种方法 2、抛物线上任一点的性质:|MF|=|MH|
轴,F和垂足的中点为坐标原点建立
y
l
直角坐标系 设︱KF︱= p ( p >0)
H
·M(x,y)
p 则F( 2
,0),l:x = -
p 2
Ko
设动点M的坐标为(x,y),
由|MF|=|MH|可知,
p 2
,
0
(x p)2 y2 x p
2
2
·F x
p 2
,
0
一条抛物线?试指出它的开口方向、焦点坐标和
准线方程。 解:二次函数 y ax2 (a 0)化为:x2 1 y
a
其中 2 p 1
a
①当a>0时,
p 2
=
1 4a
,抛物线的开口向上
焦点坐标是(0 ,41a),准线方程是: y=
1 4a
②当a<0时,
p 2
=
1 ,抛物线的开口向下
4a
焦点坐标是(0 2020/2/27
2020/2/27
(二)四种抛物线的标准方程
y 2 2 px
p 0
p ,0 2
x p 2
y2 2 px
p 0
p ,0 2
x p 2
图
x2 2 py 0, p
p 0 2
y p 2
2020/2/27
是一次项系数的 1
2
的相反数
4
2020/2/27
练习
求下列抛物线的焦点坐标和准线方程
(1)y 2 = -20 x 焦点F ( -5 , 0 ) 准线:x =5
(2) y = 6 x 2
焦点F ( 0
,
1 24
)
准线:y
=
-
1 24
2020/2/27
例2 已知抛物线的焦点坐标是F(0,-2)
求它的标准方程。
,41a
),准线方程是:
y=
1 4a
作业
P73 A组 :1,2(必做)
补充:求经过点p(4,-2)的抛物线 的标准方程。
2020/2/27
解法一:以 L为 y轴,过点F 垂直于L的直线为 x轴建
立直角坐标系(如下图所示),则定点F ( p, o) 设动点
点 M (x, y)
(x p)2 y2 x
例3 .一种卫星接收天线的轴截面如图。卫星波 束呈近似平行状态射入轴截面为抛物线的接 收天线,经反射聚集到焦点处。已知接收天 线的口径为4.8m,深度为0.5m,试建立适当的 坐标系,求抛物线的标准方程和焦点坐标。
2020/2/27
小结
1.理解抛物线的定义, 2.掌握抛物线的标准方程的四种形式以及P 的几何意义.
2020/2/27
练习
1、到定点(3,0)与到直线 l : x 3 的距
离相等的点的轨迹是(C ) A.椭圆 B.双曲线 C.抛物线 D.直线
2、到定点(3,0)与到直线 l : x 3 的距
离相等的点的轨迹是(D ) A.椭圆 B.双曲线 C.抛物线 D.直线
2020/2/27
二、抛物线的标准方程
2.4.1抛物线及其 标准方程
2020/2/27
抛物线的生活实例 投篮运动
2020/2/27
2020/2/27
萨尔南拱门
2020/2/27
2020/2/27
抛物线及其标准方程
2020/2/27
实验模型:
如图,点F是定点,L是不经过点F的定直线。H是
L 上任意一点,过点H 作 MH L,线段FH的垂
x2 2 py 0, p
p 0 2
y p 2
(三)区别与联系
1、四种形式标准方程及图像的共同特征
y2 2 px y2 2 px x2 2 py x2 2 py
p 0 p 0 p 0 p 0
(1)、二次项系数都化成了___1____
y M(x,y)
化简得:y 2
2
px
p
2
(
p
0)
O
Fx
L
2020/2/27
解法二:以定点 F 为原点,过点 F 垂直于 L的直线为x轴建
立直角坐标系(如下图所示),则定点F (0, 0) ,L 的方程
为x p
y
设动点 M (x, y),由抛物线定义得
M(x,y)
x2 y2 x p
3.注重数形结合、分类讨论思想的应用
2020/2/27
练习
根据下列条件写出各自的抛物线的标准方程
(1)焦点是 F(3,0)
y 2 = 12x
(2)焦点到准线的距离为2 y 2 = 4x , y 2 =- 4x , x 2 = 4y , x 2 = -4y
2020/2/27
思考: 二次函数 y ax2 (a ≠0)的图象为什么是
1、一次项(x或y)定焦点 2、一次项系数符号定开口方向.
正号朝坐标轴的正向,负号朝坐标轴的负向。
2020/2/27
三、应用
例1 已知抛物线的标准方程是y2 = 6x,
求它的焦点坐标和准线方程;
解: ∵2P=6,∴P=3
3 是一次项系数的
所以抛物线的焦点坐标是( 2,0)
1 4
准线方程是x= 3
解: 因为焦点在y的负半轴上,所以设所 求的标准方程为x2= -2py
由题意得 P 2 ,即p=4 2
∴所求的标准方程为x2= -8y
2020/2/27
解题感悟:
求抛物线标准方程的步骤: (1)确定抛物线的形式. (2)求p值 (3)写抛物线方程
2020/2/27
巩固提高:
求过点A(-3,2)的抛物线的标准方程。
F(O) x
y p 2
2
化简得: 2 px ( p 0)
L
2020/2/27
M
F(- p ,0) 2
y L
χ=
p 2
Fo
x
y2=-2pχ
(p>0)
2020/2/27
化简得 y2 = 2px(p>0) 2020/2/27
把方程 y2 = 2px(p>0) 叫做抛物线的标准方程
ly
. O
x
K
F
其中
焦点
F(
p 2
,0),准线方程l:x = -
p 2
而p 的几何意义是: 焦点到准线的距离
想一想:
在建立椭圆、双曲线的标准方程时,选择不同 的坐标系我们得到了不同形式的标准方程,那 么抛物线的标准方程有哪些不同的形式?看图
(2)、四种形式的方程一次项的系数都含2p
(位于3)此、点四的种两抛侧物,线且都离过此_O点__的_点距离;均焦为点_与__准p_线分别
2020/2/27
2
二、四种形式标准方程及图像的区别
y2 2 px y2 2 px x2 2 py x2 2 py
p 0 p 0 p 0 p 0
解:(1)当抛物线的焦点在y轴 的正半轴上时,把A(-3,2)
.y A
代入x2 =2py,得p= 9 4
O
x
(2)当焦点在x轴的负半轴上时,
把A(-3,2)代入y2 = -2px,
2
得p=
3 ∴抛物线的标准方程为x2 =
9 y或y2 = 4
x
。
2
3
注意20:20/焦2/27 点或开口方向不定,则要注意分类讨论
回顾求曲线方程一般步骤:
1.建:建立直角坐标系. 2.设:设所求的动点(x,y); 3. 限(现):根据限制条件列出等式; 4. 代:代入坐标与数据; 5. 化:化简方程.
2020/2/27
建系
yy
H
M
·· OK
y
NO O F
l
2020/2/27
x
K F
N
(一)标准方程的推导:
如图,以过F点垂直于直线l 的直线为x