勾股定理和勾股定理逆定理经典例题
勾股定理及其逆定理,经典过关题及练习题(含答案)
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
勾股定理典型题总结(较难)
勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。
求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。
勾股定理及逆定理
一勾股定理验证(等面积法)解题思路:将所给三角形拼成大图形用等面积法:大图形面积=各小图形面积和。
例1、如图所示,可以利用两个全等的直角三角形拼出一个梯形.借助这个图形,你能用面积法来验证勾股定理吗?例2、如图矩形是由四个直角三角形拼成,题中已给出各边长,试证明勾股定理。
例3、图中的正方形均是由Rt△ABC拼成,试验证勾股定理。
二、勾股数:满足a2+b2=c2的一组正整数叫做勾股数类型一:如何判断勾股数关键词:选择题、三条边、构成直角三角形、勾股数等一眼识别勾股数:可将较小两数的个位数进行完全平方求和,将所得的新的个位数与最大数的个位数的平方所得个位数进行比较,若结果一样一般满足勾股数。
例1、判断下列哪组数是勾股数()A、58,44,60B、8,15,17C、13,14,19D、22,30,19类型二:大题中如何估算勾股数解题思路:先确定最高位的数字,再确定其它位数字例1、已知直角三角形的两条直角边分别是:48、55,试求斜边长是多少?类型三:根据勾股数关系巧设未知数求边长例1、在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为多少?例2、直角三角形的三边长是三个连续的整数,这样的三角形共有()个?A、1个B、2个C、3个D、无数个例3、△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为多少?此三角形为何种三角形?类型四:勾股数与规律例1、观察下列各组数:a b c第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第四组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1.......观察以上各组勾股数的组成特点,你能求出第七组勾股数的a ,b ,c ,各是多少吗?弟n 组呢?例2、观察下列每组勾股数,每行所给的三个数a,b,c 都满足a<b<c,6, 8,10 2221086=+8,15,1710,24,26 222262410=+12,35,37 222373512=+20, b,c 22220c b =+试根据已有数的规律,写出当a=20时,b,c 的值,并把b,c 用含a 的代数式表示出来.例3、已知:在ABC Rt ∆中, 90=∠C ,C B A ∠∠∠,,的对边分别为a,b,c 设ABC ∆的面积为S,周长为C.(2)如果a+b-c=m,观察上表,猜想S/C=______(用含有m 的代数式表示。
《勾股定理》勾股定理的逆定理(含答案)
第3章《勾股定理》: 3.2 勾股定理的逆定理填空题1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长.(第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm.3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米.4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.(第4题)(第5题)(第6题)5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3)9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.(第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.15.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.16.先请阅读下列题目和解答过程:“已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2-b2)=(a2+b2)(a2-b2),B∴c2=a2+b2,C∴△ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.21.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 …a 22-1 32-1 42-1 52-1 …b 4 6 8 10 …c 22+1 32+1 42+1 52+1 …(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.22.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=95.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米, 3 ≈1.732).25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5米,求梯子顶端A下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为:1.5m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为:6厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC长,那么利用勾股定理可得内径.解答:解:根据条件可得筷子长为12厘米.如图AC=10厘米,BC=错误!=错误!=6厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•错误!=2,CB=2.∴AC=AB2+BC2 =8 =2 2 ,故答案为:2 2 .点评:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.6.故答案为:3 5 m.考点:平面展开-最短路径问题.专题:压轴题;转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=nπ×6 180,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=32+62 =45 =3 5 m.故小猫经过的最短距离是3 5 m.故答案是:3 5 m.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.7.故答案为:22m.考点:平面展开-最短路径问题.专题:压轴题.分析:要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:其侧面展开图如图:AD=πR=4π,AB=CD=20m.DE=CD-CE=20-2=18m,在Rt△ADE中,AE=AD2+DE2 =错误!≈21.9≈22m.故他滑行的最短距离约为22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20m.本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=122+(3π)2 =错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.(π取3)点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB=62+82 =10,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解答:解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60.考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解答:解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为: 2.42+12 =2.60米.故答案为:2.60.点评:本题主要考查两点之间线段最短,有一定的难度,是中档题.12.故答案为:25寸.考点:平面展开-最短路径问题.分析:根据两点之间线段最短,运用勾股定理解答.解答:解:将台阶展开矩形,线段AB 恰好是直角三角形的斜边,两直角边长分别为24寸,7寸,由勾股定理得AB=72+242 =25寸. 点评:本题结合实际,运用两点之间线段最短等知识来解答问题.13.故答案为:b=84,c=85;考点:勾股数. 专题:规律型.分析:认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n 组数为(2n+1),((2n +1)2−12), ((2n +1)2+12 ),由此规律解决问题.32-12解答:在32=4+5中,4=32-12 ,5=32+12; 在52=12+13中,12=52-12 ,13=52+12; …则在13、b 、c 中,b=132-12 =84,c=132+12=85; 点评:认真观察各式的特点,总结规律是解题的关键. 解答题14.考点:等边三角形的性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型.分析:根据等边三角形的性质利用SAS 判定△ABP≌△CBQ,从而得到AP=CQ ;设PA=3a ,PB=4a ,PC=5a ,由已知可判定△PBQ 为正三角形从而可得到PQ=4a ,再根据勾股定理判定△PQC 是直角三角形.解答:解:(1)猜想:AP=CQ ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC ,BP=BQ ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(3分)(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(7分)(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∵∠OAD=180°-(∠AOD+∠ADO)=50°,∴α-60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°-α=50°∴α=140°.综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)说明:第(3)小题考生答对1种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2分)(2)等号两边不能同除a2-b2,因为它有可能为零.(4分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)-(a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5分)∴a2=b2或c2=a2+b2(6分)∴△ABC是直角三角形或等腰三角形.(7分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=90°,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS 判定△ACE≌△BCD,从而得到∠EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠AFD=90°,从而转化为证明∠EAC+∠CDB=90即可解答:(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC,CE=CD ,∠ACE=∠BCD=90°,在△ACE 和△BCD,⎩⎪⎨⎪⎧∠AC =BC∠ACE =∠BCD CE =CD ∴△ACE≌△BCD(SAS );(2)解:直线AE 与BD 互相垂直,理由为:证明:∵△ACE≌△BCD,∴∠EAC=∠DBC,又∵∠DBC+∠CDB=90°,∴∠EAC+∠CDB=90°,∴∠AFD=90°,∴AF⊥BD,即直线AE 与BD 互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C 步 (2)等式两边同时除以a 2-b 2 (3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状. 解答:解:(1)C ;(2)方程两边同除以(a 2-b 2),因为(a 2-b 2)的值有可能是0;(3)∵c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)∴c 2=a 2+b 2或a 2-b 2=0∵a 2-b 2=0∴a+b=0或a-b=0∵a+b≠0∴c 2=a 2+b 2或a-b=0∴c 2=a 2+b 2或a=b∴该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△BDC是直角三角形,则四边形ABCD的面积=直角△ABD的面积+直角△BDC 的面积.解答:解:∵在△ABD中,AB⊥AD,AB=3,AD=4,∴BD=AB2+AD2 =32+42 =5.在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴S四边形A B C D=S△A B D+S△B D C=12AB•AD+12BD•CD12×3×4+12×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c为边的三角形是直角三角形.证明:∵a=n2-1,b=2n;c=n2+1∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ABC是直角三角形.解答:解:(1)∵CD⊥AB且CB=3,BD=95,故△CDB为直角三角形,∴在Rt△CDB中,CD=CB2−BD2 =32−(95)2 =125,在Rt△CAD中,AD=AC2−CD2 =42−(125)2 =165.(2)△ABC为直角三角形.理由:∵AD=165,BD=95,∴AB=AD+BD=165+95=5,∴AC2+BC2=42+32=25=52=AB2,∴根据勾股定理的逆定理,△ABC为直角三角形.点评:本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.23.故答案为:32m或(20+4 5 )m或803m.考点:勾股定理的应用;等腰三角形的性质.专题:分类讨论.分析:根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.解答:解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10-6=4m,∴AD=4 5 m,∴△ABD的周长=10+10+4 5 =(20+4 5 )m.③如图3,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理得:AD=82+(x−6)2 =x解得,x=253,∴△ABD的周长为:AD+BD+AB=803m.点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠CAD=30°,则AC=2CD,再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠CAD=30°,AD=3,设CD=x,则AC=2x,由AD2+CD2=AC2,得,32+x2=4x2,x= 3 =1.732,所以大树高1.732+1.68≈3.4(米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC=AE2+EC2 =错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=8 ,∴AD 2=AE 2+DE 2=36m(8 )2+(8 )2=16,∴AD=4,即梯子的总长为4米.∴AB=AD=4.在Rt△ABC 中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=2, ∴BC 2=AB 2-AC 2=42-22=12, ∴BC=12 =2 3 m ;∴点B 到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD 中,EC 2=ED 2-CD 2=2.52-22=2.25,∴EC=1.5,∴AE=AC -EC=2-1.5=0.5. 答:梯子顶端下滑了0.5米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE≌△EBC,得出AE=BC=10km ; 解答:解:∵使得C ,D 两村到E 站的距离相等.∴DE=CE,∵DA⊥AB 于A ,CB⊥AB 于B ,∴∠A=∠B=90°,∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,∴AE 2+AD 2=BE 2+BC 2,设AE=x ,则BE=AB-AE=(25-x ),∵DA=15km,CB=10km ,∴x 2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD=DA2−AC2 =2002−1602 =120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾股定理的应用.分析:连接AC,根据已知条件运用勾股定理逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.解答:解:连接AC,∵∠B=90°,∴△ABC为直角三角形,∵AC2=AB2+BC2=82+62=102,∵AC>0,∴AC=10,在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD2,∴△ACD为直角三角形,且∠ACD=90°,∴S四边形A B C D=S△A B C+S△A C D=12×6×8+12×10×24=144.点评:通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过程变得简单.。
勾股定理及其逆定理
勾股定理及其逆定理一. 课前热身1.勾股定理:如果直角三角形的两 长分别是a,b, 长为c,那么 。
若一个直角三角形的两边长分别为12和5,则第三边的长为 。
2.勾股定理的逆定理:如果三角形三边长a,b,c 满足 ,那么这个三角形是 。
下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( ) A .3、4、5 B.6、10、8 C.3、2、5 D.5、12、133.(1)互逆命题:如果两个命题的 和 正好相反,那么这两个命题叫做 ,如果把其中一个叫做原命题,那么另一个叫做它的 。
(2)互逆定理:如果一个定理的逆定理经过证明是 ,那么它也是一个定理,这两个定理称为 ,其中一个定理是另一个定理的 。
下列命题中,其逆命题城里的是 。
(只填序号)① 同旁内角互补,两直线平行 ②如果两个角是直角,那么它们相等 ③如果两个实数相等,那么它们的平方相等 ④如果三角形的三边长a,b,c 满足a 2+b 2+c 2,那么这个三角形是直角三角形4.勾股数:能够成为 三角形三条边长的 ,称为勾股数。
若9,a,12是一组勾股数,则a 的值为( ) A.10 B.15 C.37 D.37或15二. 内容讲解1.勾股定理考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________. 2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 4.在数轴上作出表示10的点.5.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝, 高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要 做多长?考点二、列方程,利用勾股定理求线段的长1.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 CD .53.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?FEDCBAA DEB C4.如图,某学校(A 点)与公路(直线L )的距离为300米, 又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、勾股定理的综合应用1.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .2.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外 壁爬行,要从A 点爬到B 点,则最少要爬行 cm3.小雨用竹杆扎了一个长80cm 、宽60cm 的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需________cm .4.小杨从学校出发向南走150米,接着向东走了360米.5.如图:带阴影部分的半圆的面积是多少?( 取3)6.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 求 ①AD 的长; ②ΔABC 的面积.7.在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.8.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.9.已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高. 求证:AB 2-AC 2=BC(BD-DC).10.已知直角三角形两直角边长分别为5和12, 求斜边上的高. A B11.小明想测量学校旗杆的高度,他采用如下的方法:先将旗 杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子 下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米, 你能帮它计算一下旗杆的高度.12.有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.13. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm 求四边形ABCD 的面积.14.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时 梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?15.在加工如图的垫模时,请根据图中的尺寸,求垫模中AB 间的尺寸.2.勾股定理的逆定理考点四、判别一个三角形是否是直角三角形1.若△ABC 的三个外角的度数之比为3:4:5,最大边AB 与最小边BC 的关系是_________. 2.若一个三角形的周长123c m,一边长为33c m,其他两边之差为3c m,则这个三角形 是______________________.3.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形 4.下列命题中是假命题的是( ). A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形. B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形. C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形. D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.5.在△ABC 中,2:1:1::=c b a ,那么△ABC 是( ).A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形 6.如图,正方形ABCD 中,F 为DC 的中点,E 为BC 上一点, 且BC CE 41=.你能说明∠AFE 是直角吗?考点五、开放型试题1.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.2.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.3.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm ,则正方形1的边长为__________cm. l 321S 4S 3S 2S 1三. 课堂小结随堂练习:一.选择题:1.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ).A .B .3C .D .2.若等腰直角三角形的斜边长为2,则它的面积为 ( )A .1 B.21C.2D.23.已知a=3,b=4,若a ,b ,c 能组成直角三角形,则c= ( )A.5B.7C.5或7D.5或6 4.若等边△ABC 的边长为2cm ,那么△ABC 的面积为 ( )A.3cm 2B.32cm 2C.33cm 2D.4cm 2 5.在直角坐标系中,点P (-2,3)到原点的距离是 ( )A.5B.13C.11D.2二、填空题:1.如图,一根12米高的电线杆两侧各用15米的铁丝固定, 两个固定点之间的距离是 。
勾股定理及逆定理应用(含解答)
4
6
8
10
…
c
22+1
32+1
42+1
52+1
…
(1)分别观察a、b、c与n之间的关系,并用含自然数n (n>1)的代数式表示:
a =,b =,c =
(2)猜想:以a、b、c为边的三角形是否为直角三角形?并证明你的猜想.
2、若正整数a、b、c满足方程a2+b2=c2,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:
A、5B、 C、5或 D、5或
3、等腰三角形底边上的高是8,周长是32,则三角形的面积是()
A、56B、48C、40D、32
4、若线段a、b、c能构成直角三角形,则它们的比为()
A、2:3:4B、3:4:6C、5:12:13D、4:6:7
5、一个长方形的长是宽的2倍,其对角线的长是5cm,则长方形的面积()
3、在△ABC中,AB=10,AC=8,BC=6,则△ABC的面积是
4、如图要修一个育苗棚,棚宽a=3m,高b=4m,底d=10m,覆盖顶上的塑料薄膜的面积为
5、如图点C是以为AB直径的半圆上的一点, 则图中阴影部136则AC=
7、直角三角形的一直角边为8cm,斜边为10cm,则这个直角三角形的面积是斜边上的高为
4、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面 倒下到 的位置,连结 ,设 ,请利用四边形 的面积证明勾股定理: .
5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EF都是正方形. 证:△ABF≌△DAE
勾股定理及其逆定理(习题及答案)
勾股定理及其逆定理(习题)例题示范例1:如图,强大的台风使得一棵树在离地面3m处折断倒下,树的顶部落在离树的底部4m处,这棵树折断之前有多高?解:如图,由题意,得AC=3,BC=4,∠ACB=90°.在Rt△ABC中,∠ACB=90°,由勾股定理,得AC2+BC2=AB2.∴32+42=AB2.∴AB=5.∴AB+AC=5+3=8.答:这棵树折断之前高8m.例2:如图,在△ABC中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°.证明:如图,在△ABC中,AB=13,AC=5,BC=12,∵52+122=132,∴AC2+BC2=AB2.∴△ABC为直角三角形,且∠C=90°.巩固练习1.如图,在Rt△ABC中,∠C=90°,若BC=8,AB=17,则AC的长为________.2.已知甲、乙两人从同一地点出发,甲往东走了12km,乙往南走了5km,这时甲、乙两人之间的距离为___________.3.已知某直角三角形的两直角边长分别为3和4,则此三角形的周长为_______.4.如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,则图中半圆的面积是_______.第4题图第5题图5.如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小到大依次记为S1,S2,S3,则S1,S2,S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S326.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2.7.在△ABC中,AB=AC=13,BC=10,则△ABC的面积为______.8.已知:如图,在△ABC中,AD⊥BC,垂足为点D,AB=13,AC=20,AD=12,求BC的长.9.如图,一架长25米的云梯斜靠在一面墙上,梯子底端与墙根之间的距离为7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向上滑动了几米?10.如图1是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理;(2)假设图1中的直角三角形有若干个,你能运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理.11.以下列长度的三条线段为边,不能组成直角三角形的是()A.1.5,2,2.5B.8,15,17C.7,24,25D.1,1,212.下面四组数,其中是勾股数的是()A.3,4,5B.0.3,0.4,0.5C.32,42,52D.6,7,813.已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为__________.14.如图,在正方形ABCD中,点E,F分别在AD,CD边上,若AB=4,AE=2,DF=1,则图中的直角三角形共有____个.15.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,求AC的长.思考小结1.赵爽弦图和毕达哥拉斯弦图都是由四个全等的__________三角形拼成的,但是在拼的过程中有区别,赵爽弦图的弦在____(填“内”或“外”),毕达哥拉斯弦图的弦在____(填“内”或“外”),请你画出对应的弦图.赵爽弦图毕达哥拉斯弦图2.我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)____(填“是”或“不是”)一组勾股数;一般地,如<<)是一组勾股数,那么ak,bk,ck(k 果a,b,c(a b c是正整数)是一组勾股数吗?若是,请证明;若不是,请说明理由.解:ak,bk,ck(k是正整数)______一组勾股数,理由如下:∵a,b,c是一组勾股数,∴___________________.∵k≠0,∴k2a2+k2b2______k2c2.∴(ak)2+(bk)2_____(ck)2.∵k为正整数,∴ak,bk,ck也是________.∴ak,bk,ck(k是正整数)_______一组勾股数.【参考答案】巩固练习1.152.13km3.124.16985.C6.497.608.BC的长为219.(1)这个梯子的顶端距地面24米高;(2)梯子的底端在水平方向上滑动了8米10.略11.D12.A13.96cm214.415.AC的长为10思考小结1.直角;外;内图略2.是;是;a2+b2=c2;=;=;正整数;是。
勾股定理及逆定理的综合应用试题
勾股定理及逆定理的综合应用一、勾股定理的逆定理逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边。
逆定理说明:①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
②在运用这一定理时,可用两小边的平方和22+与较长边的平方2c作比较,若它们a b相等时,以a,b,c为三边的三角形是直角三角形;若222+<时,以a,b,c为三边a b c的三角形是钝角三角形;若222+>时,以a,b,c为三边的三角形是锐角三角形。
a b c二、实际应用定理中的注意问题1. 定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三a b c边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为a c b斜边;2. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。
三、勾股定理逆定理的几种典型应用总结:1. 理解勾股定理与勾股定理逆定理之间的关系;2. 掌握好数形结合的思想及方程思想的应用。
例题1 如图,△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A. 15B. 16C. 17D. 18解析:延长AD至E使ED=AD,利用好“AD是中线”这个条件,再根据题中数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了。
答案:解:延长AD 至E ,使DE=AD ;连接B E , ∵AD=8.5,∴AE=2×8.5=17, 在△ADC 和△EDB 中,AD =DE ∵∠ADC =∠EDB BD =CD ,∴△ADC≌△EDB(S AS ),∴BE=AC=8,BE 2+AB 2=82+152=289,AE 2=172=289, ∴∠ABE=90°,∵在Rt△BED 中,BD 是中线, ∴BD=21AE=8.5,∴BC=2BD=2×8.5=17。
勾股定理及其逆定理(含答案)
勾股定理及其逆定理1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A. 1B. 2C. 3D. 42.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A. 5cmB. 10cmC. 14cmD. 20cm3.如图:图形A的面积是()A.225B.B. 144C.C. 81D.D. 无法确定4.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 125.如图,两个正方形的面积分别为64和49,则AC等于()A. 15B. 17C. 23D. 1136. 如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3C.D. 58. 直角三角形的两条直角边的长分别为4和5,则斜边长是()A. 3B. 41C.D. 97.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个8.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A. 8B. 10C. 12D. 169.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A. 6B. 7C. 8D. 910.如图,字母B所代表的正方形的面积是()A. 12 cm2B. 15 cm2C. 144 cm2D. 306 cm213. 已知直角三角形的两边长分别为2、3,则第三边长可以为()A. B. 3 C. D.14. 如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A. (5,4)B. (4,5)C. (4,4)D. (5,3)11.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.3B.4C.5D.612.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A. 5B.6C.7D.2513.如图,菱形中,,这个菱形的周长是()A. B. C. D.18. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 8014.如图,E为正方形ABCD内部一点,且,,,则阴影部分的面积为()A. 25B. 12C. 13D. 1915.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为( )A. 13kmB. 12kmC. 11kmD. 10km16.Rt△ABC中,∠C=90°,AC=8,BC=15,则AB=()A. 17B.C. 289D. 18117.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A. 5B. 6C. 6.5D. 1318.如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知,,则AC的长为( )A. 10B. 11C. 12D. 1319.在下列四组数中,不是勾股数的一组数是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=720.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.21.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10 mB. 15 mC. 18 mD. 20 m22.下列长度的三条线段能组成直角三角形的是()A. 3,4,5B. 2,3,4C. 4,6,7D. 5,11,1223.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、2524.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A. 20cmB. 50cmC. 40cmD. 45cm25.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是().A. B.C. D.26.以下列各组数为边长,不能构成直角三角形的是()A. 3,4,5B. 9,12,15C. ,,D. 0.3,0.4,0.527.-64的立方根是()A. ±8B. 4C. -4D. 1628.-8的立方根是()A. -2B. ±2C. 2D. -29.的立方根是()A. -1B. 0C. 1D. ±130.下列说法正确的是()A. 1的相反数是-1B. 1的倒数是-1C. 1的立方根是±1D. -1是无理数31.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 332.在实数,,,中有理数有()A. 1个B. 2个C. 3个D. 4个33.8的相反数的立方根是()A. 2B.C. -2D.34.下列说法正确的是()A. 是有理数B. 5的平方根是C. 2<<3D. 数轴上不存在表示的点35.-的相反数是()A. -B. -C. ±D.36.|1-|的值为()A. 1-B. 1+C. -1D. +137.在下列实数中:π,-,0,,最小的数是()A. -B. 0C.D. π38.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数39.下列说法正确的是()A. 3.14是无理数B. 是无理数C. 是有理数D. 2p是有理数40.下列各式正确的为()A. =±4B. -=-9C. =-3D.41.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数42.下列四个数:-2,-0.6,,中,绝对值最小的是()A. -2B. -0.6C.D.43.与最接近的整数是()A. 4B. 5C. 6D. 744.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或145.下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③的平方根是±4:④a2的算术平方根是a;⑤负数也有立方根,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个答案和解析1.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.2.【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.3.【答案】C【解析】【分析】根据勾股定理列式计算即可得解;本题考查了勾股定理,是基础题,主要是对勾股定理的理解与应用.【解答】解:由勾股定理得,A边长,故A的面积.故选C.4.【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.5.【答案】B【解析】【分析】本题考查了勾股定理,求出AB、BC的长是解题的关键.根据正方形的性质求出AB、BD、DC的长,再根据勾股定理求出AC的长即可.【解答】解:如图,∵两个正方形的面积分别是64和49,∴AB=BD=8,DC=7,∴BC=BD+DC=8+7=15,根据勾股定理得:AC==17.故选B.6.【答案】C【解析】解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2-EB2=22-12=3,∴正方形ABCD的面积=BC2=3.故选:B.先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了正方形的性质.8.【答案】C【解析】解:由勾股定理得:斜边长为,故选:C.利用勾股定理即可求出斜边长.本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.9.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C10.【答案】C【解析】【分析】此题主要考查了勾股定理,正确应用勾股定理是解题关键.直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选C.11.【答案】C【解析】【分析】本题考查的知识点是勾股定理和等腰三角形的性质,在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【解答】解:根据题意画出图形,,如图:BC =12,AB=AC=10 ,在△ABC中,AB =AC,AD⊥BC,则BD =DC=BC=6 ,在Rt△ABD中,AB=10,BD=6,,故选C.12.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.13.【答案】D【解析】【分析】本题考查了勾股定理,是基础题,难点在于要分情况讨论,分3是直角边和斜边两种情况讨论求解.【解答】解:3是直角边时,第三边==,3是斜边时,第三边==,所以,第三边长为或.故选D.14.【答案】A【解析】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO===4,∴点C的坐标是(5,4).故选A.15.【答案】A【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选A.16.【答案】A【解析】【分析】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB===5.故选:A.17.【答案】C【解析】【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选C.18.【答案】C【解析】【分析】本题考查勾股定理以及正方形的性质,解题关键是利用勾股定理求出正方形的边长,然后利用部分之和等于整体求出阴影部分面积.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE转换求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE=AB2-×AE×BE=100-×6×8=76.故选C.19.【答案】D【解析】【分析】本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键,根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.20.【答案】A【解析】【分析】本题考查勾股定理和直角三角形斜边上的中线的性质,在Rt△ABC中,由勾股定理可得AB=26,根据直角三角形斜边上的中线等于斜边的一半,即可得到M、C两点之间的距离.【解答】解:在Rt△ABC中,AB2=AC2+CB2,∴AB==26,∵M点是AB中点,∴MC=AB=13,故选A.21.【答案】A【解析】【分析】本题考查了勾股定理在直角三角形中的运用,掌握勾股定理是解决问题的关键.由题意可知:斜边为AB,直接由勾股定理求得答案即可.【解答】解:根据勾股定理,AB===17.故选A22.【答案】C【解析】解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.根据勾股定理,先求出直角三角形的斜边长,再根据直角三角形斜边上的中线等于斜边的一半,即可求出中线长.此题考查了勾股定理以及直角三角形斜边上的中线的性质.23.【答案】D【解析】【分析】考查了矩形的性质,三角形中位线定理,勾股定理,了解矩形的性质是解答本题的关键,难度不大.首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解答】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选D.24.【答案】D【解析】【分析】本题考查了勾股数的定义,掌握勾股数的知识是解决问题的关键.理解勾股数的定义,即在一组(三个数)中,两个数的平方和等于第三个数的平方.解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.25.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.26.【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.本题考查的是勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).故选C.27.【答案】A【解析】解:A.∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B.∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C.∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D.∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.28.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.29.【答案】C【解析】【分析】本题考查勾股定理的实际应用,首先要正确理解题意,明白怎么放桶内所能容下的木棒最长,然后灵活利用勾股定理,难度一般.根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.30.【答案】A【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B.∵,设a、b、c边长为k、k、k∴则有k2+k2=2k2,即a2+b2=c2,∴∠C=90°,故能判定△ABC是直角三角形;C.∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D.∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选A.31.【答案】C【解析】解:A、因为32+42=52,故能构成直角三角形,此选项错误;B、因为92+122=152,能构成直角三角形,此选项错误;C、因为()2+()2≠()2,不能构成直角三角形,此选项正确;D、因为0.32+0.42=0.52,能构成直角三角形,此选项错误.故选:C.根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.32.【答案】C【解析】【分析】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.依据立方根的定义求解即可.【解答】解:∵(-4)3=-64,∴-64的立方根是-4.故选C.33.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.34.【答案】C【解析】解:的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求幂,再求立方根.35.【答案】A【解析】解:A、1的相反数是-1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、-1是有理数,故错误;故选:A.根据相反数、倒数、立方根,即可解答.本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.36.【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.37.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.38.【答案】C【解析】解:8的相反数是-8,-8的立方根是-2,则8的相反数的立方根是-2,故选:C.根据相反数的定义、立方根的概念计算即可.本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.39.【答案】C【解析】【分析】本题考查了实数的意义、实数与数轴的关系,利用被开方数越大算术平方根越大是解题关键.根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选C.40.【答案】D【解析】解:根据相反数、绝对值的性质可知:-的相反数是.故选:D.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.41.【答案】C【解析】解:|1-|的值为-1.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.考查了实数的性质,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.42.【答案】A【解析】解:∵-<<0<π,∴最小的数是-.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.43.【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.44.【答案】C【解析】解:整数和分数统称为有理数.A.3.14是小数,可写成分数的形式,所以是有理数,错误.B.是有理数,错误.D.2p表示p的2倍,要视乎p本身是否为有理数而定,错误.故选:C.按照有理数无理数的定义判断即可.本题考查了有理数的定义,正确理解有理数定义是解题关键.45.【答案】D【解析】解:A、=4,故原题计算错误;B、-=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.根据=|a|进行化简计算即可.此题主要考查了二次根式和立方根,关键是掌握二次根式的性质.46.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.47.【答案】C【解析】解:∵|-2|=2,|-0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.48.【答案】B【解析】【分析】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和5.5之间,题目比较典型,根据无理数的意义和二次根式的性质,即可求出答案.【解答】解:∵,∴,∴最接近的整数为,∴.故选B.49.【答案】C【解析】【分析】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A.实数与数轴上的点一一对应,说法正确,故选项不符合题意;B.π+(1-π)=1,说法正确,故选项不符合题意;C.负数的立方根是负数,说法错误,故选项符合题意;D.算术平方根等于它本身的数只有0或1,说法正确,故选项不符合题意.故选C.50.【答案】B【解析】【分析】本题主要考查了实数中无理数的概念,算术平方根,平方根,立方根的概念.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据算术平方根的定义即可判定;⑤根据立方根的定义即可判定.【解答】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②⑤.故选B.。
勾股定理及逆定理的应用练习
ABA1 B 1DC D1 C 12 1 4勾股(逆)定理的应用姓名 学号一、选择题(每题3分,共9分)( )1.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为.A .6cmB .8.5cmC .3013cmD .6013cm( )2.有四个三角形:(1)△ABC 的三边之比为3:4:5;(2)△A ′B ′C ′的三边之比为5:12:13; (3)△A ′B ′C ′的三个内角之比为1:2:3; (4)△CDE 的三个内角之比为1:1:2.其中是直角三角形的有.A .(1)(2) B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)( )3.下面四组数中是勾股数的一组是A .6,7,8B .5,8,13C .1.5,2,2.5D .5,12,13二、填空:(每空4分,共44分)1、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5dm ,3dm 和1dm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是 (第1题) 2.如图,有一圆柱形油罐,现要从油罐底部的一点A 环绕油罐建梯子,并且要正好建到A 点正上方的油罐顶部的B 点,已知油罐高AB=5米,油罐底部周长为12米,那么梯子最短要 米。
(第2题) (第3题)3. 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为4. 如图,边长为5的正方体中,一只蚂蚁从A 顶点出发沿着正方体的外表面爬到B 顶点的最短路程是(第4题) (第5题)(第6题)5.如图,三个村庄A、B、C之间的距离分别为AB=15km,BC=9km,AC=12km.已知A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB.已知公路的造价为10000元/km,求修这条公路的最低造价是6.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),最短路线长为7.已知直角三角形两边的长为3和4,则此三角形的周长为____ ______.8.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要__________元.(第8题) (第9题) (第11题)9.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?•为什么?【9分】2.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.【9分】3..观察下列图形,回答问题:【9分】问题(1):若图①中的△DEF 为直角三角形,正方形P 的面积为9,正方形Q 的面积为15,则正方形M 的面积为问题(2):如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,这三个半圆面积321,,S S S 之间的关系是问题(3):如图③,如果直角三角形两直角边长分别为3和4,以直角三角形三边为直径作三个半圆,请你利用上面结论求出阴影部分的面积.4.如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA•垂直AB 于A ,CB 垂直AB 于B ,已知AD=15km ,BC=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站建在距A 站多少千米处?【10分】5.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?【10分】。
勾股定理及其逆定理的综合应用
Rt△ 直角边a、b,斜边c
Rt△
互逆命题
勾股定理: 直角三角形的两直角边为a ,b , 斜边为 c ,则有
三角形的三边a,b,c满足a2+b2=c2,则这个三角形是直角三角形; 较大边c 所对的角是直角.
逆定理:
a2+ b2=c2
1、下列各组线段中,能够组成直角三角形的是(). A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5 2.在Rt△ABC中,∠C=90°. (1)如果a=3,b=4, 则c= ; (2)如果a=6,c=10, 则b= ; (3)如果c=13,b=12,则a= ; 3、在△ABC中,∠A=90°,则下列各式中不成立的是( ) A.BC2=AB2+AC2; B.AB2=AC2+BC2; C.AB2=BC2-AC2; D.AC2=BC2-AB2 4、已知直角三角形的两边长为3、2,则第三条边长是 .
第三组练习: 会用勾股定理解决较综合的问题
2.解决折叠的问题. 已知如图,将长方形的一边BC沿CE折叠, 使得点B落在AD边的点F处,已知AB=8, BC=10, 求BE的长.
第三组练习: 会用勾股定理解决较综合的问题
解:设BE=x,折叠,∴△BCE ≌△FCE, ∴BC=FC=10. 令BE=FE=x,长方形ABCD, ∴ AB=DC=8 ,AD=BC=10,∠D=90°, ∴DF=6, AF=4,∠A=90°, AE=8-x , ∴ ,解得 x = 5 .∴BE的长为5.
证明:∵AD是△ABC的高, ∴∠ADB=∠ADC=90°. ∵在Rt△ADB中,AB=10,AD=8, ∴BD=6 . ∵BC=12, ∴DC=6. ∵在Rt△ADC中,AD=8, DC=6. ∴AC=10, ∴AB=AC.即△ABC是等腰三角形.
勾股定理及逆定理的练习题---
勾股定理及逆定理的练习题---编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(勾股定理及逆定理的练习题---)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为勾股定理及逆定理的练习题---的全部内容。
6。
如图所示,△ABC 中,AB=26,BC=20,BC 边上的中线AD=24,求AC .类型一 已知两边求第三边例1.在直角三角形中,若两边长分别为1cm,2cm ,则第三边长为_____________. 类型二 构造Rt△,求线段的长例2.如图2,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,求EB 的长.例3.如图3,P 为边长为2的正方形ABCD 对角线AC 上一动点,E 为AD 边中点,求EP+DP 最小值.例4、如图4,是一个三级台阶,它的每一级的长、宽和高分别为20dm 、3dm 、2dm,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________ dm.类型三 判别一个三角形是否是直角三角形 例5、如图5,正方形ABCD 中,F 为DC 的中点,E 为BC上一点,且CE=BC .你能说明∠AFE 是直角吗?类型四、拼图例6、在直线l 上依次摆放着七个正方形(如图7).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.类型五 实际运用例6、由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A 城气象局测得沙尘暴中心在A 城的正西方向240km 的B 处,以每时12km 的速度向北偏东 60度方向移动(如图7),距沙尘暴中心150km 的范围为受影响区域. ①A 城是否受到这次沙尘暴的影响?为什么?②若A 城受到这次沙尘暴的影响,那么遭受影响的时间有多长? 三、达标检测,体验成功(时间10分钟,满分100分)14图3图2 CPABCDEABCDEFBAFED CBA 图5 东北B l321S 4S 3S 2S 1图4C B AD EF 1.(18分)已知直角三角形的两边长为3、2,则另一条边长是________________. 2.(18分)如图8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________________米.3.(18分)一种盛饮料的圆柱形杯如图9,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4。
勾股定理及其逆定理的应用
勾股定理及其逆定理的应用
1.如图,在直角三角形纸片ABC 中,∠C=90°,AC =6,BC =8,折叠△ABC 的一角,使点B 与点A 重合,展开得折痕DE ,求BD 的长.
2.如图,一张长方形纸片宽AB =8 cm ,长
BC =10 cm .现将纸片折叠,使顶点D 落在BC 边上的点F 处(折痕为AE),求EC 的长.
3.我国古代数学著作《九章算术》中的一道题,原文是:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。
水深,葭长各几何?(一丈等于10尺)意思是:有一水池,水面为10尺的正方形,在水面中央有一根芦苇,高出水面一尺,如果把芦苇拉向水池一边的中点,它的顶端刚好到达水面,请问这个水面和芦苇的高度分别为多少?
4.甲、乙两轮船同时离开港口,各自沿一固定方向航行,甲每小时航行16海里,乙每小时航行12海里。
1.5小时后相距30海里。
已知甲船沿东北方向航行,试求乙船沿哪个方向航行?
5.如图所示,现在已测得长方体木块的长3
厘米,宽4厘米,高24厘米。
一只蜘蛛潜伏在木块的一个顶点A 处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B 处。
初中数学-勾股定理和逆定理经典例题
例 06.如图, BAC 120 , B 30 , AD AB ,垂足为 A, CD 2cm ,
求 AB 的长.
分析:由于 AB 是 RtBAD 中的一条直角边,故要求 AB 的长,只要求出 BD,AD 的
长,利用勾股定理即可求出.
解答:∵ BAC 120, B 30 , ∴ C 180 BAC B 30 , 又∵ AD AB ,垂足为 A, ∴ BAD 90 , ∴ CAD 30 , ∴ CAD C 30 , ∴ AD CD 2cm , 在直角三角形 BAD 中, B 30 , ∴ BD 2AD 4cm , ∴ AB BD2 AD2 42 22 2 3(cm)
例 04.如图,已知: ABD C 90 , AD 12 , AC BC , DAB 30 .
求:BC 的长.
分 析 : 因 为 ABC 是 等 腰 直 角 三 角 形 , AC BC , 根 据 勾 股 定 理 知
AC 2 BC 2 AB2 ,即 2BC 2 AB2 ,所以只需求 AB 的长. AB 的长可在 ABD 中求出. 在
说明:在直角三角形中,求边长的时候,经常会涉及到勾股定理,而勾股定理是已知 两边求第三边,因此,在条件不足时,可以根据已知去发现和创造条件.
例 03.作长为 7 的线段.
分析:根据勾股定理 42 32 ( 7 )2 . 即斜边长为 4,一条直角边为 3 的直角三角形的
另一条直角边就是 7 . 作法:1.作长为 3 的直角边 AC,过 C 作 CD AC ,
2
的长.
解答:作 AD BC 于 D,则因 B 60 , ∴ ADD 90 60 30 ( Rt 的两个锐角互余) ∴ BD 1 AB 15(在 Rt 中,如果一个锐角等于 30 ,那么它所对的直角边等于斜
勾股定理及逆定理
勾股定理一.勾股定理(一).勾股定理的定义 1.定义:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.例1. 已知直角三角形有两条边的长分别是3cm ,4cm ,那么第三条边的长是( ) A .5cm B .cmC .5cm 或cm D .cm迁移练习1. 若一直角三角形的两边长分别是6,8,则第三边长为( ) A .10B .C .10或D .14例2.在三角形ABC 中,已知2AB AC BC ==,边上的高AD ,求边BC 的长迁移练习2. 已知ABC ∆中,20,15,AB AC BC ==边上的高为12,求ABC ∆的面积.DCBA注意:勾——最短的边、股——较长的直角边、弦——斜边.(二).勾股数满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数。
常用勾股数: 3、4、5 5、12、13 7、24、25 8、15、17 9、24、25 11、60、61 ……例3. 直角三角形三边长分别为3,4,x ,则x=_______.迁移练习3. 一个三角形的三边之比为13:12:5,且周长为60cm ,则它的面积是 2cm 。
二.勾股定理简单应用(一)勾股定理与三角形例4. 如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于 __________.迁移练习 4. 如图,在ABC ∆中,AD 是BC 边上的中线,且AE BC ⊥于E ,若12AB =,=10BC ,=8AC ,求DE 的长.ED CBA注意:勾股数必须熟记于心,能帮我们快速计算找到答案。
(二)网格问题例5. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3迁移练习5. 如图,在由单位正方形组成的网格图中标有AB , CD , EF , GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GH D .AB ,CD ,EF二.勾股定理的逆定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理和勾股定理逆定理经典例题
题型一:直接考查勾股定理 例1 在△ABC 中,∠C=90° (1)已知AC=6,BC=8,求AB 的长; (2)已知AB=17,AC=15,求BC 的长.
题型二:利用勾股定理测量长度
1、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑物的高度是多少米?
2、如图,水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉倒岸边,它的顶端B 恰好落在D 点,求水池的深度AC.
题型三:勾股定理和逆定理并用
1、如图,正方形ABCD 中,E 是BC 边的中点,F 是AB 上一点,
A
B
C
D
A
B C
且FB=4
1
AB ,那么△DEF 是直角三角形吗?如果是,请说明理由.
题型四:勾股定理在折叠问题中的应用
1、如图,已知在长方形ABCD 中,AB=8cm ,BC=10cm ,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.
拓展延伸:求折痕的长及重叠部分的面积.
经典例题训练:
1、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需 米;
2、如图所示装饮料的圆柱形杯,测得内部底面半径为 2.5cm ,高为12cm ,吸管放进杯里,杯口外面至少要露出4.6cm ,问吸管
A
D
E
F D
E
F
要做 cm ;
3、已知:如图,△ABC 中,∠C=90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC=8cm ,CA=6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm ;
4、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处,另一只爬到树顶D 后直接跃到A
处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 米;
5、如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到
B 点最短路程是 ;
第3题
A
B
C
第4题
第5题
B
题型五:勾股定理在几何证明题中的应用
1、如图,△ABC 中,∠BAC=45°,AD ⊥BC ,BD=3,CD=2,求△ABC 的面积.
2、 如图,△ABC 中,AD 是BC 边上的中线,以点D 为顶点作 ∠EDF=90°,DE 、F 分别交AB ,AC 于点 E ,F ,222EF CF BE =+,
求证:△ABC 为直角三角形.
A
C
D
C。