函数之平面直角坐标系知识点
平面直角坐标系与函数的概念
专题四 函数第一节 平面直角坐标系与函数的概念一【知识梳理】1.平面直角坐标系如图所示:注意:坐标原点、x 轴、y 轴不属于任何象限。
2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成,如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平 面内的左右位置,纵坐标表示点的上下位置。
3.各个象限内和坐标轴的点的坐标的符号规律①各个象限内的点的符号规律如下表。
说明:由上表可知x 轴的点可记为(x , 0) ,y 轴上的点可记做(0 , y )。
⒋ 对称点的坐标特征:点P (y x ,)①关于x 轴对称的点P 1(y x -,);②关于y 轴对称的点P 2(y x ,-);③关于原点对称的点P 3(y x --,)。
5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。
6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。
7.函数基础知识(1) 函数: 如果在一个变化过程中,有两个变量x 、y ,对于x 的 ,y 都有与之对应,此时称y是x的,其中x是自变量,y 是.(2)自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有意义。
(3)常量:在某变化过程中的量。
变量:在某变化过程中的量。
(4) 函数的表示方法:①;②;③。
能力培养:从图像中获取信息的能力;用函数来描述实际问题的数学建模能力。
二【巩固练习】1. 点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_____.2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是( ).3.如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中正确的是().A、y=4n-4B、y=4nC、y=4n+4D、y=n26.函数13xyx+=-中自变量x的取值范围是()A.x≥1-B.x≠3 C.x≥1-且x≠3 D.1x<-7.如图,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为()A.(2,-1)B.(2,2)C.(2,1) D.(3,l)8.右图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()图3相帅炮9.已知M(3a -9,1-a)在第三象限,且它的坐标都是整数,则a 等于( )A .1B .2C .3D .010.如图, △ABC 绕点C 顺时针旋转90○后得到△A ′B ′C ′, 则A 点的对应点A ′点的坐标是( )A .(-3,-2);B .(2,2);C .(3,0);D .(2,l )11.在平面直角坐标系中,点(34)P -,到x 轴的距离为( )A.3 B.3- C.4 D.4-12.线段CD 是由线段AB 平移得到的。
第9讲 平面直角坐标系与函数
度或函数增减性的变化规律.
[变式5] (2022武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的
变化规律如图所示(图中O-A-B-C为一折线).这个容器的形状可能是(
A
B
C
D
)
A
1
(1)点的对称规律:关于横(或纵)轴对称的点,横(或纵)坐标不变,纵(或横)坐标变号;关于原点对称,
则横、纵坐标都变号.
(2)点的平移规律:左右移,纵不变,横减加;上下移,横不变,纵加减.
(3)有时需要根据点在坐标系中的位置,建立不等式(组)或方程(组),把点的坐标问题转化为不等式
(组)或方程(组)的问题解决.
D.若x-y=0,则点P(x,y)一定在第一、第三象限角平分线上
3.(2022雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(
A.-4
B.4
C.12
D.-12
D)
4.小明从家到学校,先匀速步行到车站,等了几分后坐上了公交车,公交车沿着公路匀速行驶一段时间
后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是(
停止.若点 P 的运动速度为 1 cm/s,设点 P 的运动时间为 t(s),AP 的长度为 y(cm),y 与 t 的函数图象
如图②所示.则当 AP 恰好平分∠BAC 时,t 的值为
①
②
2 +2
.
1.(2022常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点
2
A-D-C 向终点 C 运动,设点 Q 的运动时间为 x(s),△APQ 的面积为 y(cm ),若 y 与 x 之间的函数关系的
初三数学函数与平面直角坐标系5大考点总结
初三数学函数与平面直角坐标系5大考点总结考纲要求:1、会画平面直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标。
2、掌握坐标平面内点的坐标特征。
3、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.4、能确定函数自变量的取值范围,并会求函数值。
一、平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相垂直的数轴的交点O称为原点,水平的数轴叫__________,竖直的数轴叫__________,整个坐标平面被x轴、y轴分割成四个象限.二、距离与点的坐标的关系1.点与原点、点与坐标轴的距离点P(x,y)到x轴和y轴的距离分别是|y|和|x|,点P(x,y)到坐标原点的距离为三、函数有关的概念及图像四、函数自变量取值范围的确定确定自变量取值范围的方法:考点一、平面直角坐标系内点的坐标特征方法总结:解这类题的关键是明确各象限内点的坐标特征,总结规律,再结合规律列出不等式(组)求解考点二、图形的变换与坐标方法总结:在平面直角坐标系中,图形的平移、对称、旋转等变换会引起坐标的变化,同样,坐标的变化也会引起图形的变换,两者紧密结合充分体现了数形结合的思想.考点三、函数的概念考点四、函数图像的应用方法总结:利用函数关系和图像分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,要看清横坐标和纵坐标表示的是哪两个变量,探求变量和函数之间的变化趋势,仔细观察图像(直线或曲线)的“走势”特点,合理地分析变化过程,准确地结合图像解决实际问题.考点五、函数自变量取值范围的确定方法总结:自变量的取值必须使含自变量的代数式有意义主要体现在以下几种:含自变量的解析式是整式:自变量的取值范围是全体实数;含自变量的解析式是分式:自变量的取值范围是使得分母不为0的实数;含自变量的解析式是二次根式:自变量的取值范围是使被开方式为非负的实数;含自变量的解析式既是分式又是二次根式时:自变量的取值范围是它们的公共解,一般列不等式组求解;当函数解析式表示实际问题时:自变量的取值必须使实际问题有意义.写在最后:中考数学冲刺阶段的复习,不管的大题还是选择填空这类型的小题,都是非常考验基础的牢固性,只有坚实的基础,加上实用的技巧,拿到高分,冲刺才有实际的意义。
平面直角坐标系与函数
析 已: 知 点 (3 - m , m - 1) 在 第 二 象 限 , 所 以 方法点析 解决此类问题的一般方法是根据点在 , 3-m<0 m>3, 坐标系中的符号特征,建立不等式 (组)或者方 故 ∴m>3,故选择 A. (组)或方程 程 ( 组 ) ,把点的问题转化为不等式 m-1>0, m>1, (组)来解决.
x<0,y<0 点 P(x, y)在第三象限⇔________________ x>0,y<0 点 P(x, y)在第四象限⇔________________
(2)坐标轴上点的坐标的特征
y=0,x为任意实数 点 P(x, y)在 x 轴上⇔__________________
x=0,y为任意实数 点 P(x, y)在 y 轴上⇔__________________
考点聚焦 归类探究 回归教材
作业:
《复习指导用书》
21
[点析] 根据函数图像,结合实际生活意义,对图像 进行分析判断即可得解.
19
考点聚焦
归类探究
回归教材
平面直角坐标系与函数
中考预测:看图说故事.请你编写一个故事,使故事情 境中出现的一对变量 x,y 满足如图所示的函数关系,要求: ①指出变量 x 和 y 的含义;②利用图中的数据说明这对变量 变化过程的实际意义,其中必须涉及“速度”这个量.
3
考点聚焦
归类探究
回归教材
平面直角坐标系与函数
考点3 点到坐标轴或原点的距离
到 x 轴 点 P(a,b)到 x 轴的距离等于点 P 的 b 纵坐标的绝对值 ,即 的距离 ___________________ 到 y 轴 点 P(a,b)到 y 轴的距离等于点 P 的 横坐标的绝对值 ,即 a 的距离 ___________________ 到原点 点 P(a, b)到原点的距离 的距离
初三函数知识点总结
初三函数知识点总结一一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数(定义→图象→性质)1. 正比例函数⑴定义:y=kx(k≠0) 或y/x=k。
⑵图象:直线(过原点)⑶性质:①k>0,…②k<0,…2. 一次函数⑴定义:y=kx+b(k≠0)⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
⑶性质:①k>0,…②k<0,…⑷图象的四种情况:3. 二次函数⑴定义:特殊地,都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。
用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数⑴定义:或xy=k(k≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法1. 用待定系数法求解析式(列方程[组]求解)。
对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。
如下图:2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
初三函数知识点总结二轴对称二次函数图像是轴对称图形。
对称轴为直线对称轴与二次函数图象唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图象的对称轴是y轴(即直线x=0)。
中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
第1部分 第10讲 平面直角坐标系与函数
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。
谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
(1)第一、三象限的角平分线上的点的横坐标与纵
象限角平分线上 坐标⑧___相__等_____;
的点的坐标特征 (2)第二、四象限的角平分线上的点的横坐标与纵
坐标⑨__互__为__相__反__数______
平行于坐标轴的
直线上点的坐标 特征
(1)平行于 x 轴的直线上的点的⑩__纵___坐标相等; (2)平行于 y 轴的直线上的点的⑪_横_____坐标相等
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
第 14 页
②如答图 2,当点 D 在边 PN 上时, ∵∠N=45°,CD=2, ∴CN=CD=2, ∴CM=6-2=4,即此时 x=4. 当 2<x≤4 时,如答图 3,矩形 ABCD 与△PMN 重叠部分是四边形 EMCD,过 点 E 作 EF⊥MN 于点 F, ∴EF=MF=2,∴ED=CF=x-2, ∴y=S 梯形 EMCD=12CD·(DE+CM) =12×2×(x-2+x)=2x-2;
(完整版)初中函数知识点总结
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
10、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
取值范围:① k ≠ 0; ②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数 ; ③函数 y 的取值范围也是任意非零实数。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数的性质:
注:对于y=kx+b 而言,图象共有以下四种情况:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0
4、直线y=kx+b(k≠0)与坐标轴的交点.
(1)直线y=kx与x轴、y轴的交点都是(0,0);
(2)直线y=kx+b与x轴交点坐标为 与 y轴交点坐标为(0,b).
5、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
中考总复习数学10-第一部分 第10讲 平面直角坐标系与函数
返回题型清单
返回栏目导航ຫໍສະໝຸດ 3.(2022·石家庄国际学校模拟)如图,直线a⊥b,若以平行于a的直线为x轴,以
平行于b的直线为y轴,建立平面直角坐标系,若A(-3,2),B(2,-3),则坐标系的
原点最有可能是( B )
A.O1
B.O2
C.O3
D.O4
1
2
3
4
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
和分类讨论思想是解答本题的关键.尤其是实际背景下的
函数问题,如果涉及分段函数,需要根据自变量的不同取值
范围分类进行求解,还需要关注函数与方程(不等式)的联系.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
返回栏目导航
3.(2022·石家庄新华区模拟)用max , 表示a,b两数中较大的数,如
标公式为
x +x y1+y2
,
(如图③).
第10讲
平面直角坐标系与函数— 考点梳理
返回思维导图
返回栏目导航
考点 2 函数及其自变量取值范围
1.函数的相关概念
(1)变量:在某一变化过程中可以取不同数值的量.
(2)常量:在某一变化过程中保持相同数值的量.
(3)函数:一般地,在一个变化过程中如果有两个变量x和y,并且对于x的每一
值范围,根据函数关系式的特点来确定正确的函数图象.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
拔高追问
返回题型清单
返回栏目导航
当x等于何值时,函数值y最大?
初二数学函数知识点总结
初二数学《函数》知识点总结(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:由该点分别向x 轴y 轴作垂线,垂足在x 轴上的坐标是改点的横坐标,垂足在y 轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0;第二象限:(-,+) 点P (x,y ),则x <0,y >0;第三象限:(-, -) 点P (x,y ),则x <0,y <0;第四象限:(+,-) 点P (x,y ),则x >0,y <0;5、坐标轴上点的坐标特征:x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号7、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等;平行于y 轴的直线上的任意两点:横坐标相等。
8、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)第二、四象限角平分线上的点横纵坐标互为相反数。
点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)9、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x10、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-11、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x + , 212y y +) 12、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
平面直角坐标系知识点总结
平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。
ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。
四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。
确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。
四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。
函数-第1讲:平面直角坐标系与函数
1、点坐标的特征:x 轴上点坐标的特征:(m,0)y 轴上点坐标的特征:(0,m )平行于x 轴的直线上点的纵坐标相同,平行y 轴的直线上的点的横坐标相同。
2、点坐标的几何意义:(1)点(a ,b )表示到x轴的距离是b ,到y 轴的距离是a (2)根据点到坐标轴的距离可以写出点坐标,但是需要考虑符号,需要分类讨论。
例:点A 到x 轴的距离是2,到y 轴的距离是3,求点A 的坐标。
答:(3,2)或(-3,2)或(-3,-2)或(3,-2)3、确认函数自变量取值范围的方法:【方法技巧】第一节 函数-平面直角坐标系与函【知识梳理】4、函数图象问题的解题技巧:①解题关键步骤:第一步:识别变量(审题):第二步:判断趋势第三步:找特殊值第四步:列解析式小贴士:以上四步没有绝对的向后顺序,若可以利用排除法求,则优先利用排除法,若实在判断不了函数图象,则可求出函数的关系式;注意出现动点时,要标出动点走过的路程和剩下的路程再去找关系,常用勾股定理和相似来求动点解析式②判别图象是曲还是直:要看变量的个数,若一个变量,则为直线;若变量是两个,则为曲线。
两个变量的增加性一样,则开口向上。
若不一样,开口向下。
③识别图象特点:若动点在直线、射线、线段、圆、圆弧上动,则函数图像为连续圆滑的图像,若在有尖点的折线上运动,则函数图像为出现明显的拐点为分段函数。
【考点突破】考点1:平面直角坐标系例1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C. D.变式1、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1 B.a>C.﹣<a<1 D.﹣1<a<例2、已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限变式1、在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限例3、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.变式1、画出平面直角坐标系,标出下列各点;(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;(4)点D在x轴上,位于原点右侧,距离原点3个单位长度(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.依次连接这些点,你能得到什么图形?例4、已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.变式1、如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).变式2、已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.例5、已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.(1)CD= ,|DB﹣AC|= ;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.变式1、先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.考点二:函数及其图象例1、在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥变式1、函数y=中,自变量x的取值范围是()A.x>4B.x≥2C.x≥2且x≠﹣4D.x≠﹣4变式2、函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2例2、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.变式1、如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.例3、如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是()A.y=2x+1B.y=x﹣2x2C.y=2x﹣x2D.y=2x变式1、如图,A的坐标是(0,4),点C是x轴上的一个动点,点B与点O在直线AC两侧,∠BAC=∠OAC,BC⊥AC,点B的坐标为(x,y),y与x的函数关系式为()A.y=8x B.y=C.y=D.y=例4、在五边形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD边的中点,点P由点A出发,按A→B→C→M的顺序运动.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是()A.B.C.D.变式1、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.例5、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.变式1、如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180﹣2x B.y=x+90C.y=2x D.y=x例6、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O变式1、一个观察员要到如图1所示的A,B,C,D四个观测点进行观测,行进路线由在同一平面上的AB,BC,CD,DA,AC,BD组成.为记录观察员的行进路线,在AB的中点M处放置了一台定位仪器,设观察员行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的图象大致如图2所示,则观察员的行进路线可能为()A.A→D→C→B B.A→B→C→D C.A→C→B→D D.A→C→D→B例7、如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DE变式1、如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH例8、小阳在如图①所示的扇形舞台上沿O﹣M﹣N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A.点Q B.点P C.点M D.点N变式1、如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E例9、如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度d与时间t的函数关系的图象可能是()A.①B.③C.①或③D.②或④变式1、如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,那么如图乙图象中可能表示y 与x 的函数关系的是( )A .①B .④C .①或③D .②或④<A 组>1.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数y=中,自变量x 的取值范围是( )A .x >4B .x≥2C .x≥2且x≠﹣4D .x≠﹣43.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min 后回家,图中的折线段OA ﹣AB ﹣BC 是她出发后所在位置离家的距离s (km )与行走时间t (min )之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .4.小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟【分层训练】返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.5.小颍今天发烧了.早晨她烧得很厉害,吃药后她感觉好多了,中午时小颖的体温基本正常,但是下午她的体温又开始上升,直到夜里小颖才感觉没那么发烫.下面四幅图能较好地刻画出小颖今天体温的变化情况的是()A.B.C.D.6.已知点A(m,﹣2),点B(3,m﹣1),且直线AB∥x轴,则m的值为()A.﹣1B.1C.﹣3D.37.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)8.如图,直线m∥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,在下列正方形网格中,标注了射阳县城四个大型超市的大致位置(小方格的边长为1个单位).若用(0,﹣2)表示苏果超市的位置,用(4,1)表示文峰超市的位置,则大润发超市的位置可表示为.10.如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是.<B组>1、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,﹣21009)2、观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角3.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.4.在平面直角坐标系中,已知点A(﹣3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标.5、如图∥,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt∥ABC或Rt∥DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图∥中:AC=,BC=,AB=.(2)在图∥中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=,BC=,AB=.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得∥ABC是以AB为底边的等腰三角形.请求出C点的坐标.6、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t秒,∥APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A.B.C.D.7、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),∥OEF 的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.参考答案【考点突破】考点1:平面直角坐标系例1、解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选B.变式1、解:∵点P(a+1,2a﹣3)在第一象限,∴,解得:a,故选:B.例2、解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.变式1、解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.例3、解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).变式1、解:(1)∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);(2)∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);(3)∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);(4)∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);(5)∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W形.例4、解:(1)△ABC如图所示;(2)△ABC的面积=6×5﹣×2×4﹣×1×6﹣×5×4,=30﹣4﹣3﹣10,=30﹣17,=13.变式1、解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4所以S△AEC=×6×4=12.变式2、解:(1)S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).例5、解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;(2)AB=;(3)AB==3.故答案为|c﹣a|,|b﹣d|;.变式1、解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.考点二、函数及其图象例1、解:在函数y=中,自变量x的取值范围是x≤,故选:B.变式1、解:由题意得,解得x≥2,x≠﹣4,∥自变量x的取值范围是x≥2,故选B.变式2、解:∥函数表达式y=的分母中含有自变量x,∥自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.例2、快速解法:由题意可得P经过两个线段,BA,AC,当P在BA上运动时,BD是变化的(增大),PD也是变化的(增大),所以面积是曲线,不是直线,排除A、D当P在AC上运动时,BD是变化的(增大),PD也是变化的(减少),所以面积是曲线,且是下降的。
平面直角坐标系与函数
定义
用表格来表示函数关系的方法叫做列表法 用图象来表示函数关系的方法叫做图象法
关系式法
用关系式来表示函数关系的方法叫做关系 式法
知识点
4 函数自变量和函数值
1、函数自变量取值范围:
①函数解析式有意义 ②有实际意义 2、函数值:相应的自变量x取某一值时,相应的y的取值就是函数值
焦点5,,6
达州中考5
m=4,n≠-3 (9,4-m) , 3、点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________ 若M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________ . 17
4、有关坐标的规律探究 焦点3自己看,课堂小练10
知识点
3 函数及相关概念
知识点
2 平面直角坐标系内点
y P1(x1,y1) Q(x2,y1)
o 横坐标差的绝对值
x
1)
x1 x2 y1 y2 C 2 , 2
o x B(x2,y2)
达州中考2 课堂小练1,2,3
1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是( A.第一象限或第三象限 B.第二象限或第四象限 C.第一象限或第二象限 D.无法确定 2、已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围. B )
课堂小练7
知识点
5 函数图像
1、画函数图像的步骤
焦点7,焦点8,课堂小练5,6,达州中考6
y Q(x2,y1) 纵坐标差的绝对值
o
x
P2(x2,y2)
知识点
2 平面直角坐标系内点
y P2(x2,y2)
o p1(x1,y1)
平面直角坐标系与函数及图像
第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。
中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)
⑶实际问题:符合实际意义.
8.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:
⑴列表.
⑵描点.
⑶连线.
9.函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上.
⑵函数图象上点的坐标满足函数解析式.
考点03一次函数
(3)函数关系式在书写时有顺序性.例如: 是表示 是 的函数,若写成 就表示 是 的函数.
(4)求 与 的函数关系时,必须是只用变量 的代数式表示 ,得到的等式右边只含 的代数式.
自变量的取值范围:
7.自变量取值范围:在初中阶段,自变量的取值范围考虑下面几个方面:
⑴根式:当根指数为偶数时,被开方数为非负数.
10.用坐标表示地理位置:根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向.
3.一次函数的图象及其画法:
(1)一次函数 ( , , 为常数)的图象是一条直线.
(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.如果这个函数是正比例函数,通常取 , 两点.如果这个函数是一般的一次函数( ),通常取 , ,即直线与两坐标轴的交点.
(3)反比例函数与一次函数的联系.
③解方程(组),得到待定系数的值.
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
8.一次函数与一元一次方程的关系:
初中函数知识点总结
初中函数知识点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0,0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n),横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为|y|,点P (x,y )到y 轴的距离为|x|。
点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x +,212y y +) 10、点的平移特征:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
平面直角坐标系与函数
六边形,所以 OC=OA=1,∠COD=60°,所以 OM=12,CM= 23,因为点 C
在第四象限内,所以点 C 的坐标为
1 2
,-
3 2
.
答案:
1 2
,-
3 2
命题点2 平面直角坐标系内点的坐标特征
【例2】 已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的
取值范围是( )
A.a>-1 C.-1<a<12
P(x,y)
向上
平移
b个
向右平移a个单位
单位
P1(x+a,y)
点到坐标 轴及原点 的距离
点P(a,b)到x轴的距离为 b
点P(a,b)到y轴的距离为⑨ a 点P(a,b)到原点的距离为⑩ a2 b2
常量和变量:在某一变化过程中,保持不变的 量叫做常量,可以变化的量叫做变量
相 关 函数:在某一变化过程中,有两个变量x与y, 概 念 如果对于x在某一范围内的每一个确定的值,
解:解法一:∵-1≤x<3,∴2≥-2x>-6,∴2+4≥-2x+4>-6
+4,即6≥-2x+4>-2.∵y=-2x+4,∴6≥y>-2,即-2<y≤6 解
法二:∵y=-2x+4,∴x=
4-y 2
.∵-1≤x<3,∴-1≤
4-y 2
<3,∴-
2≤4-y<6,∴-2-4≤-y<6-4,-6≤-y<2,∴-2<y≤6
[对应训练]
1 在函数 y= x2-5中,自变量 x 的取值范围是( A ) A.x>5 B.x≥5 C.x≠5 D.x<5
2 在 函 数 y = x+4 + x - 2 中 , 自 变 量 x 的 取 值 范 围 是 _______x_≥_-__4_且__x_≠_0_________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
【分析】
根据点P(m-3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解不等式组即可得m的取值范围.
【详解】
解:∵点P(m-3,m+1)在第二象限,
∴可得到: ,
解得: ,
∴m的取值范围为 ,
故选:C.
【点睛】
本题考查了坐标在象限内的符号,以及不等式组的解法,属于基础题.
∵ ,
∴第2020次相遇地点的坐标为(-1,1);
故选D.
【点睛】
本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.
17.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )
A.(3,4)B.(-3,4)C.(-4,3)D.(4,3)
【答案】D
【解析】
【分析】
利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;
【详解】
∵A(2,0),四边形BCDE是长方形,
∴B(2,1),C(-2,1),D(-2,-1),E(2,-1),
∴BC=4,CD=2,
∴长方形BCDE的周长为 ,
【答案】A
【解析】
【分析】
根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.
【详解】
解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
【详解】
解:如图,过点C作CE⊥y轴于点E,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°,
∴∠CBE=∠BAO,
在△ABO和△BCE中,
5.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )
A.(3,1)B.(-1,1)C.(3,5)D.(-1,5)
【答案】C
【解析】
解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1,∴点B的坐标为(3,1),∴点C的横坐标为:3,纵坐标为:1+4=5,∴点C的坐标为(3,5).故选C.
∵452=2025,45是奇数,
∴第2025个点是(45,0),
第2019个点是(45,6),
所以,第2019个点的纵坐标为6.
故选:B.
【点睛】
本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.
7.已知直线 与直线 的交点在第四象限,则m的取值范围是( )
A. B. C. D.
8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()
A.a>5B.a<-3C.-3≤a≤5D.-3<a<5
【答案】D
【解析】
【分析】
根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.
【详解】
∵点P在第三象限,
∴ ,
解得:-3<a<5,
故选D.
【点睛】
∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.
故选A.
2.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )
A.(-2,3) B.(-2,-3) C.(2,-3) D.(2,3)
【答案】B
【解析】【分析】根据点P到x轴的距离为3,则这一点的纵坐标是3或-3,到y轴的距离为2,那么它的横坐标是2或-2,再根据点P所处的象限即可确定点P的坐标.
10.在平面直角坐标系中,以原点为中心,把点 逆时针旋转 ,得到点 ,则点 的坐标为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据中心对称的性质解决问题即可.
【详解】
由题意A,B关于O中心对称,
∵A(2,3),
∴B(-2,-3),
故选:B.
【点睛】
此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )
A.(2,0)B.(-1,-1)C.( -2,1)D.(-1,1)
A. B. C. D.
【答案】C
【解析】
【分析】
设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律“P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(−n−1,2n+1),P4n+3(−n−1,2n+2)”,依此规律结合2019=504×4+3即可得出点P2019的坐标.
【详解】
【答案】A
【解析】
【分析】
先根据点P(a,b)在第二象限判断出a<0,b>0,据此可得1﹣a>0,从而得出答案.
【详解】
∵若点P(a,b)在第二象限,
∴a<0,b>0,
则1﹣a>0,
∴点Q(b,1-a)所在象限应该是第一象限,
故选:A.
【点睛】
本题是象限的考查,解题关键是判断横、纵坐标的正负
14.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )
本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.
9.如图,在平面直角坐标系上有个点 ,点 第1次向上跳动1个单位至点 ,紧接着第2次向左跳动2个单位至点 ,第3次向上跳动1个单位到达 ,第4次向右跳动3个单位到达 ,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点 的坐标为().
【详解】
解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,1=12,
右下角的点的横坐标为2时,共有4个,4=22,
右下角的点的横坐标为3时,共有9个,9=32,
右下角的点的横坐标为4时,共有16个,16=42,
…
右下角的点的横坐标为n时,共有n2个,
∵∠C=90°,
∴AC= ,
∵ ,
∴8×6=10CD,
∴CD=4.8,
∴OD= ,
∴ 点的坐标是 .
故选A.
【点睛】
本题考查了图形与坐标的性质,勾股定理,以及面积法求线段的长,根据面积法求出CD的长是解答本题的关键.
13.若点P(a,b)在第二象限,则点Q(b,1﹣a)所在象限应该是()
A.第一象限B.第二象限C.第三象限D.第四象限
设第n次跳动至点Pn,
观察发现:P(1,0),P1(1,1),P2(−1,1),P3(−1,2),P4(2,2),P5(2,3),P6(−2,3),P7(−2,4),P8(3,4),P9(3,5),…,
∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(−n−1,2n+1),P4n+3(−n−1,2n+2)(n为自然数).
【答案】A
【解析】
【分析】
根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.
【详解】
解:∵P点位于y轴右侧,x轴上方,
∴P点在第一象限,
又∵P点距y轴3个单位长度,距x轴4个单位长度,
∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).
故选A.
【点睛】
本题考查了点的位置判断方法及点的坐标几何意义.
A.a=bB.2a+b=﹣1C.2a﹣b=1D.2a+b=1
【答案】B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
4.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围()
A.m<3B.m>−1C.−1<m<3D.m≥0
【详解】∵点P到x轴的距离为3,
∴点的纵坐标是3或-3,
∵点P到y轴的距离为2,
∴点的横坐标是2或-2,
又∵点P在第三象限,
∴点P的坐标为:(-2,-3),
故选B.
【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.
3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于 MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()
【答案】C
【解析】
【分析】
解方程组求出交点坐标,根据交点在第四象限得到不等式组,即可求出答案.
【详解】
解方程组 ,得 ,
∴直线 与直线 的交点坐标是( , ),
∵交点在第四象限,
∴ ,
得-1<m<1,
故选:C.
【点睛】
此题考查一次函数交点与二元一次方程组的关系:交点的横纵坐标即是方程组的解,直角坐标系中点的坐标的特点,熟记每个象限内点的坐标特点是解题的关键.