解析几何中定点、定值、定直线问题

合集下载

难点2.10 解析几何中的定值、定点和定线问题 (解析版)

难点2.10 解析几何中的定值、定点和定线问题  (解析版)

解析几何中的定值、定点、定线问题仍是高考考试的重点与难点,该类问题知识综合性强,方法灵活,对运算能力和推理能力要求较高,因而成为了高中数学学习的重点和难点.主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定值、定点、定线问题,试题难度较大.定点、定值、定线问题都是探求"变中有不变的量".因此要用全面的、联系的、发展的观点看待并处理此类问题.从整体上把握问题给出的综合信息,并注意挖掘问题中各个量之间的相互关系,恰当适时地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法. 在解答这类问题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生逻辑思维能力、知识迁移能力和运算求证能力的一道亮丽的风景线,真正体现了考试大纲中“重知识,更重能力”的指导思想.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用.1解析几何中的定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.如果试题是客观题形式出现,特珠化方法往往比较奏效.例1【百校联盟2018届一月联考】已知点()0,2F ,过点()0,2P -且与y 轴垂直的直线为1l , 2l x ⊥轴,交1l 于点N ,直线l 垂直平分FN ,交2l 于点M .(1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m-=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.思路分析:(1)根据抛物线的定义可得点M 的轨迹,根据待定系数法可得轨迹方程.(2)设直线AB 的方程为y kx b =+,与抛物线方程联立消元后可得AB 中点()24,4Q k k b +的坐标为.同样设出切线方程y kx t =+,与抛物线方程联立消元后可得切点C 的坐标为()24,2k k ,故得CQ ⊥ x 轴.于是点评:圆锥曲线中求定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)由题意得到目标函数,直接通过推理、计算,并在计算推理的过程中消去变量,从而得到目标函数的取值与变量无关,从而证得定值.定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现. 定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.学*科网2解析几何中的定点问题定点问题是动直线(或曲线)恒过某一定点的问题,一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.定点问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点问题的证明.难度较大.定点问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.解析几何中的“定点”问题一般是在一些动态事物(如动点、动直线、动弦、动角、动轨迹等)中,寻求某一个不变量——定点,由于这种问题涉及面广、综合性强.例2【河南省中原名校2018届第五次联考】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,上顶点为G ,直线FG 与直线30x y -=垂直,椭圆E 经过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆E 的标准方程;(2)过点F 作椭圆E 的两条互相垂直的弦,AB CD .若弦,AB CD 的中点分别为,M N ,证明:直线MN 恒过定点.思路分析:(1)根据直线FG 与直线30x y -=垂直可得3b c =,从而得到2243a b =,再由点31,2P ⎛⎫ ⎪⎝⎭在椭圆上可求得22,a b ,即可得椭圆的方程.(2)当直线AB CD ,的斜率都存在时,设AB 的方程为()10x my m =+≠,与椭圆方程联立消元后根据根据系数的关系可得点M 的坐标,同理可得点N 坐标,从而可得直线MN 的方程,通过此方程可得直线过定点4,07⎛⎫ ⎪⎝⎭.然后再验证当直线AB CD 或的斜率不存在时也过该定点.点评:本题考查椭圆的标准方程、椭圆的几何性质、直线与椭圆的位置关系、基本不等式,属难题;解决圆锥曲线定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 定点定值问题的实质为等式恒成立,方法为待定系数法.定点问题,关键在于寻找题中的已知量、未知量间的平行、垂直关系或是方程、不等式,然后将已知量、未知量代入上述关系,通过整理、变形转化为过定点的直线系、曲线系的问题来解决.定值问题,关键在于选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理等方法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理求出结果. 圆锥曲线中的定点问题是高考中的常考题型,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是数形结合思想、分类讨论思想的考查.求解的方法有以下两种:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点符合题意.学*科网3解析几何中的定线问题 定线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.例3在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.思路分析:(Ⅰ)设出过点()2,0C 的直线方程,与抛物线方程联立消去未知数x ,由根与系数关系可得128y y =-为定值;(Ⅱ)先设存在直线l :a x =满足条件,求出以AC 为直径的圆的圆心坐标和半径,利用勾股定理求出弦长表达式222124(1)84r d a x a a -=--+-,由表达式可知,当1a =时,弦长为定值.点评:本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、直线与圆的位置关系,属难题;解决圆锥曲线定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 学*科网综上所述:解决圆锥曲线问题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.解析几何中的定值问题是指某些几何量、线段的长度、图形的面积、角的度数、直线的斜率等的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 证明直线过定点的解题步骤可以归纳为:一选、二求、三定点.具体操作程序如下:一选:选择参变量.需要证明过定点的直线往往会随某一个量的变化而变化,可选择这个量为参变量(当动直线牵涉的量比较多时,也可以选择多个参变量). 二求:求出动直线的方程.求出只含上述参变量的动直线方程,并由其他辅助条件减少参变量的个数,最终使动直线的方程的系数中只含有一个参变量. 三定点:求出定点的坐标.不妨设动直线的方程中含有变量,把直线方程写成的形式,然后解关于的方程组得到定点的坐标. 解这类问题时,需要有较强的代数运算能力和图形识别能力,要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整性.。

定点定值

定点定值

x=a 2E K DBAF g l Oy x解析几何中的定点、定值问题阳信一中 郑振华有关解析几何的问题中,常常涉及到证明直线过定点、两直线相交于定点、动圆过定点及两变量的和、差、积或两向量的数量积为定值的问题,对于每类问题如何解决,笔者给出了以下例题,以期能起到“以点带面”之功效. 一、共点直线系例1.已知(1)(1)20m x m y m +---=为直线l 的方程,求证:不论m 取任何实数,直线l 必过定点,并求出这个定点的坐标.证明:方法一:由直线l 的方程得20mx my m x y --++=,即(2)0m x y x y --++=. 当20x y --=且0x y +=时, 不论m 取任何实数方程恒成立,故直线l 必过定点解方程组200x y x y --=⎧⎨+=⎩得11x y =⎧⎨=-⎩,即定点坐标为(1,1)-.方法二: 由直线l 的方程得20mx my m x y --++=,(1)(1),m x m m y m ∴+-=-+(1)1(1)1,(1)(1)(1)(1)m x m m y m m x m m y m +--=-+-+-+=-+-,即11(1)(1),1m y x m m ++=-≠-因此当1m ≠时,直线l 必过定点(1,1).-当1m =时,原直线l 的方程为1,x =同样过点(1,1).- 综上所述,不论m 取取任何实数,直线l 必过定点(1,1).-【点评】(1)若直线方程中含有参数m ,可将方程整理成(,)(,)0f x y m x y ϕ+=的形式, 令(,)0(,)0f x y x y ϕ=⎧⎨=⎩,解得0x x y y =⎧⎨=⎩.则直线恒过点00(,)x y .(2)共点直线系:00()[y y k x x -=-定点00(,),x y k 为变数],表示一束过定点00(,)x y 的直线系(不包括直线0)x x =二、两动直线相交于定点(两变量的差为定值) 例2.已知直线l :1x my =+过椭圆2222:1(0)x y C a b ab+=>>的右焦点F ,且交椭圆C 于,A B 两点,点,,A F B 在直线2:g x a =上的射影依次为点,,D K E .连结,AE BD ,证明:当m 变化时,直线,AE BD 相交于一定点. 证明:因为(1,0)F ,所以2(,0).K a先探索:当0m =时,直线l ⊥x 轴,此时四边形A B E D 为矩形, 由对称性知,,AE BD 相交于F K 的中点21(,0).2a N +猜想: 当m 变化时,直线,AE BD 相交于一定点21(,0).2a N +证明:设22112212(,),(,),(,),(,).A x y B x y D a y E a y 首先证明当m 变化时,直线AE 过定点N .由22221,1,x m y x y ab =+⎧⎪⎨+=⎪⎩消去x 得2222222()2(1)0.a b m y m b y b a +++-= 222224(1)0(1),a b a m b a ∆=+->>22212122222222(1),.mbb a y y y y a b ma b m-+=-=++12221,.1122AN EN y y k k a a m y --==---122211122AN EN y y k k a a m y --∴-=----22222121222222222221112(1)1()()221111()()2222a m bb a a m y y m y y a b m a b ma a a a m y m y -----+-++==------ 22222222212(1)2(1)0.1(1)()()2m a b m a b a a my a b m ---==---+,AN EN k k ∴=故,,A E N 三点共线;同理可证,,B D N 三点共线.所以,当m 变化时,直线,AE BD 相交于一定点.【点评】(1)若曲线在一般情况下具有某一性质,则在特殊情形下一定具有该性质,故上述例题首先取一特殊情况(直线斜率不存在)求出定点,然后给出一般情况下的证明. (2)证三条直线共点时,可首先证明两直线相交于一点,再证第三条直线过交点;同理,证明两直线相交于一点,可先证明一直线过定点,再证另一直线也过该点. 三、动圆恒过定点 例3已知椭圆22142xy+=,点P 是椭圆上异于顶点的任意一点,过点P 作椭圆的切线l ,交y轴与点,A 直线l '过点P 且垂直与l ,交y 轴与点.B 试判断以AB 为直径的圆能否经过定yxPQOBAy xBAPO 点?若能,求出定点坐标;若不能,请说明理由.解:设点0000(,)(0,0)P x y x y ≠≠,直线l 的方程为00(),y y k x x -=-代入22142xy+=,整理得2220000(34)8()4()120k x k y kx y kx ++-+--=.0x x =是方程的两个相等实根,00028()2,34k y kx x k-∴=-+解得003.4x k y =-[或根据234(0)2y x y =->求导解得]∴∴直线l 的方程为00003().4x y y x x y -=--令0x =,得点A 的坐标为220043(0,).4y x y +又222200001,4312,43x y y x +=∴+=∴点A 的坐标为03(0,).y又直线l '的方程为00004(),3y y y x x x -=-令0x =,得点B 的坐标为0(0,),3y -∴以AB 为直径的圆方程为003()()0,3y x x y y y ⋅+-⋅+=整理得2203()10.3y x y y y ++--=由2210,0x y y ⎧+-=⎨=⎩得1.0x y =±⎧⎨=⎩ ∴以AB 为直径的圆恒过定点(1,0)-和(1,0).【点评】过圆C :220x y Dx Ey F ++++=与直线:0l Ax By C ++=交点的圆系方程为: 22()0x y D x Ey F Ax By C λ+++++++=.交点坐标由2200Ax By C x y Dx Ey F ++=⎧⎨++++=⎩解得 四、动点在某定直线上 例4.设椭圆C :221,42xy+=当过点(4,1)P 的动直线l 与椭圆C 相交于不同两点,A B 时,在线段AB 上取点Q ,满足||||||||.A P Q B A Q P B ⋅=⋅证明:点Q 总在某定直线上.证明:设点,,Q A B 的坐标分别为1122(,),(,),(,).x y x y x y由题设知||,||,||,||AP PB AQ Q B 均不为零,记||||,||||AP AQ PB QB λ==则0λ>且 1.λ≠又,,,A P B Q 四点共线, 从而,.AP PB AQ Q B λλ=-=于是12124,1.11x x y y λλλλ--==--1212,1.11x x y y x λλλλ++==++从而2221224,1x x x λλ-=- ①2221221y y y λλ-=-. ②又点,A B 在椭圆C 上,即221124,x y += ③ 22222 4.x y += ④①+2⨯②并结合③,④得42 4.x y +=即点(,)Q x y 总在定直线220x y +-=上. 【点评】(1)解答本题有两个关键,一是将向量模之间的关系转化成向量之间的线性关系,从而得到动点、定点之间的坐标关系;二是如何合理整合各关系式.(2)圆锥曲线上的动点满足三个基本条件:①动点满足曲线定义的几何条件;②动点满足曲线的几何性质;③动点坐标满足标准方程的代数条件.应充分利用这些特征,根据函数与方程思想和几何性质处理有关“定”的问题. 五、两变量的和为定值例5.已知抛物线:C 24,x y =其焦点为F ,过点F 的直线与抛物线相交于,A B 两点,交抛物线的准线l 于点,N 已知12,,NA AF NB BF λλ==求证:12λλ+为定值.证明:方法一:如图所示,设直线AB 的方程为11221,(,),(,),y kx A x y B x y =+则2(,1).N k--联立方程组24,1x yy kx ⎧=⎨=+⎩消去y 得22440,(4)160,x kx k --=∆=-+>故12124, 4.x x k x x +==-由12,NA AF NB BF λλ==得11122222,,x x x x kkλλ+=-+=-整理得1212221,1.kx kx λλ=--=--故12122112()kx x λλ+=--+1212224220.4x x k k x x k +=--⋅=--⋅=- 方法二:由已知12,,NA AF NB BF λλ==得120.λλ⋅<于是12||||,||||NA AF NB BF λλ=-①如图,过,A B 两点分别作准线l 的垂线,垂足 分别为11,A B ,则有11||||||,||||||AA NA AF NB BB BF ==② 由①、②得120.λλ+=【点评】如何利用题设条件中向量之间的线性关系,本例给出了启示,即根据向量平行将 12,λλ用坐标表示出来,进而化简整理证得;另利用初中所学的平面几何知识解决有关直线与抛物线的位置关系问题,有时可将解答过程大大简化. 六、两变量的积为定值 例6.已知曲线1C :22221(0,0)x y b a y ab+=>>≥与抛物线2C :22(0)x py p =>的交点分别为,A B (点A 在点B 左边),曲线1C 和抛物线2C 在点A 处的切线分别为12,,l l 且12,l l 的斜率分别为12,.k k 当b a为定值时,求证;12k k ⋅为定值(与p 无关),并求出这个定值.证明:设点A 的坐标为00(,),x y 曲线1C 的方程可写成:222200,,b b y a x y a x aa=-∴=-所以002001222220|()|.x x x x bx b x bx k y a y a a xa a x=='==-=-=---200122()x x b k k ay p⋅=-⋅⋅=又002021|()|,2x x x x x k y x pp==''===所以200122()x x b k k ay p⋅=-⋅⋅=222222x b b apy a-⋅=-为定值.【点评】由题意,两直线斜率都可通过求导求的,相乘约分即可求出定值,但复合函数的求导问题值得关注. 七、数量积为定值 例7.已知椭圆C :221,2xy +=点M 的坐标为5(,0)4,过椭圆右焦点F 且斜率为k 的直线l 与椭圆C 相交于,A B 两点,对于任意的,k R ∈M A M B ⋅是否为定值?若是求出这个定值;若不是,请说明理由.解析:由已知得(1,0),F 直线l 的方程为(1).y k x =-由22(1),12y k x x y =-⎧⎪⎨+=⎪⎩消去y 得 2222(21)42(1)0,k x k x k +-+-=设1122(,),(,),A x y B x yF 2F 1yxBA P则2212122242(1),.2121kk x x x x k k -+==++112255(,)(,)44M A M B x y x y ∴⋅=-- 121255()()44x x y y --+2121255()()(1)(1)44x x k x x =--+--2221212525(1)()()416k x x k x x k=+-++++222222254()22254(1)212116k k k k k k k +-=+-++++2242257.211616k k --=+=-+由此可知,716M A M B ⋅=- 为定值. 【点评】证明数量积为定值,首先将向量用坐标表示,而进行怎样的转化,如何利用题设条件是证明的关键.八、直线斜率为定值 例8.已知椭圆22124xy+=的上、下焦点为12,,F F 点P 在第一象限且是椭圆上的点,并满足121PF PF ⋅=,过P 作倾斜角互补的两条直线,PA PB 分别交椭圆于,A B 两点. 求证:直线AB 的斜率为定值.证明;由题意可得12(0,2),(0,2),F F -设0000(,)(0,0),P x y x y >>则100200(,2),(,2),P F x y P F x y =--=---221200(2)1,PF PF x y ∴⋅=--= 又点00(,)P x y 在椭圆上,所以22001,24x y += 所以224,2y x -=从而2204(2)1,2y y ---=得0 2.y =则点P 的坐标为(1,2).因为直线P A 、P B 的斜率比存在,故不妨设直线P B 的斜率为(0)k k >,则直线P B 的方程为:2(1).y k x -=-由222(1),124y k x x y ⎧-=-⎪⎨+=⎪⎩消去y 得 222(2)2(2)(2)40,k x k k x k ++-+--=设(,),(,),B B A A B x y A x y则22222(2)2(2)2221,1,222B B k k k k k k x x kkk----+==-=+++同理可得22222,2A k k x k+-=+则242,2A B k x x k -=+28(1)(1).2A B A B k y y k x k x k-=----=+所以直线AB 的斜率2A B AB A By y k x x -==-为定值.【点评】(1)若已知条件中的曲线满足某些特殊位置关系(本例中的倾斜角互补),则与这些曲线相关的点也可能较“特殊”.(2)当两直线的斜率满足120k k +=或121k k =-等关系时,若通过整理运算得到一关于1k 的关系式,关于2k 的关系式即用2k -或21k -代替上式中的1k 便可求的.。

解析几何中的定点和定值问题

解析几何中的定点和定值问题

解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考察重点。

此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考察直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。

考察数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。

一、定点问题解题的关健在于寻找题中用来联系量,未知量的垂直关系、中点关系、方程、不等式,然后将量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

例1、A 、B 是抛物线y 2=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB α、β变化且α+β=4π时,证明直线AB 恒过定点,并求出该定点的坐标。

例2.椭圆C :22221(0)x y a b a b+=>>的离心率为32,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切.⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值X 围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.【针对性练习1】 在直角坐标系xOy 中,点M 到点()13,0F -,()23,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.【针对性练习2】在平面直角坐标系xoy 中,如图,椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。

设过点T 〔m t ,〕的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

〔1〕设动点P 满足422=-PB PF ,求点P 的轨迹;〔2〕设31,221==x x ,求点T 的坐标; AByOx〔3〕设9=t ,求证:直线MN 必过x 轴上的一定点〔其坐标与m 无关〕。

探究解析几何中的定点、定值问题

探究解析几何中的定点、定值问题

解题篇经典题突破方法高考数学2021年4月探究解析几何中的定点.定值问题■浙江省湖州市第二中学曹亚奇定点与定值问题是解析几何中的高频考点。

此类问题定中有动,动中有定,并常与轨迹问题、曲线系问题等相结合,综合性强,解法灵活多变。

求解这类问题时,需要有较强的代数运算能力和图形识别能力,要能合理猜想并仔细推理论证,对熟练运用所学知识分析问题、解决问题的能力要求较高,所以掌握这类问题的通性通法是我们学习的重中之重。

一.直线的定点问题我们知道,若一条直线经过一定点,往往表达成如下形式:(1)夕=也7+1;(2)夕=足2—冷;(3)夕一1=忌(工一1);(4)Cm—1)rr+(2?n—1)»=?n—5。

于是我们最终需要表达的直线的方程是含有一个参数,那又该如何做到呢?下面让我们以一道经典习题为例,从“线设”、“点设”、“共线”等三个视角入手,寻求直线中定点问题的通性通法。

侧f(武汉市2020届高中毕业生质量检测第19题)已知抛物线r iy2=2p^ S>0)的焦点为F,P是抛物线。

上一点,且在第一象限,满足FP=(2,2/3)o(1)求抛物线r的标准方程。

(2)已知过点A(3,-2)的直线交抛物线r于M,N两点,经过定点B(3,—6)和M点的直线与拋物线「交于另一点试问:直线NL是否恒过定点?若过定点,求出该定点;若不过定点,请说明理由。

解析:(1)抛物线r的标准方程为y2= 4工。

(过程略)(2)解法1:设M(?“),则直线MN:工一护T-33=上+2(夕+2),与抛物线方程y2=4鼻联立竹*f2护—122t2-\~X2t,r并化简得:y y-=0,故y N=t2_12_2e+12_“+6\27+2"—t=—匚卡-,心=(石巨),即N((爭)1—帚)。

同理直线辺山—3 *2_1O=17+24^+6),与抛物线方程宁=4工联立,得叫峯广-罟)。

于是直线N“+6^+122z+122e+12_e+6t~\~2((e+6)2、…i+2=(卄6)2(3£+6尸严―q+2)2丿,化(卄2)2—(卄6)2简整理得’=_(霁+霁寻»_3,所以直线NL过定点(一3,0)。

第06讲 定点问题(解析几何)(原卷版)

第06讲 定点问题(解析几何)(原卷版)

第06讲 定点问题知识与方法定点与定值是高考解析几何考查的热点问题,此类问题往往定中有动,动中有定.直线过定点问题,通法是设出直线方程,通过韦达定理和已知条件找出k 和m 的关系式,代入直线方程,将问题转化为过定点的直线系、曲线系或恒成立问题来求解.即可得到定点.求解定值问题的关键是引进参数表示直线方程、点坐标、数量积或斜率关系等,先引入变量,再进行消元,最后得到不受参数影响的量,就是定值.1.对直线过定点的理解如:①直线2(1)y k x -=-恒过定点(1,2);②对于直线:l y kx m =+,若2m k =-,则直线方程为(2)y k x =-,显然l 过定点(2,0); ③无论k 取任何实数,直线(23)(1)(41)0k x k y k ++--+=必经过一个定点,则这个定点的坐标为_____.【解析】直线(23)(1)(41)0k x k y k ++--+=可化为(24)(31)0k x y x y +-+--=,令24013102x y x x y y ⎧+-==⎧⎪⇒⎨⎨--==⎪⎩⎩,故定点坐标为(1,2). 2.直线过定点问题的基本解法方法1:设线法,用两个参数表示直线方程,一般步骤为:①设直线方程为y kx m =+(或x ny t =+),联立直线与圆锥曲线方程,得出根与系数的关系; ②结合韦达定理和已知条件,得到k b 、或m t 、的关系,或者解出b t 、的值;③将②的结果代入y kx m =+(或x ny t =+),得到定点坐标.方法2:解点法,用一个参数表示直线方程,一般步骤为:①引进参数,根据已知条件,求出直线上两个点,A B 的坐标(含参);②特殊位置入手,找到定点P (有时可考虑对称性);③证明,,A B P 三点共线,从而直线AB 过定点P .(其中一个方法是证明PA PB )3.定点问题的常见类型①由斜率关系求定点;②由倾斜角关系求定点;③切点弦过定点;④相交弦过定点;⑤圆过定点.典型例题类型1:由斜率关系求定点相关结论如下:定理1:()00,P x y 为椭圆2222:1(0,0)x y a b a bΓ+=>>上一定点,过点P 作斜率为12,k k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点20000222,y b x x y a λλ⎛⎫--- ⎪⎝⎭;(2)若2122b k k a λλ⎛⎫⋅=≠ ⎪⎝⎭,则直线MN 过定点2222002222,a b a b x y a b a b λλλλ⎛⎫++- ⎪--⎝⎭. 定理2:设()00,P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线,AB CD 交椭圆2222:1(0,0)x y a b a bΓ+=>>于A B C D 、、、,直线,AB CD 的斜率分别为12,k k ,弦,AB CD 的中点记为,M N . (1)若12(0)k k λλ+=≠,则直线MN 过定点20002,y b x x a λλ⎛⎫-- ⎪⎝⎭; (2)若2122b k k a λλ⎛⎫⋅=≠ ⎪⎝⎭,则直线MN 过定点220002222,a x b y x a b a b λλλ⎛⎫ ⎪--⎝⎭. 定理3:过抛物线22(0)y px p =>上任一点()00,P x y 引两条弦,PA PB ,直线,PA PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022,y p x y λλ⎛⎫-- ⎪⎝⎭. 【注】以上结论都可以利用坐标平移齐次化的方法进行证明,齐次化方法请参考《2.4齐次化巧解双斜率问题》一章,证明过程此处略过.上面的结论不提倡记忆,重要的是掌握其证明方法,熟识这些模型,在解题中会事半功倍.斜率之和为定值,第三边过定点【例1】已知椭圆2222:1(0)x y C a b a b +=>>,四点123(1,1),(0,1),P P P ⎛- ⎝⎭, 4P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于,A B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明: l 过定点.斜率之积为定值,第三边过定点【例2】已知椭圆的中心在原点,一个长轴的端点为(0,2)P -,离心率为e =,过点P 作斜率为1k , 2k 的直线,PA PB ,分别交椭圆于点,A B .(1)求椭圆的方程;(2)若122k k ⋅=,证明直线AB 过定点,并求出该定点.【例3】过椭圆22:143x y C +=上一定点31,2P ⎛⎫ ⎪⎝⎭作两条互相垂直的直线,PA PB 与C 分别交于点,A B ,求证:直线AB 过定点.【例4】已知12(1,0),(1,0)F F -是椭圆22143x y +=的左右焦点.过2F 作两条互相垂直的直线1l 与2l (均不与x 轴重合)分别与椭圆交于A B C D 、、、四点.线段,AB CD 的中点分别是,M N ,求证:直线MN 过定点,并求出该定点坐标.斜率之比为定值,第三边过定点【例5】如图所示,抛物线2:2(0)C y px p =>的焦点为(1,0)F .(1)求抛物线C 的标准方程;(2)过F 的两条直线分别与抛物线C 交于点1,A A 与1,B B (点1,B A 在x 轴的上方).①若2AF FA =,求直线1AA 的斜率;②设直线11A B 的斜率为1k ,直线AB 的斜率为2k ,若122k k =,求证:直线AB 过定点.类型2:由倾斜角关系求定点【例6】已知椭圆2222:1(0)x y C a b a b+=>>,其左、右焦点分别为12,F F ,点P 为坐标平面内的一点,且1233||,,24OF PF PF O =⋅=-为坐标原点. (1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,,A B 是椭圆C 上两个不同的点,直线,MA MB 的倾斜角分别为,αβ, 且2παβ+=,证明:直线AB 恒过定点,并求出该定点的坐标.类型3:切点弦过定点【例7】已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆引两条切线,,,PA PB A B 为切点,求证:直线AB 经过定点.【例8】已知抛物线2:2C x py =的焦点与椭圆22143y x +=的上焦点重合,点A 是直线280x y --=上任意一点,过A 作抛物线C 的两条切线,切点分别为,M N .(1)求抛物线C 的方程;(2)证明直线MN 过定点,并求出定点坐标.类型4:相交弦过定点【例9】已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8,AG GB P ⋅=为直线6x =上的动点,PA 与E 的另一交点为,C PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.类型 5:圆过定点【10】 设平面直角坐标系 xoy 中,设二次函数 2()2()f x x x b x R =++∈ 的图象与两坐标轴有三个交点, 经过这三个交点的圆记为 C .(1) 求实数 b 的取值范围;(2) 求圆 C 的方程;(3) 问圆 C 是否经过某定点(其坐标与 b 无关)? 请证明你的结论.。

解析几何中的一道亮丽“风景线”——浅析定值、定点、定直线问题

解析几何中的一道亮丽“风景线”——浅析定值、定点、定直线问题

1:
当A B不与 轴垂 直时 , 直 线 A 设 曰的
方程 是 y k 一 ) ±1。 =( 2 x ≠ ) 代 入 一 。2 有 ( 一 4 2一 y= , 1 kk + k x
( 2 = 。 4 ) 0
设 1, yi 孚1 Aj日 孚 = 由 + y l
_溺l 鳕l _l l 渤 ÷ l
垒 UE Ncu wE
‘ ‘
浅析定值\ 定点\ 定直线问题
福建省莆田市秀屿区大丘中学 柯国庆
关键 词 : 定点
定值
定 直 线
综上所述, ・ 为常数 一 。 商 1
还 有 2 0 重 庆 理 、 09年 北 京 理 07年 20 都 是 定值 问题 。对 于 这 类定 值 问题 , 然 显 定 值 的结 果 并 不 知 道 ,故 我 们 只 好借 助 特 殊 法 , 如取 特 殊 点 或特 殊 位 置 , 得 比 使 问题 变得 更 加 清 晰 。所 以 , 有关 这 方 面 问 题 的 求 解 往 往 采 取 两 步 : 用特 殊 法 探 寻 其 定值 ; 一般 性 加 以 验证 、 导 。 对 推 二、 与证 明有 关 的定 点 问题 例 2 (b 7 高 考 题 ) 知 椭 圆 C 2o 年 已 的 中心 在 坐 标 原 点 , 点 在 轴 上 , 圆 焦 椭

3m 一 k) + 4 m ( 4 ( 乙3 )
解析几何题是历年高考 的必考点, 其
相 应 的 高 考 题 更 以解 答 题 中 的 定 值 、 定 点 、 直 线 问题 为热 点 , 正 是 由 于 其 在 定 也 解 答 之前 并 不 知道 其 定值 、定 点 之 结果 , 更 增添 了它的 难度 。因此 , 决 这类 问题 , 解

解析几何中定值和定点问题

解析几何中定值和定点问题

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

解析几何中的定点定值问题

解析几何中的定点定值问题

my 2 4x
a
y2
4my
4a
0
16m2 16a 0
y1 y1
y2
y2
4m 4a
k1k2
1
y1 2 x1 1
y2 x2
2 1
1
4 y1 2
4 y2 2
1
y1y2 2( y1 y2 ) 12 0
4a 8m 12 0 a 2m 3
EF : x my 2m 3过定点(3,2)
B
AB:
y
2 px y1 y2
4 p2 y02 y1 y2
y0
y
y0
2 px 4 p2 2 px0 y1 y2
2 p(x 2 p x0 ) y1 y2
AB过定点(x0 2 p, y0 )
思路2:设直线AB(2字母)
代入抛物线得关键方程
A
P
k1k2=-1统一字母
O
代直线AB方程(1字母)
(二)椭圆类
例3、椭圆 x2 y2 1
4
(1)以左顶点 A 为直角顶点的 RtAMN 的顶点都在
椭圆上,则斜边 MN 过定点
M
A N
思路1:特殊化取AM:y=x+2
代入椭圆得M,N坐标(1字母)
得直线AB方程(1字母) M 猜测得定点坐标再证明 A
N
解析:A(2,0), 取AM : y x 2
解析:小题猜测:极端性,当 PA水平时 A
此时 A 在无穷远处,B(x0 , y0 ) ,直线 AB : y y0 所以定点纵坐标为 y0
P
当 AB 竖直时,设为 x t ,
O
代入抛物线方程,A(t, 2pt ),B(t, 2pt )

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点定值问题例1 已知椭圆)1(1222>=+a y ax 的上顶点为M 〔0,1〕,过M 的两条动弦MA 、MB 满足MA ⊥MB 。

对于给定的实数)1(>a a ,证明:直线AB 过定点。

解:由0MA MB ⋅=知MA MB ⊥,从而直线MA 与坐标轴不垂直, 故可设直线MA 的方程为1y kx =+,直线MB 的方程为11y x k=-+ 将1y kx =+代入椭圆C 的方程,整理得 2222(1)20a k x a kx ++=解得0x =或22221a k x a k -=+,故点A 的坐标为222222221(,)11a k a k a k a k --++ 同理,点B 的坐标为22222222(,)a k k a k a k a-++ 知直线l 的斜率为2222222222222211221k a a k k a a k a k a k k a a k ---++--++=221(1)k a k-+ 直线l 的方程为22222222212()(1)k a k k a y x a k k a k a --=-++++,即222211(1)1k a y x a k a --=-++∴直线l 过定点2210,1a a ⎛⎫-- ⎪+⎝⎭例3 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. 〔1〕求椭圆的离心率;〔2〕设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.〔I 〕解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a cba c a cx x x x c x x c x y c x y 故离心率所以即又 〔II 〕证明:由〔I 〕知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x OM μλ+==由已知得设 ⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由〔I 〕知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业〔13〕1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.82.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点,O 是椭圆的中心,OM AB k k ⋅=______ 22ab -3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使OB OA OM θθsin cos +=.则直线OA 与OB 的斜率之积为 . 12-4.如图,AB 是平面α的斜线段...,A 为斜足,假设点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是 椭圆5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 假设M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:当直线ON 垂直于x 轴时,|ON|=1,|OM|=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =〔显然22||>k 〕,则直线OM 的方程为x y k1-=.由⎩⎨⎧=+=1422y x kxy ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k kON ++=.同理121222||-+=k k OM .设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d=33.综上,O 到直线MN 的距离是定值.A B P α〔第4题〕6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=假设点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M 设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.证明:直线BP 的斜率为1212y k x =-,直线m 的斜率为112m x k y -=,则直线m 的方程为1012(2)x y y x y --=-, 111101111222(2)4(2)2x x x y y x y x y y y x ---=-+=-++ 2211111122(4)4(2)x x y x y x y --+=++2211111122(4)123(2)x x x x y x y --+-=++=111122x x x y y --+=112(1)x x y -+,所以直线m 过定点(1,0)-.7.已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A 〔1〕求椭圆的方程;〔2〕设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;〔3〕过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.高二数学教学案〔13〕例1 已知椭圆)1(1222>=+a y ax 的上顶点为M 〔0,1〕,过M 的两条动弦MA 、MB 满足MA ⊥MB 。

应用齐次化解决解析几何中定点定值问题

应用齐次化解决解析几何中定点定值问题

(
1)求椭圆 C 的方程 .






(
2)若过点 A 作圆 M :(
x+1)
+y =r (
r>0)的
两条切线分别与椭圆相交于点 B ,

D (不 同 于 点 A ).
r 变化时,试问直线 BD 是否过某个定 点? 若 是,求 出
该定点;若不是,请说明理由 .
x

解析:(
1)易得椭圆的方程为 +y =1.

[(
x-2)+2]
方法 2:双 曲 线 的 方 程 可 化 为


直线l 不过点 A ,设其方程为
下面再通 过 两 个 例 题 具 体 解 释 利 用 齐 次 化 方 法
解决问题的详细过程和注意要素 .
(
2)把原点平移到 点 A ,点 A 坐 标 为 (
0,
0),则 新
解得k=-1.
1=0.





[(
y-1)+1]=1,变形整理,得

(
a>b>0)的上顶点 A (
0,
1),离心率为
x


可化为 + (
x+1)

y+1)=1,圆 M 的方程可化为(


m (
x-2)+n(
m,
n∈R).
y-1)=1(
x2 y2
例 1 (
2021 年高三模考)已知椭圆 C: 2 + 2 =1
a b
坐标系(下面均指新 坐 标 系 下 的 问 题)中,椭圆的方程
时,则 k1 =
k2 =
k1 +k2 =

高考数学解析几何中的定点定值定线问题

高考数学解析几何中的定点定值定线问题

◆直线与圆锥曲线的定点、定值、定线问题一、定点问题定点问题,一般是直线系(或者曲线系)恒过定点的问题,这类问题一般解法是根据曲线的动因,先选择适当的参数,用参数表示出直线系(或者曲线系)方程,然后按参数整理,并令参数的系数为0得方程组,解方程方程组求出定点坐标.例如:(1)直线系1y kx =+中,当k 变化时,恒过定点(0,1);(2)直线系2(1)y k x +=-中,当k 变化时,恒过定点(1,2)-;(3)已知直线1:40l x y +-=,2:270l x y +-=,则过1l ,2l 交点的直线可以设为(4)(27)0x y m x y +-++-=,即(21)(1)7m x m y m +++--=.直线系(21)(1)740m x m y m +++--=恒过1l ,2l 的交点.1.如图,等边三角形OAB的边长为且其三个顶点均在抛物线上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线1y =-相交于点Q .证明:以PQ 为直径的圆恒过y 轴上某定点.2.一条直线l 与抛物线22y px =(0p >)交于A 、B 两点,OA OB ⊥(O 为坐标原点).求证直线l 恒过定点,并求出定点的坐标.3.222122221223231311(0)45|PF |=3|MN|=4.(1)C a b C xC C C y C C yx yab+=>>=已知椭圆:的右焦点F 与抛物线:的焦点重合,椭圆与抛物线在第一象限的交点为P ,,圆C 的圆心T 是抛物线上的动点,圆C 与轴交于M,N 两点,且求椭圆的方程。

(2)证明:无论点T 运动到何处,圆C 恒经过椭圆上一点二、定值问题定值问题的主要处理方法是函数方法,首先,选择适当的量为变量,然后把证明为定值的量表示为上述变量的函数(可能含多元),最后把得到的函数解析式化简,消去变量得到定值.消去变量的过程中,经常要用到点在曲线上进行坐标代换消元.有时先从特殊情形入手,求出定值,再对一般情形进行证明,这样可使问题的方向更加明确.另外关注图形的几何性质可简化计算.例如(1)椭圆上任意一点到两个焦点的距离之和为定值;(2)双曲线上任意一点到两个焦点的距离之差的绝对值为定值;(3)抛物线上任意一点到焦点的距离与到准线的距离的比等于 1.(4)过抛物线22y px =(0p >)的焦点F 作直线与抛物线交于A 、B 两点,则A 、B 两点的横坐标之积为定值4221p x x =,纵坐标之积为定值y 1y 2=-p 2.;11AF BF +为定值2p . 【顺便记住)(21x x p AB ++== 2p sin 2θ.】4.已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,求证:12x x ⋅为定值,并求出此定值.5.设000(,)A x y 是曲线2:4C x y =上的一个定点,过点0A 任意作两条倾斜角互补的直线,分别与曲线C 相交于另外两点P 、Q .证明:直线PQ 的斜率为定值.三.定直线(轨迹)问题证明动点在某一直线上(或某轨迹上)的问题,可以转化为求动点的轨迹问题,基本的方法有直接法和消参法。

解析几何复习专题六 定点定值问题

解析几何复习专题六 定点定值问题

专题六 定点、定值问题知识点一、直线和曲线过定点直线或曲线方程中一定含有参数,既然过定点,那么这个方程就要对参数取任意值均成立。

所以把方程一端化为0,分离参数,化成λλ(,0),(),(=+y x g y x f 为参数)⎩⎨⎧==⇒0),(0),(y x g y x f ,解这个方程组,这个方程组的解所确定点就是直线或曲线所经过的定点。

注意:(1)面对复杂问题时,可从特殊情况入手确定定点(定直线)然后证明即先猜后证;(2)遇到含有参数方程时,清楚方程为哪一类曲线(直线),从而观察曲线是否过定点,尤其含参方法(1(2例13。

(1线MA例2(145=,例3、椭圆方程为:13422=+y x ,其短轴端点为M 、N ,直线l 过点P (0,1)交椭圆于A 、B 两点(异于点M 、N )证明直线AM 与直线BN 的交点的纵坐标为定值。

练习1、椭圆方程为:13422=+y x ,其长轴端点为M 、N ,直线l 过右焦点交椭圆于A 、B 两点(异于点M 、N )证明直线AM 与直线BN 的交点的轨迹为定直线.1:1-y x l (1例4(1)点P (2)点2倍,例5、椭圆方程为:13422=+y x ,过右焦点F 的直线21,l l 分别交椭圆于A 、B 和C 、D ,且21l l ⊥,证明:过AB 和CD 中点的直线过定点。

归纳:椭圆:)0(12222>>=+b a by a x , ①过右焦点F 的直线21,l l 分别交椭圆于A 、B 和C 、D ,且21l l ⊥,则过AB 和CD 中点的直线过定点)0,(222ba c a +。

②过点M ()0,m 的直线21,l l 分别交椭圆于A 、B 和C 、D ,且21l l ⊥,则过AB 和CD 中点的直线过定点,m (222b a a +例6,证明:直线AB例7m 交例8,,21k k (1)求证:4121-=⋅k k ;(2)试探求⊿OPQ 的面积S 是否为定值,并说明理由。

解析几何中定值和定点问题

解析几何中定值和定点问题

解析几何中的定值定点问题(一)与直线x -y 2=0相切. ⑴求椭圆C 的方程;⑵设P(4, 0) , M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结 PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线 ME 与x 轴相交于定点. 解:⑴由题意知e =£3,所以e 2 =与=a ;b=3,即玄2 =4b 2,又因为b ! 1,所以a 2a a 4J l +1222X2a =4,b =1,故椭圆C 的方程为C : - y =1 .4⑵由题意知直线 PN 的斜率存在,设直线 PN 的方程为y =k(x _4)①+y 二k(x 一4)联立 X 2 2 消去 y 得:(4k 2 -1)x 2 -32k 2x 4(16k 2-1) =0 ,4 y T由,;=(32k 2)2 _4(4k 2 1)(64k 2 —4) 0 得 12k 2 -1 :::0,又k =0不合题意,所以直线PN 的斜率的取值范围是3::: k :::0或0 ::: k 3 .6 6⑶设点 N(N ,yj E(X 2, y 2),则 M (为,-yj ,直线 ME 的方程为 y-y ?二 一(x-x ?),X 2 —X 1令 y=0,得 x=X 2——X^) , 将 射=k(X 1 - 4), y 2 = k(X 2 - 4)代入整理,得 x = _4(XX 2). ②y 2 +y 1X 1 +血 一82 2由得①X 1 X 2二卫!J, X 1X 2二竺 4代入②整理,得X=1 ,4k -+1 4k +1 所以直线ME 与x 轴相交于定点(1, 0).【针对性练习1]在直角坐标系xOy 中,点M 到点F 1 i 、3,0 , F 2 .3,0的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点 A ,不过点A 的直线l : ^ kx b 与轨迹C 交于不同的两点 P 和Q . ⑴求轨迹C 的方程;⑵当AP AQ =0时,求k 与b 的关系,并证明直线l 过定点.解:⑴•••点M 到.[73,0 , . 3 ,0的距离之和是4 , ••• M 的轨迹C 是长轴为4 ,焦点在x 轴上焦中为2 32的椭圆,其方程为-y 2 =1 .、定点问题【例1 ].已知椭圆C : 2 2孚 Z =1(a b 0)的离心率为a b仝,以原点为圆心,椭圆的短半轴长为半径的圆 2AO J7—⑵将y=kx・b,代入曲线C的方程,整理得(1 4k2)x28 2kx ^0,因为直线|与曲线C交于不同的两点P 和Q,所以厶=64kb -4(1 4k )(4b — 4) =16(4k -b 1) 0 ①设P X i , y i ,Q| x2 , y2 ,则X i :' X? 2 ,X i X? 2 ②f' 1+4k 1+4k且y i y^(kX i b)(kX? ■ b^(k2X i X?) kb(X i X?)b2,显然,曲线C与X轴的负半轴交于点 A -2 , 0,所AP = X 2 , y ,AQ = X? 2 , y?.由AP AQ = 0,得(x「2)(x? 2) y y? = 0 .将②、③代入上式,整理得12k? -16kb • 5b? =0.所以(2k -b) (6k -5b) = 0 ,即b = 2k或b .经检验,5都符合条件①,当b=2k时,直线I的方程为y =kx・2k •显然,此时直线I经过定点-2 , 0点•即直线|b =6k时,直线I的方程为y = kx ■ 6k =k经过点A,与题意不符.当5 5b = @ k,且直线I经过定点5【针对性练习2】在平面直角坐标系xoy中,如图,已知椭圆? ?—-匚=1的左、右顶点为A、B,右焦点9 5为F。

“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略

“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略

“动中求定”的八大策略——探索解析几何中求解定点、定值、定向、定线等问题的策略注意到A∈[÷,2],可得所求为[2,÷].JJ点评:求参数的取值范围,一直是数学中的经典问题.解题的关键是如何构造出关于参数的表达式或不等式,转化为求函数的值域或解不等式问题.本例是直接利用题设的A的范围,求出值域,属简单题.而一些较复杂的题,往往要用以下一些条件和方法:圆锥曲线的范围,几何图形的性质,变量的取值范围(如sinO,cosO●徐素琴舒林军''的范围),判别式法,基本不等式法,分离参数法等.以上五类问题是解析几何中的重点题型,一定要掌握求解的通法,在解题实践中不断对各种解法加以比较,总结,提高自己择优解题的能力,使解析几何解答题成为你的得分点,从而在高考中获得数学卷的高分0-动中求定"的八大策略探索解析几何中求解定点,定值,定向,定线等问题的策略在解析几何中常常出现求定点,定值,定向,定线等问题,它已经成为当前各省高考试题中的热点.本文对此类问题加以探究,得出一些行之有效的方法策略,供以参考.策略一:提取参数对于某些含参数的曲线方程,如果可以把参数与x,y分离,则提出参数后,再根据恒等式的性质,即可以解得x,y的值,得到定点的坐标.例?1已知动直线(2+k)x一(1+k)一2(3+2k)=0,求证:点P(一2,2)到该动直线的距离d≤4.证明:把直线方程化为.i}(一),一4)+(2x—Y一6)=0,知J.一),一4=o,L2x一),一6=0.解得=2,Y=一2,即动直线过定点(2,一2).连,则点P(一2,2)到该动直线的距离d≤lPI=~/(一2—2)+(2+2)=4.'策略二:观察巧代?2O?充分利用已知式的结构特征,经过观察分析,只要找出满足条件的,y的值,就是定点的坐标.例2(1)已知实数17/.,n满足三+=l,则动直线羔+上:l必过定点的坐标为——;(2)已知实数p,g满足p+2q—l=0,则动直线+3y+q=0恒过定点M的坐标为略解:(1)只要令=2,,,=l,即得定点(2,1);(2)已知式化为号一下1+q=0,只要令=寺一IM(1,一吉).策略三:设参分离根据题意,设立参数,建立方程,分离参数,即可以求得定点.例3已知抛物线C:y=8x,焦点为F,定点P(2,4),动点A,B是抛物线C上的两个点, 且满足后?keB=8,试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.解:设A(8t;,8t1),B(8t,8t2)(t1≠t2),则】.1PA,kpB'fl+一2f2+一2因为J}?后雎=8,所以8t1t2=一1—4(tl+t2).①因为Ij}仙,所以A曰的方程:),一8tt:(一8£;)?再利用①化简即得(一1)一(t1+t2)(),+4)=0.可见直线AB过定点(1,一4).策略四:巧"特"结论有两种情形:一种利用特殊值探求结论,再验证其充分性;另一种是也先用特殊值探求结论,后作一般性探求...2.2.例4已知椭圆等+=1,过左焦点作不垂直于轴的弦交椭圆于A,两点,AB的垂直平分线交轴于点,则IFI:IABl的值为()(A1(B1(c了2(D)}解:本题为选择题,即知此比值为定值,故可用特殊值法.设AB与轴重合时,就是原点,则AB长为6,MF的长为2,故IMFl:IABI =1,答案为(B).如果不用特殊法解,本题就是一个较难的解答题,同学们不妨一试.若用极坐标方程解较方便一些.可见在解选择题时,用特殊值法来判断和寻找答案尤为重要.2例5已知椭圆方程+=1,过点s(o,一÷)的动直线f交该椭圆于A,B两点,试问:在坐标平面内是否存在一个定点,使得以AB为直径的圆恒过定点,若存在求出T的坐标;若不存在,请说明理由.解:假设满足条件的定点存在.当直线Z与轴平行时,以AB为直径的圆方程为2+-y')=;当直线Z与),轴重合时,以AB为直径的圆方程为+),=1.以上两圆方程联立解得』=o,即r(0,1)ty=1,是满足条件的必要条件.下面证明其充分性: 若存在v(o,1),对过点S不与坐标轴平行的直线设为y=kx一÷(Il}≠0),把它代人椭圆方程得到(1+2)2一一=o.设A(,y.),B(,y),则有『+=吾_,116【la;:一'因为H=(l,y1—1),TB=(2,y2一1),7?TB=X12+(),1—1)(,,2—1)=(1):一争(+一16(1+)4,12k16——18k9一一一3—}8k9+一9++=0.所以上船,即以AB为直径的圆恒过定点其定点的坐标为(O,1).例6已知椭圆+:1(n&gt;b&gt;o)上任意一点,B,B:是椭圆短轴的两个端点,作直线MB1,MB2分别交轴于P,()两点,求证: lOP1.IDQI为定值,并求出定值.分析:当动点在长轴的端点时,则P,Q重合于长轴的端点,因此IOPI?loQI=a.?2l?再作一般证明即可得IOP1.IOQI为定值为0.策略五:设参消参为了求得定值,往往需要设立一个或两个参数,如直线的斜率,动点的坐标等,然后根据条件,寻找所求的定值,最后经过消参得到所求的定值.例6已知A(1,1)是椭圆x+=1(口&gt;b&gt;0)上的一点,F,F2是椭圆的两个焦点, 且满足lAFI+IAF,I=4.(1)求椭圆的方程;(2)设点B,C是椭圆上的两个动点,且直线AB,AC的倾斜角互补,试判断直线BC的斜率是否为定值?并说明理由.解:(1)易知口=2.再把点A坐标代人椭圆方程得b.=÷,所以椭圆方程为等2+等(2)由条件可以得到直线AB,AC的斜率存在且不为0,故设直线AB的方程为Y=(一1)+1,代人椭圆方程得(1+3k)+6(1一k)kx+3一6k一1=0.因为XA=1,XAXB=所以.①又设直线AC的方程为Y=一k(一1)+1,同理得到.②因此得到,口一YcJ}(B+Xc)一2k%c■'把①②代人得k.=下1,所以直线BC的斜率为定值.策略六:巧用定义结合圆锥曲线的定义,在运动变化中寻求?22?符合定义的不变量.'2,2例7已知P是双曲线一号=1(口&gt;0,b&gt;0)右支上不同于顶点的任意一点,,是双曲线的左右两个焦点,试问:三角形PFF2 的内心,是否在一定直线上,若存在,求出直线方程;若不存在,请说明理由.解:设三角形PFF2的内切圆与轴的切点为,则由双曲线的定义及切线长定理可知: IPF1I—IPF2l=IMF1I-IMF2I=2a,所以也在双曲线上,即M为双曲线右顶点.又IM上轴,所以三角形PF的内心,在一定直线=口上.例8以抛物线(Y+1)=g(一2)上任意一点P为圆心,作与Y轴相切的圆,则这些动圆必经过定点的坐标为一解:不难求得Y轴是抛物线的准线.由抛物线的定义可知,这些圆必经过抛物线的焦点可以求得F(4,一1),所以这些动圆必经过定点的坐标为(4,一1).策略七:结合平面几何有些求定值问题往往可以与平面几何的一些性质相结合,可以达到事半功倍的效果,如上面的例7就是运用了切线长定理.例9已知圆(一3)+(Y+4)=4,过原点0的动直线2:y=kx交圆于P,Q两点,则IoPIlOQl的值为一解:设OB切圆于点,则JOPIIOQI=IDBl=10I一r2:25—4=21.,22例10已知是双曲线一各=1(口&gt;0,b&gt;0)过焦点F1的任意一条弦,以AB为直径的圆被与相应的准线截得圆,求证:MN的度数为定值.解:设AB的中点为P,P,A,B到相应的准线距离分别为d,d,d,则.:,',d1+d2IF1AI+IF1BIlABId—一——■~=(r为以AB为直径的圆的半径),所以c.sPⅣ::,二,e即删的度数为定值,其定值为2arccos.策略八:极坐标法关于长度计算的某些问题,用极坐标法会来得很方便.先要根据条件建立恰当的极坐标系,然后给动点设出极坐标,极角之间的关系往往是解决问题的关键.例11椭圆x+=1(口&gt;b&gt;o)上有aD两个动点A,B满足OA上OB(0为坐标原点), 求证:+广为定值?解:设以原点为极点,轴为极轴,建立极坐标系.则有lpcosO,代人椭圆方程得到椭ty:psin0.圆的极坐标方程●赵小龙r+r?设椭圆上动点A(p,),因为上OB,则动点B(p:,0+),因此1COS0sin—丁十—一,PlnD1c.s(+詈).sin2(+詈)2一口2.bP2口sin20cos0r+.两式相加得P+=+,l111ap2D即击+=1+古为定值.以上的八大策略,提供同学们在解决此类问题的方法.对求定点,定值等问题往往先用特殊值法探求出结论,这样解题的方向就明确了, 然后在运算过程中心中有数,达到事半功倍的效果.1l.洙高毒中的五粪热燕题型思维能力是数学能力的核心,新课标的高考是通过数学基本能力与数学综合能力来考查数学思维的.针对高考对能力的考查,笔者认为临近高考时要努力达到下述目标:如果一个问题有多种数学思维方法,那么通过自身的思维应尽力发现其中大多数通法,并能靠自己丰富的解题实践择其优者实施.为此,只有平时对如下五类热点题型有思维模式的积淀,才能在应试中形成灵活的解题思维一,立体几何中的条件探索题此类题型是高考命题改革的先进成果,已被各省市的高考命题所大量采用,对考查新课标规定的数学基本能力中的空间想象能力,推理论证能力均大有裨益.抓住结论采到逆向探索,灵活转移,直观想象等思维方式,常可发现或猜出条件,进而给出充分性的证明.这是此类题型的一般思维模式.例1如图1,四棱锥P—ABCD中,M是棱船的中点;在底面四边形ABCD中,AB//CD, AB=4DC.在棱PC上找一点Ⅳ,使DⅣ∥平面?23?。

圆锥曲线中的定值定点定直线的基本方法和技巧

圆锥曲线中的定值定点定直线的基本方法和技巧

解析几何中的基本方法和技巧第二章 圆锥曲线中的定值定点定线问题解析几何中的定点、定值、定直线问题一直是高考中值得关注的问题。

它的基本形式是在若干个相关几何量变化过程中,某些量却是恒定不变的。

第一节 定值问题一、与圆类比的定值问题 1、与垂径定理类比【例】已知直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,线段AB 中点为M ,O 为坐标原点,求证:AB OM K K ⋅为定值。

证明:(点差法)设1122(,),(,)A x y B x y ,00(,)M x y所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得1212121222()()()()0x x x x y y y y a b -+-++= 即1212121222()()()()x x x x y y y y a b -+-+=-所以22121202212120y y b x x b x x x a y y a y -+=-=--+ 所以22AB OMb K K a⋅=-2、直径所对的圆周角为直角【例】已知椭圆22221(0)x y a b a b+=>>的左、右顶点为,A B ,P 为椭圆上不同于,A B 的任一点,求证:PA PB K K ⋅为定值。

【证明】证明定值问题的本质是消元。

因为椭圆22221(0)x y a b a b+=>>的左、右顶点为,A B ,所以(,0),(,0)A a B a -,设00(,)P x y所以200022000PA PBy y y K K x a x a x a ⋅=⋅=+-- 因为2200221x y a b+=,2222002()b y x a a -=-所以22PA PB b K K a⋅=-变式:如图,椭圆C :()221212x y m m m +=>+-的离心率2e =,椭圆C 的左、右顶点分别为A ,B ,又P ,M ,N 为椭圆C 上非顶点的三点.设直线PA ,PB 的斜率分别为1k ,2k .(1)求椭圆C 的方程,并求12k k ⋅的值;(2)若//AP ON ,//BP OM ,判断OMN 的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【解】(1)由题意得()()123c m m =+--=,又32c e a ==,所以2a =,221b a c =-=, 即椭圆C :2214x y +=.设()00,P x y ,则222200001144x x y y ==-+⇒, 又()2,0A -,()2,0B ,则()()20201220001142244x y k k x x x -⋅===--+-. (2)设直线MN 的方程为()0y kx t k =+≠,()11,M x y ,()22,N x y ,22,1,4y kx t x y =+⎧⎪⎨+=⎪⎩()222418440k x ktx t ⇒+++-=, 122841kt x x k +=-+,21224441t x x k -=+, ()()12121212121211404044AP BP y y k k y y x x kx t kx t x x x x ⋅=-⇒⋅=-⇒+=⇒+++=,()()22121241440k x x kt x x t ++++=,()22222448414404141t ktk kt t k k -+⋅-⋅+=++即()()()2222224144324410k t k t tk+--++=,即2281640t k --=22241t k ⇒-= 22241t k ⇒=+,()()()()2222121212114MN k x x k x x x x ⎡⎤=+-=+⋅+-⎣⎦()22222844144141kt t k k k ⎡⎤-⎛⎫=+⋅--⋅⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦()()222222264161614141k t t k k k ⎡⎤-⎢⎥=+⋅-⎢⎥++⎣⎦======O 到直线MN 的距离d =,所以112OMNS=⋅==. ∴OMN 的面积为定值1.二、与圆锥曲线顶点有关的定值【例】直线l 过抛物线M :22y =px 的焦点交M 于A ,B 两点,O 为原点,则K OA ·K OB _________. 解题策略:将直线方程(注意直线过x 轴上一点的设法)和抛物线方程联立,由韦达定理得到y 1+y 2,y 1y 2,再由直线方程得到12x x ,最后将K OA ·K OB 转化为1212y y x x 。

例谈解析几何定点定值问题

例谈解析几何定点定值问题

%3 "3
) * "3
3" .!$
3" #)3"
.(.3" .!
#)3" '!*
'(* #)3" '!*+' 3" .!
!整
' 3" .( ' 3" .!
) * 理

得1$#)#$'33"*+'#"'33"
$3 $#)#'3"*+
'
# "
!
) * 故直线,- 过定点
# "
!&
!
总结归纳)!*若确定动直线% 过定点问题!可 设
.1"
$!联立!消元整理可得
)3" .(*+".%3"+.(3"''!$&!解得+$'#)舍去*
或+
$'#3)3"".'((*!代

1
$
3 (
)+
.#*可

1
$
) * %3 !
3" .(

, '#3)3"".'((*!3"%.3(
!




) * - #3)3"".'!!*!'3"".3! !所以直线,- 的方程为1.
一定点问题
定点问题%在解 析 几 何 中!对 于 一 些 含 有 参 数 的

直线和圆中的定点_定值问题的解决策略

直线和圆中的定点_定值问题的解决策略

PB,切点分 别 为 A,B.求 证:经 过 A,P,M 三 点 的 圆
与圆 M 的公共弦必过定点 ,并求出此定点的坐标 .
证 明:设P(a,2a),过 A,P,M 三点的圆即以PM
一 、直 线 过 定 点 的 解 决 策 略
(一)将直线方程化为点斜式y-y0 =k(x-x0), 则 直 线 过 定 点(x0,y0)
例 1 已知直线ax-y+1-2a=0,不论A 取何
值 ,直 线 都 过 定 点 .
分析:把直线 方 程 化 为 点 斜 式 得 y -1=a(x -
2),直 线 过 定 点 (2,1).
例4 已知圆 M 的方程为x2+ (y-2)2 =1,点P 在直线l:x -2y =0 上,过 点 P 作 圆 M 的 切 线 PA, PB,切点为 A,B.证 明:经 过 A,P,M 三 点 的 圆 必 过 定点,并求出定点坐标 .
分 析:由于点P 在直线l上,动点P 是本问题的动
( ) 因,因此以点 P x0,12x0 的 坐 标 为 参 数 来 表 示 经 过
于 参数 m 的式子:(2x +y-7)m + (x +y-4)=0.
因 为 直 线 过 定 点,则 与 m 的 取 值 无 关,所 以
{ { 2x
+y
-7=0, 解

x +y -4=0,

=3, 从

直线


点(3,1).
y =1.
(三 )从 特 殊 到 一 般
从 直线系的角度看方程(2x +y-7)m + (x +y
(二 )含 参 直 线 方 程 转 化 为 等 式 恒 成 立 问 题
例2 已知直线l:(2 m +1)x + (m +1)y -7 m

2025高考数学必刷题 第77讲、定点、定值问题 (学生版)

2025高考数学必刷题  第77讲、定点、定值问题 (学生版)

第77讲定点、定值问题知识梳理1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.必考题型全归纳题型一:面积定值例1.(2024·安徽安庆·安庆一中校考三模)已知椭圆2222:1(0)x y C a b a b +=>>过点()(),0,0,A a B b --O 为坐标原点,且1OAB S = .(1)求椭圆C 的方程;(2)设P 为椭圆C 上第一象限内任意一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.例2.(2024·陕西汉中·高三统考阶段练习)已知双曲线C :()222210,0x y a b a b-=>>的焦距为1.(1)求双曲线C 的标准方程;(2)若动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于,P Q 两点,O 为坐标原点,证明:OPQ △的面积为定值.例3.(2024·广东广州·高三广州市真光中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>,渐近线方程为02x y ±=,点()2,0A 在C 上;(1)求双曲线C 的方程;(2)过点A 的两条直线AP ,AQ 分别与双曲线C 交于P ,Q 两点(不与A 点重合),且两条直线的斜率1k ,2k 满足121k k +=,直线PQ 与直线2x =,y 轴分别交于M ,N 两点,求证:AMN 的面积为定值.变式1.(2024·四川·成都市锦江区嘉祥外国语高级中学校考三模)设椭圆E :()222210x y a b a b+=>>过点)M ,且左焦点为()1F .(1)求椭圆E 的方程;(2)ABC 内接于椭圆E ,过点()4,1P 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD AQ PD = ,证明:PBC 面积为定值,并求出该定值.变式2.(2024·全国·高二专题练习)已知1l ,2l 既是双曲线1C :2214yx -=的两条渐近线,也是双曲线2C :22221x ya b-=的渐近线,且双曲线2C 的焦距是双曲线1C .(1)任作一条平行于1l 的直线l 依次与直线2l 以及双曲线1C ,2C 交于点L ,M ,N ,求MNNL的值;(2)如图,P 为双曲线2C 上任意一点,过点P 分别作1l ,2l 的平行线交1C 于A ,B 两点,证明:PAB 的面积为定值,并求出该定值.变式3.(2024·四川成都·高二树德中学校考阶段练习)已知椭圆22:14x C y +=,,A B 是椭圆上的两个不同的点,O 为坐标原点,,,A O B 三点不共线,记AOB 的面积为AOB S .(1)若()()1122,,,OA O x y x y B == ,求证:122112AOB S x y x y =- ;(2)记直线,OA OB 的斜率为12,k k ,当1214k k =-时,试探究2AOB S 是否为定值并说明理由.题型二:向量数量积定值例4.(2024·新疆昌吉·高二统考期中)已知椭圆2222:1(0)x y C a b a b+=>>,1F ,2F 是C 的左、右焦点,过1F 的动直线l 与C 交于不同的两点A ,B 两点,且2ABF △的周长为椭圆C 的其中一个焦点在抛物线24y x =准线上,(1)求椭圆C 的方程;(2)已知点5,04M ⎛⎫- ⎪⎝⎭,证明:MA MB ⋅ 为定值.例5.(2024·江西萍乡·高二萍乡市安源中学校考期末)已知()4,M m 是抛物线()2:20C y px p =>上一点,且M 到C 的焦点的距离为5.(1)求抛物线C 的方程及点M 的坐标;(2)如图所示,过点()2,0P 的直线l 与C 交于A ,B 两点,与y 轴交于点Q ,设QA PA λ= ,QB PB μ=,求证:λμ+是定值.例6.(2024·四川南充·高二四川省南充高级中学校考开学考试)已知点P 到(2,0)A -的距离是点P 到()10B ,的距离的2倍.(1)求点P 的轨迹方程;(2)若点P 与点Q 关于点B 对称,过B 的直线与点Q 的轨迹Γ交于E ,F 两点,探索BE BF ⋅是否为定值?若是,求出该定值;若不是,请说明理由.变式4.(2024·全国·高二校联考阶段练习)已知椭圆()2222:10x y E a b a b+=>>的右焦点为()1,0F ,点31,2P ⎛⎫- ⎪⎝⎭在E 上.(1)求椭圆E 的标准方程;(2)过点F 的直线l 与椭圆E 交于A ,B 两点,点Q 为椭圆E 的左顶点,直线QA ,QB 分别交4x =于M ,N 两点,O 为坐标原点,求证:OM ON ⋅为定值.变式5.(2024·上海宝山·高三上海交大附中校考期中)已知椭圆()2222:10x y C a b a b+=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.题型三:斜率和定值例7.(2024·四川成都·高三成都七中校考开学考试)已知()221:1044x y C a a a+=<<-,()222:144x y C b b b+=>-.(1)证明:2y x =-总与1C 和2C 相切;(2)在(1)的条件下,若2y x =-与1C 在y 轴右侧相切于A 点,与2C 在y 轴右侧相切于B 点.直线l 与1C 和2C 分别交于P ,Q ,M ,N 四点.是否存在定直线l 使得对任意题干所给a ,b ,总有AP AQ BP BQ k k k k +++为定值?若存在,求出l 的方程;若不存在,请说明理由.例8.(2024·河南洛阳·高三伊川县第一高中校联考开学考试)已知抛物线2111:2(0)C y p x p =>与抛物线2222:2(0)C x p y p =>在第一象限交于点P .(1)已知F 为抛物线1C 的焦点,若PF 的中点坐标为()1,1,求1p ;(2)设O 为坐标原点,直线OP 的斜率为1k .若斜率为2k 的直线l 与抛物线1C 和2C 均相切,证明12k k +为定值,并求出该定值.例9.(2024·河南许昌·高二统考期末)已知PAB 的两个顶点A ,B 的坐标分别是(0,3),(0,3),-且直线PA ,PB 的斜率之积是3-,设点P 的轨迹为曲线H .(1)求曲线H 的方程;(2)经过点(1,3)且斜率为k 的直线与曲线H 交于不同的两点E ,F (均异于A ,B ),证明:直线BE 与BF 的斜率之和为定值.变式6.(2024·河南商丘·高二校考阶段练习)已知12A A B ,,是椭圆()222210x y a b a b+=>>的顶点(如图),直线l 与椭圆交于异于顶点的P Q ,两点,且2//l A B ,且2A B =,(1)求此椭圆的方程;(2)设直线1A P 和直线BQ 的斜率分别为12k k ,,证明12k k +为定值.变式7.(2024·云南昆明·高二云南师范大学实验中学校考阶段练习)过点()1,0M 的直线为,l N 为圆22:(2)4C x y +-=与y 轴正半轴的交点.(1)若直线l 与圆C 相切,求直线l 的方程:(2)证明:若直线l 与圆C 交于,A B 两点,直线,AN BN 的斜率之和为定值.题型四:斜率积定值例10.(2024·河南郑州·高三郑州外国语学校校考阶段练习)已知椭圆()222210+=>>x y C a b a b:的离心率为2,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线()():10l y k x k =-≥与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,且PQ 平分APB ∠,设直线OP 的斜率为k '(O 为坐标原点),判断k k '⋅是否为定值?并说明理由.例11.(2024·内蒙古包头·高三统考开学考试)已知点()()3,0,3,0M N -,动点(),P x y 满足直线PM 与PN 的斜率之积为13-,记点P 的轨迹为曲线C .(1)求曲线C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交曲线C 于A ,B 两点,点A 在第一象限,AD ⊥x 轴,垂足为D ,连接BD 并延长交曲线C 于点H .证明:直线AB 与AH 的斜率之积为定值.例12.(2024·江苏南通·高三统考开学考试)在直角坐标系xOy 中,点P 到点)F 的距离与到直线l :x =P 的轨迹为W .(1)求W 的方程;(2)过W 上两点A ,B 作斜率均为12-的两条直线,与W 的另两个交点分别为C ,D .若直线AB ,CD 的斜率分别为1k ,2k ,证明:12k k 为定值.变式8.(2024·全国·高二随堂练习)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,点(在C 上,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.题型五:斜率比定值例13.(2024·福建厦门·高二厦门一中校考期中)已知双曲线Γ:22221x y a b-=实轴AB 长为4(A 在B 的左侧),双曲线Γ上第一象限内的一点P 到两渐近线的距离之积为45.(1)求双曲线Γ的标准方程;(2)设过()4,0T 的直线与双曲线交于C ,D 两点,记直线AC ,BD 的斜率为1k ,2k ,请从下列的结论中选择一个正确的结论,并予以证明.①12k k +为定值;②12k k ⋅为定值;③12k k 为定值例14.(2024·四川成都·高二校考期中)已知椭C :22221(0)x y a b a b+=>>,12,F F 为其左右焦1F ()(1)求椭圆C 的标准方程;(2)设点P ()0000,(0)x y x y ≠,点P 在椭圆C 上,过点P 作椭圆C 的切线l ,斜率为0k ,1PF ,2PF 的斜率分别为1k ,2k ,则11201k k k k k +是否是定值?若是,求出定值;若不是,请说明理由.例15.(2024·湖北荆州·高三沙市中学校考阶段练习)已知双曲线()2222:1,0,0x y C a b a b-=>>的实轴长为4,左右两个顶点分别为12,A A ,经过点()4,0B 的直线l 交双曲线的右支于,M N两点,且M 在x 轴上方,当l x ⊥轴时,MN =(1)求双曲线方程.(2)求证:直线12,MA NA 的斜率之比为定值.题型六:线段定值例16.(2024·浙江·高二校联考期中)已知圆1C :22x y m +=与圆2C :2240x y x +-=.(1)若圆1C 与圆2C 内切,求实数m 的值;(2)设()3,0A ,在x 轴正半轴上是否存在异于A 的点(),0B b ,使得对于圆2C 上任意一点P ,PAPB为定值?若存在,求b 的值;若不存在,请说明理由.例17.(2024·重庆沙坪坝·高三重庆一中校考阶段练习)已知P 为平面上的动点,记其轨迹为Γ.(1)请从以下三个条件中选择一个,求对应的Γ的方程;①以点P 为圆心的动圆经过点()1,0F -,且内切于圆()22:116K x y -+=;②已知点()1,0T -,直线4l x =-:,动点P 到点T 的距离与到直线l 的距离之比为12;③设E 是圆22:4O x y +=上的动点,过E 作直线EG 垂直于x轴,垂足为G ,且2GP GE = .(2)在(1)的条件下,设曲线Γ的左、右两个顶点分别为A ,B ,若过点()1,0K 的直线m 的斜率存在且不为0,设直线m 交曲线Γ于点M ,N ,直线n 过点()1,0T -且与x 轴垂直,直线AM 交直线n 于点P ,直线BN 交直线n 于点Q ,则线段的比值TP TQ是否为定值?若是,求出该定值;若不是,请说明理由.例18.(2024·江西九江·统考一模)如图,已知椭圆22122:1x y C a b+=(0a b >>)的左右焦点分别为1F ,2F ,点A 为1C 上的一个动点(非左右顶点),连接1AF 并延长交1C 于点B ,且2ABF △的周长为8,12AF F △面积的最大值为2.(1)求椭圆1C 的标准方程;(2)若椭圆2C 的长轴端点为12,F F ,且2C 与1C 的离心率相等,P 为AB 与2C 异于1F 的交点,直线2PF 交1C 于,M N 两点,证明:||||AB MN +为定值.变式9.(2024·湖南·高三临澧县第一中学校联考开学考试)已知抛物线()21:0C y px p =>的焦点为1F ,抛物线22:2C y px =的焦点为2F ,且1212F F =.(1)求p 的值;(2)若直线l 与1C 交于M ,N 两点,与2C 交于P ,Q 两点,M ,P 在第一象限,N ,Q 在第四象限,且2MP NQ =,证明:MN PQ为定值.变式10.(2024·安徽合肥·高三合肥一中校联考开学考试)已知抛物线2:2E x py =(p 为常数,0p >).点()00,M x y 是抛物线E 上不同于原点的任意一点.(1)若直线00:2x l y x y =-与E 只有一个公共点,求p ;(2)设P 为E 的准线上一点,过P 作E 的两条切线,切点为,A B ,且直线PA ,PB 与x 轴分别交于C ,D 两点.①证明:PA PB ⊥②试问PC AB PB CD⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.变式11.(2024·山东淄博·高二校联考阶段练习)已知圆O :222x y r +=与直线0x y -+=相切.(1)若直线:25l y x =-+与圆O 交于M ,N 两点,求MN ;(2)已知()9,0C -,()1,0D -,设P 为圆O 上任意一点,证明:PDPC为定值.变式12.(2024·福建厦门·厦门一中校考模拟预测)已知A ,B 分别是椭圆C :()222210x y a b a b +=>>的右顶点和上顶点,AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .(i )求OCM 的面积与ODN △的面积之比;(ⅱ)证明:22CM MD +为定值.变式13.(2024·四川巴中·高二四川省通江中学校考期中)已知圆C 过点()1,2A ,()2,1B ,且圆心C 在直线y x =-上.P 是圆C 外的点,过点P 的直线l 交圆C 于M ,N 两点.(1)求圆C 的方程;(2)若点P 的坐标为()0,3-,求证:无论l 的位置如何变化PM PN ⋅恒为定值;(3)对于(2)中的定值,使PM PN ⋅恒为该定值的点P 是否唯一?若唯一,请给予证明;若不唯一,写出满足条件的点P 的集合.变式14.(2024·云南·校联考模拟预测)已知点M 到定点()3,0F 的距离和它到直线l :253x =的距离的比是常数35.(1)求点M 的轨迹C 的方程;(2)若直线l :y kx m =+与圆2216x y +=相切,切点N 在第四象限,直线l 与曲线C 交于A ,B 两点,求证:FAB 的周长为定值.题型七:直线过定点例19.(2024·全国·高三专题练习)已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点1(1,0)F -且与x 轴不重合的直线与椭圆C 交于,A B 两点,2ABF 的周长为8.(1)若2ABF 的面积为7,求直线AB 的方程;(2)过,A B 两点分别作直线4x =-的垂线,垂足分别是,E F ,证明:直线EB 与AF 交于定点.例20.(2024·江西南昌·高三校联考阶段练习)已知椭圆()2222:10x y C a b a b+=>>的离心率为2,左、右焦点分别为1F ,2F ,点P 为椭圆C 上任意一点,12PF F △(1)求椭圆C 的方程;(2)过x 轴上一点()1,0F 的直线与椭圆交于,A B 两点,过,A B 分别作直线2:l x a =的垂线,垂足为M ,N 两点,证明:直线AN ,BM 交于一定点,并求出该定点坐标.例21.(2024·江西南昌·高二南昌市外国语学校校考期中)在平面直角坐标系中,椭圆C :22221x y a b +=(a >b >0)过点⎝⎭.(1)求椭圆C 的标准方程;(2)过点K (2,0)作与x 轴不重合的直线与椭圆C 交于A ,B 两点,过A ,B 点作直线l :x=2a c的垂线,其中c 为椭圆C 的半焦距,垂足分别为A 1,B 1,试问直线AB 1与A 1B 的交点是否为定点,若是,求出定点的坐标;若不是,请说明理由.变式15.(2024·甘肃天水·高二统考期末)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率e =2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.变式16.(2024·黑龙江鹤岗·高二鹤岗一中校考期中)在平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB= ,3AF FB ⋅=.(1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若()121k k k +=,证明直线l 过定点,并求出定点的坐标.变式17.(2024·全国·高三专题练习)已知A 、B 分别为椭圆E ∶22221(0)x y a b a b+=>>的右顶点和上顶点、椭圆的离心率为3,F 1、F 2为椭圆的左、右焦点,点P 是线段AB 上任意一点,且12PF PF ⋅的最小值为7110-.(1)求椭圆E 的方程;(2)若直线l 是圆C ∶x 2+y 2=9上的点处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MG ,MH ,切点分别为G ,H ,设切线的斜率都存在.试问∶直线GH 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.变式18.(2024·全国·高三专题练习)已知椭圆C :()222210x y a b a b+=>>的右顶点是M (2,0),离心率为12.(1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.题型八:动点在定直线上例22.(2024·江苏南通·高二校考阶段练习)已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.例23.(2024·上海·高二专题练习)已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(1)求动点P 的轨迹E 方程;(2)若12(2,0),(2,0)(1,0)A A M -,设直线l 过点M ,且与轨迹E 交于R Q 、两点,直线1A R 与2A Q 交于S 点.试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.例24.(2024·全国·高二专题练习)已知椭圆C 的离心率2e =,长轴的左、右端点分别为()()122,02,0A A -,(1)求椭圆C 的方程;(2)设直线1x my =+与椭圆C 交于P Q ,两点,直线1A P 与2A Q 交于点S ,试问:当m 变化时,点S 是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.变式19.(2024·全国·高三专题练习)已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.变式20.(2024·浙江台州·高二校联考期中)已知直线l :1x my =+与圆C :2240x y x +-=交于A 、B 两点.(1)若1m =时,求弦AB 的长度;(2)设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .试探究:当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.变式21.(2024·全国·高二专题练习)已知直线:1l x my =-,圆22:40C x y x ++=.(1)证明:直线l 与圆C 相交;(2)设直线l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .证明:Q ,A ,B ,C 四点共圆,并探究当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.变式22.(2024·吉林四平·高二校考阶段练习)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为1M 、2M ,短轴长为C 上的点P 满足直线1PM 、2PM 的斜率之积为34-.(1)求C 的方程;(2)若过点()1,0且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线1M A 、2M B 交于点Q .探究:点Q 是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.变式23.(2024·高二课时练习)已知椭圆C :22221x y a b+=(0a b >>)过点(P ,且离心率为2.(1)求椭圆C 的方程;(2)记椭圆C 的上下顶点分别为,A B ,过点()0,4斜率为k 的直线与椭圆C 交于,M N 两点,证明:直线BM 与AN 的交点G 在定直线上,并求出该定直线的方程.题型九:圆过定点例25.(2024·陕西西安·高二西安市铁一中学校考期末)已知椭圆2222=1(>>0)x y C a b a b+:的离心率2=e ,左、右焦点分别为12,F F ,抛物线2y =的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :2223x y +=的切线l (直线l 的斜率存在且不为零)与椭圆相交于,A B 两点,求证:以AB 为直径的圆是否经过坐标原点.例26.(2024·四川宜宾·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,左、右焦点分别为1F 、2F ,抛物线2y =的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆222:3M x y +=的切线l (直线l 的斜率存在且不为零)与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.例27.(2024·辽宁葫芦岛·统考二模)已知直线l 1:10x y -+=过椭圆C :2221(0)4x y b b +=>的左焦点,且与抛物线M :22(0)y px p =>相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.变式24.(2024·全国·高三专题练习)在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.变式25.(2024·广西·高三象州县中学校考阶段练习)在直角坐标系xOy 中,动点M 到定点(1,0)F 的距离比到y 轴的距离大1.(1)求动点M 的轨迹方程;(2)当0x ≥时,记动点M 的轨迹为曲线C ,过F 的直线与曲线C 交于P ,Q 两点,直线OP ,OQ 与直线1x =分别交于A ,B 两点,试判断以AB 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.变式26.(2024·江西宜春·高二江西省丰城中学校考期末)已知双曲线C :()222210,0x y a b a b -=>>经过点A ()2,0,且点A 到C 的渐近线的距离为7.(1)求双曲线C 的方程;(2)过点()4,0作斜率不为0的直线l 与双曲线C 交于M ,N 两点,直线4x =分别交直线AM ,AN 于点E ,F .试判断以EF 为直径的圆是否经过定点,若经过定点,请求出定点坐标;反之,请说明理由.题型十:角度定值例28.(2024·全国·高三专题练习)已知椭圆()2222:10x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN ∠为定值.例29.(2024·北京·高三北京八中校考期中)已知椭圆2222:1(0)x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程.(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN ∠为定值.例30.(2024·全国·高三专题练习)已知点()20F -,是椭圆22221(0)x y E a b a b+=>>:的左焦点,过F 且垂直x 轴的直线l 交E 于P ,Q ,且10||=3PQ .(1)求椭圆E 的方程;(2)四边形ABCD (A ,D 在x 轴上方)的四个顶点都在椭圆E 上,对角线AC ,BD 恰好交于点F ,若直线AD ,BC 分别与直线l 交于M ,N ,且O 为坐标原点,求证:MOF NOF ∠=∠.变式27.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.变式28.(2024·四川绵阳·高二盐亭中学校考期中)已知圆222:(64F x y -+=,N 为圆上一动点,1(F -,若线段1NF 的垂直平分线交2NF 于点M .(1)求动点M 的轨迹方程E ;(2)如图,点(2,P Q 在曲线E 上,,A B是曲线E 上位于直线PQ 两侧的动点,当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.变式29.(2024·广东阳江·高三统考开学考试)已知()2,0A ,()2,0B -分别是椭圆()2222:10x y C a b a b+=>>长轴的两个端点,C 的焦距为2.()3,0M ,4,03N ⎛⎫ ⎪⎝⎭,P 是椭圆C 上异于A ,B 的动点,直线PM 与C 的另一交点为D ,直线PN 与C 的另一交点为E .(1)求椭圆C 的方程;(2)证明:直线DE 的倾斜角为定值.变式30.(2024·陕西榆林·高二校考阶段练习)已知椭圆E 的中心为坐标原点,对称轴为x轴、y 轴,且过()2,1A -,2B ⎛ ⎝⎭两点.(1)求E 的方程;(2)若直线l 与圆O :2285x y +=相切,且直线l 交E 于M ,N 两点,试判断MON ∠是否为定值?若是,求出该定值;若不是,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中定点定值问题例1 已知椭圆)1(1222>=+a y ax 的上顶点为M (0,1),过M 的两条动弦MA 、MB 满足MA ⊥MB 。

对于给定的实数)1(>a a ,证明:直线AB 过定点。

解:由0MA MB ⋅=知MA MB ⊥,从而直线MA 与坐标轴不垂直,故可设直线MA 的方程为1y kx =+,直线MB 的方程为11y x k=-+ 将1y kx =+代入椭圆C 的方程,整理得 2222(1)20a k x a k x ++= 解得0x =或22221a k x a k -=+,故点A 的坐标为222222221(,)11a k a k a k a k --++ 同理,点B 的坐标为22222222(,)a k k a k a k a-++ 知直线l 的斜率为2222222222222211221k a a k k a a k a k a k k a a k ---++--++=221(1)k a k-+ 直线l 的方程为22222222212()(1)k a k k a y x a k k a k a --=-++++,即222211(1)1k a y x a k a --=-++ ∴直线l 过定点2210,1a a ⎛⎫-- ⎪+⎝⎭例3 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R ∈+=μλλλ,证明22μλ+为定值.(I )解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x ++=+由与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a c ba c a cx x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x OM μλ+==由已知得设 ⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x又222222212133,33b y x b y x =+=+又,代入①得.122=+μλ故22μλ+为定值,定值为1.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业(13)1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.82.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点,O 是椭圆的中心,OMAB k k ⋅=______ 22ab -3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使θθsin cos +=.则直线OA 与OB 的斜率之积为 . 12-4.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是 椭圆5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:当直线ON 垂直于x 轴时,|ON|=1,|OM|=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k 1-=. 由⎩⎨⎧=+=1422y x kxy ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM .设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d=33.综上,O 到直线MN 的距离是定值.A B P α(第4题)6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=若点A ,B 分别是椭圆E 的左、右顶点,直线l经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M 设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.证明:直线BP 的斜率为1212y k x =-,直线m 的斜率为112m x k y -=, 则直线m 的方程为1012(2)x y y x y --=-, 111101111222(2)4(2)2x x x y y x y x y y y x ---=-+=-++ 2211111122(4)4(2)x x y x y x y --+=++2211111122(4)123(2)x x x x y x y --+-=++=111122x x x y y --+=112(1)x x y -+, 所以直线m 过定点(1,0)-.7.已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A (1)求椭圆的方程;(2)设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;(3)过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.高二数学教学案(13)例1 已知椭圆)1(1222>=+a y ax 的上顶点为M (0,1),过M 的两条动弦MA 、MB 满足MA ⊥MB 。

对于给定的实数)1(>a a ,证明:直线AB 过定点。

例2一束光线从点1(1,0)F -出发,经直线l :230x y -+=上一点P 反射后,恰好穿过点2(1,0)F . (1)求P 点的坐标;(2)求以1F 、2F 为焦点且过点P 的椭圆C 的方程; (3)设点Q 是椭圆C 上除长轴两端点外的任意一点,试问在x 轴上是否存在两定点A 、B ,使得直线QA 、QB 的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A 、B 的坐标;若不存在,请说明理由.例3 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R ∈+=μλλλ,证明22μλ+为定值.例4 设21,F F 是椭圆134:22=+y x C 的左右焦点,B A ,分别为左顶点和上顶点,过右焦点2F 的直线l 交椭圆C 于N M ,两点,直线AN AM ,分别与已知直线4=x 交于点Q P ,,试探究以PQ 为直径的圆与直线l 的位置关系.高二数学作业(13)1.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.2.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点,O 是椭圆的中心,OM AB k k ⋅=______3.在椭圆2212x y +=上,对不同于顶点的任意三个点,,M A B ,存在锐角θ,使θθsin cos +=.则直线OA 与OB 的斜率之积为 .4.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是5.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.6.如图,在平面直角坐标系xOy 中,椭圆E :22143x y +=若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M 设过A B P α(第4题)点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.7.已知椭圆)0(12222>>=+b a b y a x 的离心率为22,且过点)21,22(P ,记椭圆的左顶点为.A (1)求椭圆的方程;(2)设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求ABC ∆面积的最大值;(3)过点A 作两条斜率分别为1k ,2k 的直线交椭圆于D ,E 两点,且221=k k ,求证:直线DE 恒过一个定点.。

相关文档
最新文档