电介质物理课后答案

合集下载

电介质物理_西安交通大学中国大学mooc课后章节答案期末考试题库2023年

电介质物理_西安交通大学中国大学mooc课后章节答案期末考试题库2023年

电介质物理_西安交通大学中国大学mooc课后章节答案期末考试题库2023年1.非线性光学效应仅存在于光强很高的情况答案:正确2.BaTiO3为位移型铁电体。

答案:正确3.电畴的形成是系统自由能取极大值的结果。

答案:错误4.铁电体中电畴不能在空间任意取向,只能沿晶体的某几个特定晶向取向,电畴所能允许的晶向取决于该种铁电体原型结构的对称性,即在铁电体的原型结构中与铁电体极化轴等效的晶向。

答案:正确5.自由晶体受热时热释电效应是第一类效应和第二类效应之和答案:正确6.热释电材料和铁电材料属于压电材料。

答案:正确7.经过极化处理后,铁电体的剩余极化强度是不稳定的且随时间而衰减,从而造成其介电,压电,热释电性质发生变化,这种现象就是铁电体的陈化。

答案:正确8.自发极化能被外电场重新定向的热释电晶体就是铁电体;铁电体的电畴结构受铁电体原型结构对称性的限制。

答案:正确9.铁电体的表观特征是具有电滞回线,描述了极化强度和电场强度之间的滞后关系,从该曲线可以直观观察到的两个物理量是剩余极化和矫顽场。

答案:正确10.具有自发极化的晶体称为热释电体,在温度变化时可以释放电荷,该效应与电卡效应互为逆效应。

答案:正确11.自发极化只存在具有单一极轴的点群中,共有21种。

答案:12.沿x3轴极化的压电陶瓷通过坐标变换后,有哪些独立分量()答案:13.以下哪个材料不是铁电体或反铁电体材料()答案:Al2O314.室温下将铁电四方BaTiO3陶瓷极化,其饱和极化强度与晶体自发极化强度的关系是()。

答案:15.沿x3轴极化的压电陶瓷的弹性柔顺系数的独立分量为:s11、s12、s13、s33、s44、s55。

答案:错误16.应力张量【图片】与以下哪个应力张量等价()答案:17.沿x3轴极化的压电陶瓷为4mm点群,属于四方晶系,则X3轴为四次轴绕X3轴进行四次旋转对称操作,则产生的下标变换关系为:1→2、2→-1、3→3。

答案:正确18.晶体中有8种宏观对称操作,共构成32种晶体学点群,其中11种晶体学点群具有对称中心,10种晶体学点群具有单一极轴。

《物理学基本教程》课后答案第九章静电场中的导体和电介质精品资料

《物理学基本教程》课后答案第九章静电场中的导体和电介质精品资料

第九章静电场中的导体和电介质9-1把一厚度为d的无限大金属板置于电场强度为 E 0的匀强电场中, E 0与板面垂直,试求金属板两表面的电荷面密度.- σ’+ σ’分析对于有导体存在的静电场问题,首先由静电-+平衡条件分析放入静电场后导体上电荷的重新分布情-+况,再计算空间电场和电势的分布.-+E0本题中,将金属板放入均匀电场后,由于静电感应,-+平板两面带上等值异号感应电荷.忽略边缘效应,两带-+电面可视为平行的无限大均匀带电平面.解设平板两表面的感应电荷面密度分别为和,如图 9-1 所示.由例题 8-7 结果知,带感应电荷图 9-1的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为E,方向与E0相反,由场强叠加原理,平板中任一点的总场强为E E0E E0根据静电平衡条件,金属板中场强E0 ,代入上式得E00则E0 0,E0 0结果与板的厚度无关.9-2一金属球壳的内外半径分别为R1和 R2,在球壳内距球心为 d 处有一电荷量为 q 的点电荷,(1 )试描述此时电荷分布情况及球心O 处电势;(2 )将球壳接地后,以上问题的答案; (3 )如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后, 应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解( 1 )按照静电平衡条件,导体内部E 0 ,在球壳内外表面间作同心高斯球面, 应用高斯定理,可知球壳内表面上应有 q 的感应电荷,为非均匀分布,如图 9-2 所示.根据电荷守恒定律和高斯定理,球壳外表面上有 + q 的感应电++ – +– d R 1+ q + –q ·+- q – R 2+– ++荷,且均匀分布.点电荷 q 在 O 点产生的电势为V 1图 9-2q4 d球壳内外表面上的感应电荷q 和 + q 无论分布情况如何,到球心距离分别为R 1 和 R 2 ,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为q V 3q V 2R 14R 24O 点电势为VV 1V 2 V 3q qq 4d4 R 1 4R 2q ( 11 1 )4dR 1R 2(2 )将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得V V 1V 2 q (11 )4dR 1(3 )如果原来球壳带电量为 Q ,达静电平衡后外球面上电荷 Q+ q 均匀分布,内球面上电荷分布不变,得V V1V2V3q( 1 1 1 )Q4 d R1R2 4 R2球壳接地后,结果与( 2)相同.9-3一无限长圆柱形导体半径为R a,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b和 R c,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)r R a, R c r R b, R b r R c,r R c四个区域的电场强度.分析静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解( 1)如图 9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面 S,设导体圆筒内外表面单位长的感应电荷分别为和,由静电平衡条件知导体内E 0,故有- λ1λ1R aE d S1q 1(1)0Rb0012λ+λ即得半径为 R b的圆筒内表面单位长上的感S r R c应电荷为 -λ1.由电荷守恒定律知,半径为 R c的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量图 9-3λ2,单位长上总带电量为21.(2 )电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3 ,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出r R a时,E0R a r R b时,E12rR b r R c时,E0r R c时,E1220r9-4证明:两平行放置的无限大带电的平行平面金属板 A 和 B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为 100cm 2,电荷量分别为Q A 6 10 8C和Q B410 8 C ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板 A 、 B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.A Bσ1σ2σ3σ4解设 A、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板 A 、B 内任意点场强为零,得图 9-4金属板 A内123422220金属板 B内1234222200 0解得23,又由电荷守恒定律得S()Q A,S(34)QB联立解得Q A Q B 5 106C/ 2 mS2Q A1110 6 C/m 2S31106 C/m 29-5 三个平行金属板 A 、B 和 C,面积都是 200cm2,A、B 相距 4.0mm ,A、C 相距 2.0mm ,B、C 两板都接地,如图 9-5 所示,如果 A 板带正电3.010 7C,略去边缘效应,(1)求 B 板和 C 板上感应电荷各为多少?(2 )以地为电势零点,求 A 板的电势.分析由静电平衡条件, A 、B、C 板内各点的场强均为零, A 板上电荷分布在两个表面上,因B、C 两板均接地,感应电荷应分布在内侧表面上.解(1)设 A板 1 、2 两面上带电量分别为 q 1和 q 2,B、C 两板与 A 相对的两内侧表面 3 、 4上的感应电荷分别为 q 1’和 q 2’,如图 9-5所示.作侧面与平板垂直的高斯面 S1,两端面处E=0,忽略d1- d2 -边缘效应,侧面无电场线穿过,由高斯定理B A C31 2 411q1S q1S) 0S SE d S q(S0SS得q1q1S1q 1’q 2’同理可得 q2q2.AB板间和AC板间为匀强电场,场强分别为q1q 2q1E q2E12SS图 9-5又已知 V AB V AC,即E1d1E2d 2因q 1 q 2q 3.0 10 7 C由以上各式,得 B 、C 两板上的感应电荷分别为q 1q 1q 1.0 10 7C3q 2 q 22q 12.0 10 7C(2 )取地电势为零, A 板电势即为 A 、 B 间电势差V AVABE 1 d 1q 1d 12.3 103 VS9-6 半径为 R 11.0cm 的导体球所带电荷量为 q 1.0 10 10 C ,球外有一个内外半径分别为 R 23.0cm 和 R 34.0cm 的同心导体球壳,壳上带有电荷量Q 11 11 10 C ,求:( 1)两球的电势;(2)用导线把两球连接起来时两球的电势;( 3)外球接地时,两球电势各为多少?(以地为电势零点. )分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 ( 1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为 q ,原有电荷量 Q .由电势叠加原理,导体球电势为V 1qq q Q 1 ( qq q Q) 3.3 10 2 VR 14 R 2 4R 34R 1R 2R 3导体球壳的电势为V 2q q Q q Q q 2.7 102 V4R34 R 34 R 34 R 3(2 )球壳和球用导线相连后成为等势体, 电势等于半径为 R 3 带电量为 Q+ q的均匀带电球面的电势,以无穷远为电势零点,得V 2Q q 2.7 102 V4 R 3(3 )外球接地后,只乘下内表面的电荷 -q ,由电势叠加原理内球电势为qq V 1460V4 R 1R 2外球壳接地与地等势,即V 2 0另外,求 V 1 ’时还可以用内球产生的电场的线积分计算,即R 2qdr q (11) 60VV 2r 2 R 144R 1 R 29-7 半径为 R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为 D 3R 处有一点电荷q ,试求金属球上的感应电荷.R q ’ q分析 由于导体球接地, 其表面上的感应正电荷通过导线与地球内负电荷中和, 只剩下负感应电荷在金属球表面不均匀地分布, 如图 9-7 所示.接地后,导体球上各点电势均为零,球心OOD图 9-7点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为 q ,在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得V 2qR4点电荷 q 在 O 点的电势为V 1q3R4V V 1q qV 243R4R得感应电量为qq3由此可以推证,当 D nR 时,qqn9-8 如图 9-8 所示,三个“无限长”的同轴导体圆柱面 A 、B 和 C ,半径分别为 R A 、 R B 、 R C ,圆柱面 B 上带电荷, A 和 C 都接地,求: B 的内表面单位长度电荷量 1 ,外表面单位长度电荷量2之比值 1/ 2.分析本题与题 9-5 的解题思路相似.解 在导体 B 内作单位长圆柱面形高斯面, 可以说明 A 面单位长度上感应电荷为 1 .同理,可说明 C 面单位长度上感应电荷为 2 .由高斯定理可知场强分布为R ArR B 时, E 1,方向沿径向由 B 指向 A .rR BrR C 时, E 2 2,方向沿径向由 B 指向 C .rRR AdrR BV BA RA1 1lnBA 间电势差E 2 d rR BB2r2R ABC 间电势差V BC2ln R C- λ22R BR B λ1 λ2B 为等势体, A 、C 接地, V BAV BC ,从而CARR1 ln( R C / R B )A B C- λ12ln( R B / R A )9-9 半径分别为 R 1 和 R 2 ( R 2 R 1 ) 的两个同心导体薄球壳,电荷量分别为 Q 1和Q 2 ,今将内球壳图 9-8用细导线与远处的半径为 r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后, 一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解因两球壳与球的电场互不影响,导体球电势为V1q4r2假设导线上无电荷分布,则内球壳上电荷量变为Q1q ,由电势叠加原理,内球壳的电势为Q1q Q 2V2R1 4R2Q24Q1- q q 内球壳与远处导体球电势相等,即R1R rV1V22qQ1q Q24 r 4 R1 4 R2图 9-9解得q r ( R1Q2R2Q1 ) R2 (R1r )9-10地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解设地球表面的电荷面密度为,表面附近的场强E,则E 0(150 8.85 10 12 )C/m 2 1.33 10 9 C/m 2地球半径 R 6.3710 6 m ,地球带的总电荷量为q 4 R 1.33 10 942C 6.8 10 5 C680kC9-11设有一孤立导体球,半径为R.,(1 )试求其在真空中的电容表示式;(2)若把地球视为R 6.37 106m的导体球,它的电容量多大?( 3)欲使地球的电势改变 1V ,需使其所带电荷量改变多少?解(1 )将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4 )式给出孤立导体球的电容Q4 R .CV(2)地球电容C4 6.37 106 F 710 4F(3)欲使地球电势改变 1 伏特,需使地球电量的改变为Q CV 7104 1 7 104C这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12已知空气的击穿电场强度为 3 106 V/m ,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解由题意击穿电场强度Emax3106 V/m而E mQ m a x a xR2 4Qmax Emax4R 2310648.8510 1212C 3.3 10 4C最高电势为Q max E max 4R26 Vmax C4R RE max 310 V或Qmax 3.310 4V6 V maxR43 10V419-13收音机里的可变电容器如图9-13 (a)所示,其中共有 n 块金属片,相邻两片的距离均为 d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13 ( b )所示,求当动片转到使两组片重叠部分的角度为时,电容器的电容.分析除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图 9-13(c)所示,所以 n 块金属片如此连接等效于( n 1 )个平行板电容器并联.当两组片重叠部分的角度为时,每个电容器有效极板面积为 S( ) ,因此电容器的等效电容是的函数.收音机调频的电容器就是根据这个原理设计的.r 2r 1(a)(b)(c)图 9-13解当两组片重叠部分的角度为时,每个电容器有效极板面积为S( r12r2 )360( n-1 )个极板面积为S,板间距为 d 的平行板电容并联时的等效电容为C(n 1) 0S (n 1)r22r12 d360 d式中以度计.9-14半径都为 a 的两根平行长直导线相距为 d (d a) .(1)设两导线每单位长度上分别带电和,求两导线的电势差;(2)求此导线组每单位长度的电容.分析因 d a ,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,d再用场强与电势的积分关系求两导线间电势差,rO P由电容器电容的定义即可求出单位长导线组的等2 a效电容.图 9-14解作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14 所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和E E E(d r )(11 )2 r r d - r 两导线间电势差为d a d a E d ra2a (11)dr lnd a r d r a由电容器电容的定义,导线单位长电容为Cd aVlna9-15有两个半径分别为 R1和 R2的导体球放在真空中,两球表面相距为d,已知 d R1和 d R2,试求两导体构成的电容器的电容.+Q- QOR1P R2d r图 9-15分析按题意d R2,可认为当两导体球分别带电Q 和Q 时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解以大球球心为原点,建立如图9-15 所示的坐标系,在坐标为r 处的 P 点(在连心线上),两球产生的电场均沿r 轴正向,得Q QE E E24( R1 R2 d r ) 24 r 两带电导体球间电势差为V R1 dE d rQ R1 d[11]dr R14R1r2( R1R2 d r )2Q1111)4(R2 d R1 d R2R1考虑到 d R1, d R2,可将电势近似表示为V Q ( 11 2 )4R1R2d此两导体球构成的电容器电容为Q4C12VR1 R2d9-16 两只电容器C18 F,C2 2 F ,分别把它们充电到1000V ,然后将它们反接,如图9-16 所示,求此时两极间电势差.分析并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C,从而求出电势差.解反接前,设 C1和 C 2带电量分别为 Q1和 Q2,充电电压 U 01000 V ,则Q1C1U 0Q2C2U 0+-反接后,正负电荷中和,中和后总电量为C1C2-+Q Q1 Q2,并联等效电容 C C1 C2,则并联电容器两板间电势差为图 9-16Q(C1C2)U0(810 62106 )1000 UC1C28 106210 6V 600VC9-17 如图 9-17所示, C110F, C2 5.0F,C3 5.0 F ,求:(1)AB间的电容;(2)在 AB 间加上 100V 电压时,求每一个电容器上的电荷量和电压;( 3)如果 C1被击穿,问 C3上的电荷量和电压各是多少?分析并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当C1上电压超过 C1的额定电压, C1将被击穿, C1支路即短路,全部电压就加在 C 3上,如超过 C3的额定电压, C 3将被击穿,A、B间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解(1)C1和C2并联电容为C C1 C 2,再与 C 3串联后,等效电容为C C 33.75 FCC C 3(2 )等效电容所带电量为Q CU ,串联的电容所带电量相等Q3Q CU 3.75 10 4 CAU 3Q375VC 3C C12U 1 U2Q Q1Q225V CC C1 C 23B又因Q1Q 2Q10 4C 图 9-17可解得Q1 2.5Q2 1.2510 4C(3)如果 C1被击穿, AB 间电压就加在 C3上,即U 3 U100V则Q3 C3U 3 5 104C9-18平板电容器,两极间距离为 1.5cm ,外加电压 39kV ,若空气的击穿电场强度为 30kV/cm,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7 ,击穿电场强度为100kV/cm,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解未加玻璃前平板电容器内场强为E U39 V/cm26kV/cm30kV/cm d 1.5因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为,平行板电容器中电位移 D.设玻璃和空气中场强分别为E 1 和 E 2 ,则有DDE 1E 20 r00U玻璃厚为 d 1 ,则空气层厚为 d - d 1,得E 1d 1 E 2 (d d 1 ) U图 9-18由以上各式得E 1U4.48kV/cm( d d 1d 1 ) rU r31.4kV/cm 30kV/cmE 2d 1 ) d 1 (dr即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为U 39 E 1130kV/cm 100kV/cmd 10.3玻璃部分也会被击穿.9-19一平板电容器极板面积为 S ,两板间距离为 d ,其间充以相对电容率分别为r1、r2的两种均匀介质, 每种介质各占一半体积, 若忽略边缘效应,(1 )与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:1 /2 = ?( 2)试证此电容器的电容为CS r1r 2d2分析忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系, 以及与两部分极板上的电荷面密度的关系, 从而可知极板上的总电荷量. 另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解 1(1)设电容器端电压为U ,两种介质中场强分别为E1和 E2,由充满均匀介质的平行板电容器的场强与电压的关系可得E1 E2U( 1)d设1、2分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有12(2 )E1E20 r10 r2S代入 (1) 式可得1r1εr1εr2d2r2即两部分极板所带电荷面密度不相等.由( 1 )和( 2)式可得极板上的总电荷量为图 9-19Q S0SU r1r2)(12)d(22由电容器定义得Q0S(r 1r 2) Cd2U解 2由并联电容器公式求总电容C C1S S0S(r 1r 2) C 20 r10 r 22 2d2d d可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R 为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容 C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为4 RR CR R极板上带电量为4 RRU q CUR R当外球壳的半径 R 和极板间电势差 U 恒定时, q 是内球半径 R 的函数.内球表面附近的场强大小为qRU E2R(R R)4 R即也是 R 的函数.欲求场强的最小值,令dE2R R] 0RU [ R 2 ( R R ) 2 dR得RR2并有 RR时,d 2 E0 ,即 RR时,场强有极小值,且2dR 224U E minR9-21 图 9-21 为水蒸气分子 H 2O 中氧氢原子核及核外电子云示意图. 由于分子的正负电荷中心不重合,故其为有极分子,电矩p 6.2 10 30 C m .( 1)水分子有 10 个正电荷及 10 个负电荷,试求正负电荷中心之距 d= ?(2)如将水蒸气置于 E1.5 10 4 N/C 的匀强电场中,求其可能受到的最大力矩?( 3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?3kT 的多少分之一?在室温 这功的大小为室温( 300K )水分子的平均平动动能2下实现水分子的转向极化,外加电场强度应该多大?分析由电矩 pqd 及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩Mp E, MpE sin,可知,当 p 与 E 正交时力矩最大 .当电矩与外场平行反向(180 ) 时,电场力的力矩作功将使减小,最后0 ,注意到在此过程中 d0.如果这个功与室温下水分子的平均平动动能3k T 相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功2至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强. 本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 ( 1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量q 10e , 电矩大小 p qd (10e)d30正负电荷中心之距dp 6.2 1019 3.9 10 12 m 10e 10 1.6 10题9-21图中, OH键距为 0.958 1010 m , d 为这个距离的4%.(2 )由电场力作用于电偶极子的力矩Mp E,力矩大小为MPE sin ,90 ,M达极大 .M maxPE6.2 10301.5 1049.3 1026 N m(3 )力矩作功为 W Md ,本题中,当转向极化进行时,力矩作正功但dWPE sin d2PE1.9 10 25Jθ180E而 T=300K 时,水分子的平均平动动能pk3kT3 1.38 10 23 300 6.2 10 21J22图 9-21k32630W可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使180 的水分子也转到外电场的方向上,电场力作的功至少要等于分子热运动的平均平动动能k ,从而外场场强值至少要达到E W k 6.2 10 21 5 108 N/C2 p 2 p 2 6.210 309-22 平板电容器两级板相距 3.0cm ,其间平行地放置一层r 2.0 的介质,其位置和厚度如图 9-22(a) 所示,已知 A 板带负电、 B 板带正电,极板上电荷面密度为0 8.85 10 10 C/m 3,略去边缘效应,求:(1)极板间各区域的D、E;(2 )极板间距 A 极 1cm 、 2cm 、 3cm 处的电势(设 A 板电势为零);( 3)绘出 D x 、 E x 、 U x 曲线;(4)介质表面的极化电荷面密度.解( 1)作如图9-22(a) 所示的高斯面S1和S2,由介质中的高斯定理可以证明各区域 D 相等,得D08.8510 10 c/m 2介质外场强D10V 0/m E0介质内场强E D50 V / mr(2 )以 A 板电势为零,则x1cm 处A S2B V1E0 x11000.011Vx2cm 处V2V1E( x2x1 )S1 1.5Vx1cm 处V3V2E0 ( x3x2 ) 2.5V0 1 2 3x /cmD/ (C/m)E/ (V/m)V/ V100(a)σ025010 1 2 3x0 1 2 3x0 1 23(b)图 9-22(3) D x , E x , V x 曲线如图 9.22(b)所示.(4 )介质表面的极化电荷面密度为(1 1) 4.42510 10 C/m r9-23平板电容器两极间充满某种介质,板间距d2mm ,电压 600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1 )介质的相对电容率;( 2)介质上的极化电荷面密度;(3 )极化电荷产生的电场强度.分析断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移D也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为E E0E0,即自由电荷的电场和极化电荷产生的附加电场的00叠加,其中电介质对电场的影响以极化电荷面密度的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为 E0,其中电介质对电场的影响以相对电容率r 的形式表现出来,也反映0 r了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解(1)由 E0U 0, EU,得相对电容率为d dE0U 01800rU3E600(2 )在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得(1 1 )(11) E0 0 5.31 10 6 C/mr r(3 )极化电荷的分布形成等量异号带电板,忽略边缘效应,得E 6 10 5 V/m9-24 盖革计数器可用来测量电离辐射,它的正极是半径为R1的金属丝,负极是半径为 R2的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设 R125 10 6 m , R2 1.4 10 2 m ,管长 L 1610 2 m ,两级间电势差 U 6000V ,低压惰性气体的相对电容率r 1 ,试计算此时阳极上的电荷量和电荷数.分析由于 L R2 , L R1,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为 E,方向沿径向指向阴极.电势差为2 0rUR 2drR 2r2ln2 0R 1R 1则Uln R 2R 1阳极上电荷量为2 0UL 2600016 10 2 10 9CqLR 2 ln(1.4 10 2/ 2510 6)8.4 lnR 1q 8.4 10 相应的电荷数为Ne 1.6 109195.25 10109-25圆柱形电容器是由半径为 R 1 的导体圆柱和与它同轴的导体圆筒构成 的,圆筒的半径为 R 2 ,电容器的长为 L ,其间充满相对电容率为 r 的介质,设沿轴线单位长度上圆柱带电荷量为,圆筒单位长带电荷量为,忽略边缘效应,求:(1)介质中的电位移和电场强度; (2 )介质表面的极化电荷面密度; (3)两极之间的电势差 U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的 D 和 E ,由场强叠加原理可求出极R 2εrεR 1rLλ化电荷的面密度 .–λ解 (1)由于电场具有轴对称性,以半径为r 作高为 L 的同轴高斯面,介质中的高斯定理得2 rL D L图 9-25DrD( 1)Er 2rr (2 )设介质内外表面单位长上的极化电荷分别为和,在介质内,其内表面极化电荷产生的附加电场的场强为E2 0 r根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即E E0E( 2)2 0 r 2 0 r由( 1)和( 2)式解得(1 1 )r介质内外表面单位长的面积分别为 2 R2, 2 R1,则极化电荷面密度分别为2 R1(1)(1)2 R1r2R2 2R2r(3 )电容器两极板电势差为U E d rR2dr ln R2R2R1R120 r r0rR1电容为Q L20rL CR2R2 U ln ln2R1R10 r9-26在半径为 R 的金属球外有一层外半径为R 的均匀介质层,设电介质的相对电容率为r ,金属球带电量为Q,求:(1 )介质层内外的电场强度;(2 )介质层内外的电势;( 3)金属球的电势.分析本题为球对称场,已知电荷分布由介质中的高斯定理可求出D、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解( 1)如图 9-26,作半径为 r的球面为高斯面,由有介质的高斯定理得4 r 2 D QDQ4r 2R在介质内, R r RD Q R’r E14r r20r0εr在介质外,r RD Q E24r 2(2 )介质内任一点的电势为图 9-26V1RE1dr E2 dr Q1(1 1)1( 1)4r r R Rr R介质外任一点电势为V2Q rE2 dr4 0 r(3 )金属球的电势可由( 1)式中令 r R 得到,即V0Q1111 4 0R R Rr9-27球形电容器由半径为R1的导体球和与它同心的导体球壳组成,球壳内半径为 R3,其间有两层均匀电介质,分界面半径为R2,相对电容率分别为r1和r2 ,如图9-27所示,求:(1)当内球所带电荷量为Q 时,电场强度的分布;( 2)各介质表面上的束缚电荷面密度;(3 )电容器电容.分析本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求 D ,再求 E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。

大学物理(第四版)课后习题及答案_电介质

大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。

电介质物理课后答案

电介质物理课后答案
电荷所产生的电场。
答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产
的、与外电场方向相反的电场,起削弱外电场的作用,所以称为
退极化电场。
退极化电场:
平均宏观电场:
充电电荷所产生的电场:
1-3氧离子的半径为 ,计算氧的电子位移极化率。
提示:按公式 ,代入相应的数据进行计算。
1-4在标准状态下,氖的电子位移极化率为 。试求出氖的
解:在交变电场的作用下,由于电场的频率不同,介质的种类、所处
的温度不同,介质在电场作用下的介电行为也不同。
当介质中存在弛豫极化时,介质中的电感应强度D与电场强度E
在时间上有一个显著的相位差,D将滞后于E。 的简单表示式
不再适用了。并且电容器两个极板的电位于真实的电荷之间产生相位
差,对正弦交变电场来说,电容器的充电电流超前电压的相角小于
因素有关?关系如何?如何提高固体电介质的热击穿电压?
答:答案参考课本有关的章节。
3-14根据瓦格纳的热击穿电压的计算公式,解释能否利用增加固体电介质
的厚度来增加固体电介质的热击穿电压,为什么?
答:答案参考课本有关的章节。
3-15简要叙述瓦格纳的热击穿理论;瓦格纳的热击穿理论的实用性如何?
答:答案参考课本有关的章节。
少?
解:真空时:
介质中:
1-19一平行板介质电容器,其板间距离 , ,介电系数 =
2,外界 的恒压电源。求电容器的电容量C;极板上的自由电荷q;
束缚电荷 ;极化强度P;总电矩 ;真空时的电场 以及有效电场

解:
1-20边长为10mm、厚度为1mm的方形平板介质电容器,其电介质的相对
介电系数为2000,计算相应的电容量。若电容器外接 的电压,

大学物理第十章课后习题答案

大学物理第十章课后习题答案

并联: q = q1 + q2 , U = U1 = U 2 , C =
q q1 q2 = + = C1 + C2 。 U U U
6. 答:导体静电感应时会在导体表面出现感应电荷,电解质极化时在介质表面 出现极化电荷,是两种不同的电荷,静电平衡时导体内部场强为零,电解质极化 时内部场强不为零。 三、 计算 1. 证明:如图所示,设四个面上的电荷面密度分别为 σ 1 、 σ 2 、 σ 3 、 � σ 4 ,在 A 板内取一点 P1 ,设 en 是向右的单位法向矢量, 四个无限大
-4-
自治区精品课程—大学物理学
题库
-5-
自治区精品课程—大学物理学
题库
第十章 静电场中的导体和电介质 参考答案
一、 填空 1. 2. 3. 4. 5. 6. 7. 8. 导体、电介质、半导体。 自由电子,晶体点阵。 零,静电平衡,等势体,等势面。 无,表面。 电荷,大,小。 静电屏蔽。 电容,容纳电荷。 无极,有极,位移,取向。
R 2 , 其间有两层均匀电介质,分界面的半径为 r,内
层电介质的相对介电常数 ε r 1 , 外层电介质的相对介电常数为 ε r 2 。 (1) 求电容 C . (2) 当内球带电 − Q 时,求各介质表面的极化电荷面密度 σ ′ 。 21. 一平行板电容器有两层电介质,介电常数 ε r 1 =4, ε r 2 =2 ,厚度 d1=2mm ,
40rr13用一导线把球和球壳连在一起后球和球壳内壁的电量为0导体球外壁的电荷为qq导体球和球壳的电势相等根据电势的叠加原理有u1u24若将外球接地则球壳外壁的电荷量为0根据电势的叠加原理导体球球心o处的电势为
自治区精品质
一、 填空 1. 根据物质的导电性,可将物质分为 、 和 。 2. 从 物质 的 电结 构 来看 , 金属 导 体具 有 带负 电 的 和 带正 电 的 。 3. 导 体处 于静 电平 衡时 ,导 体内 部各 点 的场 强为 , 这称 为导 体的 条件。静电平衡下的导体是 ,导体的表面是 。 4. 导体处于静电平衡状态时,导体内处处 (填“有”或“无” )净余电荷, 电荷只能分布在导体的 上。 5. 对于孤立导体而言,表面上 的分布与表面曲率有关,表面曲率越大, 电荷面密度越 ,反之越 。 6. 空腔导体内部电场不受腔外电场的影响,接地导体空腔外部的电场不受腔内 电荷的影响,这种隔离作用称为 。 7. 孤立导体的 是指使导体升高单位电势所需的电荷,反映了导体 的性质。 8. 根据分子中正、 负电荷中心的分布, 可将电介质分为 分子和 分 子。将两类电介质放入电场中将分别发生 极化和 极化。 二、 简答 1. 2. 3. 4. 5. 6. 简述导体静电平衡的条件及特点。 简述静电屏蔽。 简述处于静电平衡的空腔导体,空腔内场强处处为零。 简述孤立导体的电容的计算公式及物理意义。 分别推导两个电容器串联和并联后的总电容的计算公式。 电介质的极化现象和导体的静电感应现象两者有什么区别?

电介质物理基础习题答案

电介质物理基础习题答案

参考答案第一章1、电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷得现象称为电介质得极化。

其宏观参数就是介电系数ε。

2、在电场作用下平板介质电容器得介质表面上得束缚电荷所产生得、与外电场方向相反得电场,起削弱外电场得作用,所以称为退极化电场。

退极化电场:平均宏观电场:充电电荷产生得电场:3、计算氧得电子位移极化率:按式代入相应得数据进行计算。

4.氖得相对介电系数:单位体积得粒子数:,而所以:5.洛伦兹有效电场:εr与α得关系为:介电系数得温度系数为:6.时,洛伦兹有效电场可表示为:7、克莫方程赖以成立得条件:E”=0。

其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构得晶体;非极性及弱极性液体介质。

8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9、温度变化1度时, 介电系数得相对变化率称为介电系数得温度系数、10、如高铝瓷, 其主要存在电子与离子得位移极化, 而掺杂得金红石与钛酸钙瓷除了含有电子与离子得位移极化以外, 还存在电子与离子得松弛极化。

极性介质在光频区将会出现电子与离子得位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化与空间电荷极化。

11、极化完成得时间在光频范围内得电子、离子位移极化都称为瞬间极化。

而在无线电频率范围内得松弛极化、自发式极化都称为缓慢式极化。

电子、离子得位移极化得极化完成得时间非常短,在秒得范围内,当外电场得频率在光频范围内时,极化能跟得上外电场交变频率得变化,不会产生极化损耗;而松弛极化得完成所需时间比较长,当外电场得频率比较高时,极化将跟不上交变电场得频率变化,产生极化滞后得现象,出现松弛极化损耗。

12.参照书中简原子结构模型中关于电子位移极化率得推导方法。

13.“”表示了E ji得方向性。

14.参考有效电场一节。

15. 求温度对介电系数得影响,可利用,对温度求导得出:。

由上式可知,由于电介质得密度减小,使得电子位移极化率及离子位移极化率所贡献得极化强度都减小,第一项为负值;但温度升高又使离子晶体得弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。

电介质物理基础答案

电介质物理基础答案

参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。

其宏观参数是介电系数ε。

2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。

退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。

4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。

其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。

8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。

极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。

11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。

而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。

电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。

12.参照书中简原子结构模型中关于电子位移极化率的推导方法。

13.“-”表示了E ji的方向性。

14.参考有效电场一节。

15.求温度对介电系数的影响,可利用,对温度求导得出:。

由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。

故正确答案为(A)。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。

设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。

导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。

感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。

大学物理(第四版)课后习题及答案电介质

大学物理(第四版)课后习题及答案电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差 1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R VR =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

大学物理 第七章静电场中的导体、电介质答案

大学物理 第七章静电场中的导体、电介质答案

第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。

大学物理第7章 静电场中的导体和电介质 课后习题及答案

大学物理第7章 静电场中的导体和电介质 课后习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

电介质物理基础习题答案

电介质物理基础习题答案

参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。

其宏观参数是介电系数ε。

2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。

退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。

4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。

其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。

8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。

极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。

11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。

而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。

电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。

12.参照书中简原子结构模型中关于电子位移极化率的推导方法。

13.“-”表示了E ji的方向性。

14.参考有效电场一节。

15.求温度对介电系数的影响,可利用,对温度求导得出:。

由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。

大学物理(第四版)课后习题及答案电介质共14页

大学物理(第四版)课后习题及答案电介质共14页

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差 1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R VR =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

第三章 静电场中的电介质习题及答案

第三章  静电场中的电介质习题及答案

第三章 静电场中的电介质 一、判断题1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的r ε1倍。

×2、对有极分子组成的介质,它的介电常数将随温度而改变。

√3、在均匀介质中一定没有体分布的极化电荷。

(内有自由电荷时,有体分布) ×4、均匀介质的极化与均匀极化的介质是等效的。

×5、在无限大电介质中一定有自由电荷存在。

√6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。

√7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。

√8、在均匀电介质中,只有P为恒矢量时,才没有体分布的极化电荷。

P =恒矢量 0=∂∂+∂∂+∂∂z P y P x P zy x⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=zP y P x P z y x p ρ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。

√10、电位移矢量D仅决定于自由电荷。

×11、电位移线仅从正自由电荷发出,终止于负自由电荷。

√12、在无自由电荷的两种介质交界面上,P fE E 线连续,线不连续。

(其中,f E 为自由电荷产生的电场,p E 为极化电荷产生的电场)√13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。

√14、在两种介质的交界面上,电场强度的法向分量是连续的。

× 15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。

× 16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。

√二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。

则下列说法中不正确的是:(A ) 介质中的场强为真空中场强的r ε1倍。

【西安交通大学】【电介质物理】【姚熹、张良莹】【课后习题答案】

【西安交通大学】【电介质物理】【姚熹、张良莹】【课后习题答案】

第二章 变化电场中的电介质2-1 什么是瞬时极化、缓慢极化?它们所对应的微观机制代表什么?极化对电场响应的各种情况分别对何种极化有贡献? 答案略2-2 何谓缓慢极化电流?研究它有何意义?在实验中如何区分自由电荷、束缚电荷随产生的传到电流? 答案略2-3 何谓时域响应、频域响应?两者的关系如何?对材料研究而言,时域、频域的分析各由什么优缺点? 答案略2-4 已知某材料的极化弛豫函数ττ/1)(t e t f -=,同时材料有自由电荷传导,其电导率为γ,求该材料的介质损耗角正切δtg 。

解 :由弛豫函数 ττ/1)(t e t f -=可知 德拜模型极化损耗 P tg δ,漏导损耗 G tg δ 如果交变电场的频率为 ω; 则P tg δ=22)(τϖεεωτεε∞∞+-s s G tg δ=)11(220τωεεεωεγ+-+∞∞s 该材料的介质损耗正切为:δtg =P tg δ+G tg δ 2-5在一平板介质(厚度为d ,面积为S )上加一恒定电压V ,得到通过介质的总电流为Vt e I -+=βα,已知介质的光频介电常数为 ∞ε,求单位体积内的介质损耗、自由电子的电导损耗、极化 弛豫与时间的关系。

若施加频率为ω的交变电场,其值又为多少?并求出介质极化弛豫函数f (t )。

解 :在电场的作用下(恒场)介质中的功率损耗即为介质 损耗电功 dt t VI Vdq dA )(==)1()()(0Vt ttVt e Vt Vdt e dt t VI A ---+=+==⎰⎰βαβαV t I Ve V tAW Vt )(=+=∂∂=-βα 单位体积中的介电损耗 :)(1Vt Ve V ds ds W w -+==βα自由电子电导损耗 : dsVw α=1极化弛豫损耗 : Vte dsV w -=βα电导率 :dsV R V I s d R ραρ====0, , 电流 : Vt e I -+=βα 其中 α=R I 为传导电流 Vt r e I -=β为极化电流另一方面 dt dPs dt s d dt dQ I r r r r ===)(σ ττεεε/00)(t s r e E dt dP -∞-=故 Vt t sr e e E I --∞=-=βτεεετ/00)( 有 d sV d VE V s βεεετ=-==∞20)(,,120sVd s εβεε+=∞因而,加交变电场w 时 :221)(τωεεεε+-+='∞∞s r极化损耗 : 2211)(τωωτεεε+-=''∞s r电导损耗 : sVdrωεαωεγε002=='' 单位体积中的极化损耗功率 :)1(2)(21222220210τωτωεεεεωε+-=''=∞d V E W s r r 单位体积中的电导损耗功率 :dsV W G α= G r W W W += 弛豫函数 :Vt t Ve e f --==ττ/12-6若介质极化弛豫函数ττ/1)(t e t f -=,电导率为γ,其上施加电场E(t)=0 (t<0);E(t)=at (t>0 , a 为常数) 求通过介质的电流密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 1 c c 1 c2
c1
0 1 s
d

c2
0 2 s
d
,c
0 s
d1 d 2
59
d1 y1 , d1 d 2
可得
d2 y2 d1 d 2
1


y1


1
y2
2
同理可得并联时: y1 1 y 2 2 1-17 双层介质在直流电场的作用下,其每一层电场在电压接通的瞬间、稳 态、电压断开的情形下是如何分布的?作图表示(注意、 的大小; 电场的方向) 。 答案略 1-18 一平行板真空电容器,极板上的电荷面密度为 1.77 10 6 C / m 2 。现 充以相对介电常数为 r 9 的介质,若极板上的自由电荷密度保持不变 ,计算真空和介质中的 E、P、D 给为多少?束缚电荷产生的场强为多 少? 解: 真空时:
tg 0 , 可得

s 时
s 2 s
tg max
2-5
如何判断电介质是具有弛豫极化的介质? 参考课本有关章节。
64
2-6
有单一的弛豫时间 的德拜关系式,可推导出:
2 (
P 0 0
P
平均宏观电场: E
0 ( r 1)
充电电荷所产生的电场: Ee 1-3
D 0E P P E 0 0 0 0
氧离子的半径为 1.32 10 10 m ,计算氧的电子位移极化率。 提示:按公式 4 0 r 3 ,代入相应的数据进行计算。


第 一 章

1-1
什么是电介质的极化?表征介质极化的宏观参数是什么? 答:电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现 束缚电荷的现象称为电介质的极化。其宏观参数为介电常数 。
1-2
什么叫退极化电场?如何用极化强度 P 表示一个相对介电常数为 r 的 平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电 电荷所产生的电场。 答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产 的、与外电场方向相反的电场,起削弱外电场的作用,所以称为 退极化电场。 退极化电场: E d
N e
0
1.0000678
试写出洛伦兹有效电场表达式。适合洛伦兹有效电场时,电介质的介 电常数 和极化率 有什么关系?其介电常数的温度系数的关系式又如 何表示。 解:洛伦兹有效场: Ee
2
3
E E
和 的关系:
1 1 N 2 3 0
( 1)( 2) L 3
Q cV 7.965 10 10 C
Q A 0 ( 1) EA 3.9825 10 10 C
P 3.9825 10 7 C / m 2
Pv 3.9825 10 12 C m
V 4.5 10 4 V / m d 2 Ee E 6 10 4 V / m 3 E0
1-4
在标准状态下,氖的电子位移极化率为 0.43 10 10 F m 2 。试求出氖的 相对介电常数。 解: 氖的相对介电常数: 单位体积的离子数:N= 6.023 10 23 而 0 ( r 1) N e
10 3 2.73 10 25 22.4
56
所以: r 1 1-5
61
Ee
3 2 N 2( 1) E 2 1 3 0 (2 1)
试证明:上式已经包括了非极性介质的洛伦兹有效电场的形式。 答案略
62
第 二

2-1
具有弛豫极化的电介质,加上电场以后,弛豫极化强度与时间的关系 式如何描述?宏观上表征出来的是一个什么电流? 解: Pr Prm (1 e t / ) 宏观上表征出来是一随时间而逐渐衰减的吸收 电流。
57

1 d dT

C
1 dC dT

( 1)( 2)

L
1-10 列举一些介质材料的极化类型,以及举出在给中不同的频率下可能发 生的极化形式。 答:如高铝瓷,其主要存在电子和离子的位移极化,而掺杂的金红石 和钛酸钙陶瓷却除了含有电子和离子地位移极化外,还存在电子和离 子的弛豫极化。在光频区将会出现电子和离子的位移极化,在无线电 频率区可出现弛豫极化、偶极子的转向极化和空间电荷极化。 1-11 什么是瞬间极化、缓慢式极化?它们所对应的微观机制各代表什么? 答:极化完成的时间在光频范围内的电子、离子的位移极化称为瞬时 极化。而在无线电频率范围的弛豫极化、自发式极化都称作缓慢式极 化。电子、离子的位移极化的极化完成时间非常短,在 10 12 ~ 10 15 s 范围内,当外电场在光频范围内时,极化能跟的上外电场的变化,不 会产生极化损耗。而弛豫极化的完成所需要的时间比较长,当外电场 的频率比较高时,极化将跟不上外电场的频率变化,产生极化滞后的 现象,出现弛豫极化损耗。 1-12 设一原子半径为 R 的球体,电子绕原子核均匀分布,在外电场 E 作用 下,原子产生弹性位移极化,试求出其电子位移极化率。 答案参考课本简原子结构模型中关于电子位移极化率的推导方法。 1-13 一平行板真空电容器,极板上的自由电荷密度为 ,现充以介电系数为
60
1-19 一平行板介质电容器,其板间距离 d 1cm , s 10cm 2 ,介电系数 = 2,外界 1.5V 的恒压电源。求电容器的电容量 C;极板上的自由电荷 q; 束缚电荷 q ;极化强度 P;总电矩 ;真空时的电场 E 0 以及有效电场
Ee 。
解:
c
0A
d
1.77 pF
2
*
D i 0E
2-3
介质的德拜方程为
s ,回答下列问题: 1 i
(1)给出 和 的频率关系式; (2)作出在一定温度下的 和 的频率关系曲线,并给出 和 tg 的极值频率; (3)作出在一定频率下的 和 温度关系曲线。
介电常数的温度系数为: 1-6
若用 E1 表示球内极化粒子在球心所形成的电场,试表示洛伦兹有效电 场中 E1 =0 时的情况。 解: E1 =0 时, 洛伦兹的有效场可以表示为 Ee
2
3
E
1-7
试述 K- M 方程赖以成立的条件及其应用范围。 答:克-莫方程赖以成立的条件: E 0 其应用的范围:体心立方、面心立方、氯化钠型以及金刚石结构 的晶体;非极性以及弱极性液体介质。
式中:
( X1 X 2 ) E XE 1 i
X
X1 X 2 1 i
X 1 , X 2 分别为位移极化和转向极化的极化率。试求复介电常数的表达
式, tg 为多少? tg 出现最大值的条件, tg max 等多少?并作出 tg ~ 的关系曲线。 解:按照已知条件:
63
解: (1 ) (2) m
s , s 2 2 2 2 1 1
m
1


s
1
(3)作图略 2-4 依德拜理论,具有单一弛豫时间 的极性介质,在交流电场作用下, 求得极化强度:
P P1 P2
1-8
有一介电常数为 的球状介质,放在均匀电场 E 中。假设介质的引入 不改变外电场的分布,试证:
E
3 Ee 2
解; 按照洛伦兹有效电场模型可以得到:在 E 0 时
Ee
所以 1-9
2
3 E
E
3 Ee 2
如何定义介电常数的温度系数?写出介电常数的温度系数、电容量温 度系数的数学表达式。 答:温度变化一度时,介电常数的相对变化率称为介电常数的温度 系数。

s 1 i ( )(1 i ) s 1 2 2
( s ) 2 ( s ) i 2 2 1 1 2 2
i
tg

( s ) s 2 2
1 1 q2 N ( e e ) 2 3 0 k

对温度求导可得:
1 d ( 1)( 2) ( 2) 2 q 2 dk 2 L N 2 dT 9 0 k dT
由上式可以看出,由于电介质密度的减少使得电子位移极化率以及离 子位移极化率所贡献的极化强度都减少,第一项为负值。但是温度的 升高又使得离子晶体的弹性联系减弱,离子位移极化加强,也就是第 二项为正值。然而第二项又与第一项相差不多。所以氯化钠型离子晶 晶体的介电常数是随着温度的升高尔增加,但增加的非常缓慢。 1-16 试用平板介质电容器的模型(串、并联形式) ,计算复合介质的介电 系数(包括双组分、多组分) 。 解:串联时:
2-2
在交变电场的作用下,实际电介质的介电常数为什么要用复介电常数 来描述。 解:在交变电场的作用下,由于电场的频率不同,介质的种类、所处 的温度不同,介质在电场作用下的介电行为也不同。 当介质中存在弛豫极化时,介质中的电感应强度 D 与电场强度 E 在时间上有一个显著的相位差, D 将滞后于 E。 D r E 的简单表示式 不再适用了。并且电容器两个极板的电位于真实的电荷之间产生相位 差,对正弦交变电场来说,电容器的充电电流超前电压的相角小于 电容器的计算不能用 c r c0 的简单公式了。 在 D 和 E 之间存在相位差时,D 将滞后于 E,存在一相角 ,就用复 数来描述 D 和 E 的关系:
, D0 , P0 0 0
58
EJ
1 , DJ , PJ (1 ) 0 r r

E ji E0 E J
相关文档
最新文档