超宽带大瞬时带宽下变频模块及其变频方法与制作流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本技术公开一种超宽带大瞬时带宽下变频模块及其变频方法。超宽带大瞬时带宽下变频模块在电路结构上,包括低频段二次变频支路、高频段二次变频支路、单刀双掷开关S1、中频放大支路。所述低频段二次变频支路与所述高频段二次变频支路为对称结构,两个二次变频支路的一端均接收射频信号,两个二次变频支路的另一端均连接单刀双掷开关S1,由单刀双掷开关S1选择其中一个二次变频支路连接至所述中频放大支路。本技术具有高集成度、重量轻、体积小、成本低、可靠性高并且具有良好的可制造性等优势。本技术还公开所述超宽带大瞬时带宽下变频模块的变频方法。
权利要求书
1.一种超宽带大瞬时带宽下变频模块,在电路结构上,其包括低频段变频支路、高频段变频支路,所述低频段变频支路与所述高频段变频支路为对称结构,两个变频支路的一端均接收射频信号,其特征在于:在电路结构上还包括单刀双掷开关S1、中频放大支路,所述低频段变频支路为低频段二次变频支路,所述高频段变频支路为高频段二次变频支路,两个二次变频支路的另一端均连接单刀双掷开关S1,由单刀双掷开关S1选择其中一个二次变频支路连接至所述中频放大支路;
所述中频放大支路包括放大器A5~A7、驻波器N7、滤波器Z2~Z3;放大器A5的一端连接单刀双掷开关S1,放大器A5的另一端依次经由滤波器Z2、放大器A6、驻波器N7、放大器A7连接滤波器Z3的一端,滤波器Z3的另一端作为所述中频放大支路的信号输出端。
2.如权利要求1所述的超宽带大瞬时带宽下变频模块,其特征在于:所述低频段二次变频支路包括放大器A1~A4、驻波器N1~N6、变频器M1~M2、滤波器Z1;放大器A1的一端作为所述射频信号的输入端,放大器A1的另一端依次经由驻波器N1、变频器M1、驻波器N2、放大器A2、滤波器Z1、驻波器N3、变频器M2、驻波器N4连接单刀双掷开关S1;放大器A3的一端作为变频器M1的本振信号的输入端,放大器A3的另一端经由驻波器N5连接变频器M1;放大器A4的一端作为变频器M2的本振信号的输入端,放大器A4的另一端经由驻波器N6连接变频器M2。
3.如权利要求1所述的超宽带大瞬时带宽下变频模块,其特征在于:在机械结构上,所述超宽带大瞬时带宽下变频模块的腔体采用上下分腔的方式分成上腔、下腔,上腔、下腔之间采用绝缘子对穿连接。
4.如权利要求3所述的超宽带大瞬时带宽下变频模块,其特征在于:所述上腔由内而外设置内盖板、外盖板,所述外盖板密封采用激光封焊,并使用铝合金壳体屏蔽和密封。
5.如权利要求4所述的超宽带大瞬时带宽下变频模块,其特征在于:所述上腔设置有电源、绝缘子、微波信号线、控制及电源接口,所述电源与所述绝缘子之间的连接使用金丝球焊进行键合,所述微波信号线采用金丝楔焊进行键合,所述控制及电源接口通过J30J与所述下腔的微带板连接。
6.一种如权利要求1所述的超宽带大瞬时带宽下变频模块的超宽带大瞬时带宽下变频方法,其特征在于:在电路上,将射频信号的频率划分为高频段和低频段,在二次变频后通过单刀双掷开关S1输出一路中频信号,其中,低频段二次变频是所述射频信号经过低频段二次变频支路的二次变频后,再通过单刀双掷开关S1至中频放大支路的过程;高频段二次变频是所述射频信号经过高频段二次变频支路的二次变频后,再通过单刀双掷开关S1至所述中频放大支路的过程;所述中频放大支路是把中频信号进行滤波放大的过程;所述中频放大支路的信号传输方向与两个二次变频支路的信号传输方向相反。
7.如权利要求6所述的超宽带大瞬时带宽下变频方法,其特征在于:所述低频段二次变频支路包括放大器A1~A4、驻波器N1~N6、变频器M1~M2、滤波器Z1;所述射频信号经过放大器A1进行放大,进入驻波器N1经改善驻波特性送至变频器M1进行变频,变频器M1所需
的本振信号经过放大器A3放大、驻波器N5驻波调整后达到变频器M1,下变频至一中频,然后经过驻波器N2调整驻波特性,经过放大器A2进行放大,再经过带通滤波器Z1滤除干扰后,经过驻波器N3改善驻波特性,进入变频器M2进行变频,变频器M2的本振信号经过放大器A4放大、驻波器N6驻波调整后达到变频器M2,变频至二中频后,经过驻波器N4改善驻波进入单刀双掷开关S1,进入所述中频放大支路。
8.如权利要求6所述的超宽带大瞬时带宽下变频方法,其特征在于:所述中频放大支路包括放大器A5~A7、驻波器N7、滤波器Z2~Z3;来自低频段变频支路和高频段变频支路的二中频信号经单刀双掷开关S1进入中频放大支路,经过放大器A5进行放大,再经过低通滤波器Z2滤除本振和高频交调后,进入放大器A6放大,经驻波器N7改善驻波特性送至放大器A7放大,经带通滤波器Z3输出中频信号。
9.如权利要求6所述的超宽带大瞬时带宽下变频方法,其特征在于:在结构工艺上,将所述超宽带大瞬时带宽下变频模块的腔体采用上下分腔的方式分成上腔、下腔,上腔、下腔之间采用绝缘子对穿连接;所述上腔由内而外设置内盖板、外盖板,所述外盖板密封采用激光封焊,并使用铝合金壳体屏蔽和密封;所述上腔设置有电源、绝缘子、微波信号线、控制及电源接口,所述电源与所述绝缘子之间的连接使用金丝球焊进行键合,所述微波信号线采用金丝楔焊进行键合,所述控制及电源接口通过J30J与所述下腔的微带板连接。
技术说明书
一种超宽带大瞬时带宽下变频模块及其变频方法
技术领域
本技术涉及一种变频模块及其变频方法,特别的涉及一种超宽带大瞬时带宽下变频模块及所述超宽带大瞬时带宽下变频模块的超宽带大瞬时带宽下变频方法。
背景技术
随着电子信息技术的发展,信号频带越来越宽。宽带接收机作为获取信息的设备前端,需求越来越强烈。同时,为简化系统设计,希望对各频段信号进行统一的中频数字信号处理,对宽带接收机的需求也十分强烈,其技术指标和环境适应性要求也越来越高,可以说接收机的性能对信息获取起着非常重要作用。其中下变频模块就是其中的最重要的组成部分。
常规雷达中的下变频模块一般带宽较窄,采用封装器件、印刷微带电路板,使用普通焊接或表贴焊技术进行器件装配。相控阵雷达由于单元众多,对单个通道的集成度、体积、重量要求甚高,如果采用传统的表贴器件构成的变频通道,寄生效应大,指标没法保证,且无法满足高集成度、重量轻、体积小的要求。因此,进行变频通道的设计应充分考虑集成度、可靠性、体积、重量、成本、可制造性等因素。
微组装技术是九十年代以来在半导体集成电路技术、混合集成电路技术和表面组装技术(SMT)的基础上发展起来的新一代电子组装技术。微组装技术是在高密度多层互连基板上,采用微焊接和封装工艺组装各种微型化片式元器件和半导体集成电路芯片,形成高密度、高速度、高可靠的三维立体结构的高级微电子组件的技术。
技术内容
本技术的目的在于提供一种超宽带大瞬时带宽下变频模块及所述超宽带大瞬时带宽下变频模块的超宽带大瞬时带宽下变频方法,其具有高集成度、重量轻、体积小、成本低、可靠性高并且具有良好的可制造性等优势。
本技术通过以下技术方案实现:一种超宽带大瞬时带宽下变频模块,在电路结构上,其包括低频段二次变频支路、高频段二次变频支路、单刀双掷开关S1、中频放大支路;所述低频段二次变频支路与所述高频段二次变频支路为对称结构,两个二次变频支路的一端均接收射频信号,两个二次变频支路的另一端均连接单刀双掷开关S1,由单刀双掷开关S1选择其中一个二次变频支路连接至所述中频放大支路。