2.3设计轴对称图案

合集下载

第2章 《轴对称图形》 :2.3 设计轴对称图标(含答案)

第2章 《轴对称图形》 :2.3 设计轴对称图标(含答案)

第2章《轴对称图形》:2.3 设计轴对称图标解答题1.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.2.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)3.认真观察4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征;(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.4.如图,由小正方形组成的L形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.5.由16个相同的小正方形拼成正方形网络,现将其中的两个小正方形涂黑(如图),请你用两种不同的方法分别在下图中将两个空白的小正方形涂黑,使它成为轴对称图形.6.已知图中A,B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1,S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)求s1和s2的值;(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.7.请用1个等腰三角形、2个矩形、3个圆,在下面方框内设计一个轴对称图形,并用简炼的文字说明你的创意.8.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种(至少设计四种).答案:解答题1.考点:利用轴对称设计图案.专题:网格型.分析:作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.解答:解:如图所示:点评:解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.2.考点:利用轴对称设计图案.专题:作图题.分析:根据轴对称图形的性质画图,但要注意本题中的要求涂黑部分的面积是原正方形面积的一半;所以图中一共有16个三角形,那就要涂黑8个,而且这8个要是轴对称图形.解答:解:点评:本题主要考查了轴对称图形的性质,及通过将四边形的转化为三角形来计算面积.3.考点:利用轴对称设计图案.专题:综合题;开放型.解答:解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积.(2)满足条件的图形有很多,这里画三个,三个都具有上述特征.点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.考点:利用轴对称设计图案.专题:作图题.分析:先根据图形的性质确定对称轴,再添加正方形.解答:解:如图:点评:解答此题要明确轴对称的性质:1、对称轴是一条直线;2、垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4、在轴对称图形中,对称轴把图形分成完全相等的两份;5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.5.考点:利用轴对称设计图案.专题:作图题.分析:本题是一道开放题,答案不唯一,只要根据轴对称图形的性质先确定一个对称轴,再找出阴影部分的图形的关键点的对称点,画出图形即可,因为对称轴有很多种,所以图形就有很多种.解答:解:如图所示:(答案不唯一)点评:本题主要是根据轴对称图形的性质来做轴对称图形.6.考点:利用轴对称设计图案.专题:网格型.分析:根据图形特点,数出格的个数即可.解答:解:(1)因为每个小方格的面积为1,A,B图形中的图形分别占18个格,22个格,故s1=18,s2=22;(2)提示:如果没有规律性认识,要找出具有“美感”的图案是比较困难的,适当的方法是:选择一些图形作为基本图形,通过基本图形的组合,找出解答,所列的7个图形可认为是基本图形.点评:此题考查的是面积一定求轴对称图形的方法,先确定图形应占的格数,再根据作轴对称图形的方法找出关键点连线即可.7.考点:利用轴对称设计图案.专题:开放型;操作型.分析:本题是一道开放题,学生设计的图形只要用到了1个等腰三角形、2个矩形、3个圆,而且是轴对称图形即可.解答:解:如图.点评:本题主要考查了轴对称图形在生活中的实际应用以及同学们的空间想象能力.8.考点:利用轴对称设计图案.专题:作图题.分析:本题是一道动手操作题,学生可亲自做一做,答案不唯一,只要符合题意即可.解答:解:四种:(也可以是其他图形,只要符合条件即可)点评:本题是一道开放题,答案不唯一,但主要也是利用轴对称图形的性质来画图.。

苏科初中数学八上《2.3 设计轴对称图案》教案 (4)

苏科初中数学八上《2.3 设计轴对称图案》教案 (4)

设计轴对称图案教学目标:1.利用轴对称设计简单的图案.2.欣赏生活中的轴对称图案,感受数学丰富的文化价值.教学重点:设计轴对称图案.教学难点:设计轴对称图案.教学过程:一、探索研究:分别以AB为对称轴,画出各图形的对称图形,并观察第(3)个图形和它的轴对称图形构成什么三角形,说说你的想法.二、典例研究:例1.动手实践:对称的美术图案,除图形对称外,有时颜色也要“对称”.问题1:如果考虑颜色“对称”,你能画出下面两个图形的对称轴吗?如果不考虑颜色“对称”,那么下面这两个图形各有几条对称轴呢?问题2:如果考虑颜色“对称”,要将这幅图改变成有4条对称轴,最少还要给哪几个小方块着色?在下图中画出来.例2.实验:设计轴对称图案(1)制作4张如图所示的正方形纸片(2)将制作好的4张纸片拼合在一起,能得到不同的图案,如果考虑颜色“对称”你能画出下面三个拼成的图形的对称轴吗?(3图)(3)你还能设计出其它的轴对称图案吗?请画出对称轴.三、课堂反馈:1.下列右侧四幅图中,平行移动到位置M后能与N成轴对称的是()A .图1B .图 2C .图3D .图 42.仔细观察下列图案,并按规律在横线上画出合适的图形.3.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.4.已知图中A ,B 分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S 1,S 2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)求S 1和S 2的值;(2)请你在图C 中的网格上画一个面积为8个平方单位的轴对称图形.四、拓展延伸:请用2块大小一样的三角尺(两锐角分别是60°和30°)拼出不同的轴对称图形,至少画出4种以上的拼法.五、课堂小结:赠送文档,欢迎留存!初中期末评语:一、表现一般、成绩较好1、头脑灵活,思维敏捷是你的优点;学习积极也是你的优点……但是你也有没有做好的地方,那就是在平时表现上过于“安静”,对班级和各项活动不能做到积极参与,有时还抱着无所谓的态度。

2.3 设计轴对称图案

2.3 设计轴对称图案

初二数学第二章轴对称图形导学案课题2.3 设计轴对称图案学习目标:1.欣赏生活中的轴对称图案,感受数学丰富的文化价值.2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验.3.能利用轴对称的性质设计简单的轴对称图案.教师复备及学生学习笔记重难点:1、利用对称轴掌握颜色对称与图形对称.2、利用对称性质设计轴对称图形.教学法:自主学习,讨论,讲练结合导学过程一.自主学习:1、欣赏轴对称图案:绿色食品标志、中国环境标志、国家免检产品标志等;(见多媒体)2、欣赏课本P48美丽的“盆花”图案.3、思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?二.合作探究1、对称的美术图案,除图形对称外,有时颜色也“对称”.如果不包括色彩因素在内,下列图形有几条对称轴?请你画出图中(1)和(2)的对称轴.2、如果不考虑颜色的“对称”,图2-13中(1)和(2)中各有几条对称轴?考虑颜色的“对称”呢?3.如果将图2-13(1)中左上方和右下方的小方格也涂上色,那么它有几条对称轴?4.改变图2-13(2)哪些小方格的颜色,就能使它有4条对称轴?数学实验(一)制作4张如图2-14的正方形纸片,将纸片拼合.1.图2-15中的3个图案各有几条对称轴?2.这些图案可以看成是由一个小正方形纸片经过怎样的变换得到的?3.你有不同于课本的拼法吗?拼出的图案是轴对称图形吗?如果是,有几条对称轴?(1)(2)图2-14 图2-1(二)人们在剪纸时,常常利用轴对称设计图案.欣赏剪纸作品,探讨它是怎么得到的?例如,按照图2-16(1)进行剪切,就能得到“庆丰灯笼”的剪纸作品(如图2-16(2)).你来试试看呢?三.拓展延伸利用轴对称,设计并剪出一幅奖杯图案,班内展览,评选精品.四.当堂检测1.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在右图方格内填涂黑二个小正方形,使它们成为轴对称图形.2.完成课本上练习2、3.五.作业布置1 .在书上完成习题2.3 P50 T22.预习2.4第1节自主反思。

苏科版八年级数学上册 2.3 设计轴对称图案.docx

苏科版八年级数学上册  2.3 设计轴对称图案.docx

2.3 设计轴对称图案【学习目标】1.欣赏生活中的轴对称图案,感受数学丰富的文化价值.2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验3.能利用轴对称设计简单的图案【学习重点】 能画出简单平面图形关于给定对称轴的对称图形【学习难点】 能画出简单平面图形关于给定对称轴的对称图形【学习指导】 预习课本P48-49【学习过程】一、【自主学习】1、动手实践对称的美术图案,除图形对称外,有时颜色也要“对称”.问题1 如果考虑颜色“对称”,你能画出下面两个图形的对称轴吗?如果不考虑颜色“对称”,那么下面这两个图形各有几条对称轴呢?图A 图B问题2 看图B ,如果考虑颜色“对称”,要将这幅图改变成有4条对称轴,最少还要给哪几个小方块着什么色?2、实验:设计轴对称图案(1)制作4张如图所示的正方形纸片(2)将制作好的4张纸片拼合在一起,能得到不同的图案,如果考虑颜色“对称”你能画出下面三个拼成的图形的对称轴吗?(3)你还能设计出其它的图案吗?是轴对称的图案吗?请顺便画出对称轴.让学生开展活动,动手操作,教师对拼图有困难的学生进行适当指导和帮助,引导其顺利完成任务.3、认识右边的喜字吗?你知道它是怎么剪成的吗?和你的同桌一起研究一下吧.二、【合作探究】例题示范:例1、图10.2.13是两个轴对称图形,它们有多少条对称轴呢?我们可以利用轴对称性来画出它们吗?(1)(2)图10.2.13请准备一张正方形纸片,按图10.2.14的5个步骤一起来画:图10.2.14(1)在正方形纸片上用虚线画出四条对称轴.(2)如图,在其中一个三角形中,画出图形形状的基本线条.(注意:不同的线条最终会得到不同的图案,你可以自己设计线条,而不必和书上的一样)(3)按照其中一条斜的对称轴画出(2)中图形的对称图形.(4)按照另一条斜的对称轴画出(3)中图形的对称图形.(5)按照水平(或垂直)对称轴画出(4)中图形的对称图形,即得图10.2.13中的图(1).画好之后,你可以在图案上涂上你喜欢的颜色,擦掉其他多余的线条,一幅对称的图案就完成了.三、【课堂小结】本节课你学到了什么?还有什么疑惑?四、【拓展反馈】如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有 个五、【自我检测】1、 补全下列图案,其中虚线是对称轴.2、在下图的各图中,画△A 'B 'C ',使与△ABC 关于l 成轴对称图形。

苏科版八年级上册数学2.3《设计轴对称图案》课件 (共27张PPT)

苏科版八年级上册数学2.3《设计轴对称图案》课件 (共27张PPT)

3、(1)把一长方形纸片对折 两次,画出一个图案并剪去它, 把纸条展开,与同学交流.
张兰的姑姑过几天就要结婚了,她想请张兰帮
她剪几个“囍”字,装饰一下新房,张兰想请大
家一起帮她剪,好不好?
折第 叠一

折第 叠二

这节课—— 使我感触最深的是…… 我感到最困难的是……
我学会了…… 我发现了生活中…… 我想我将……
目标: 1、会按要求设计轴对称图案; 2、展示创作作品,培养学生美感;
准备: 1、3×3方格纸 2、4×4方格纸
重点: 作品要符合要求.
1.3 设计轴对称图案
轴对称图形均衡、和谐,给人以美的享受!
(无对称轴)
注意:轴对称的图案,除图形对称外,还包括色
彩之内,即颜色也“对称”
数学实验室:
1、(1)在田字格中,利用涂色画一个面 积为2个平方单位的轴对称图形
(2)、选择一幅你喜欢的图案,复制4张,将它们 拼合在一起,能得到不同的图案,如果考虑色
彩因素,你设计的图中有几条对称轴? 与同学交流.
2、 分别在下列图形中选3个方格涂上 红色,使整个图形成为轴对称图形, 并与同学交流;
1、收集并欣赏与轴对称有关的图案、花纹、 商标、剪纸等.
2、利用所学知识再创作一些图案、花纹、 商标、剪纸等某些轴对称图案. 2、会设计简单轴对称标志; 3、感受轴对称的美.

八年级数学上册 第2章 轴对称图形《2. 设计轴对称图案》同步练习苏科

八年级数学上册 第2章 轴对称图形《2. 设计轴对称图案》同步练习苏科

《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2。

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(含答案解析)(1)

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练2.3设计轴对称图案一.选择题(每小题3分共30分)1.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.3.如图,将一正方形纸片沿图①、②的虚线对折,得到图③.然后沿图③中虚线的剪去一个角,展开得平面图形④,则图③的虚线是(D)4.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A,则如图所示8个点中,可以瞄准的点的个数为()A.1B.2C.4D.6第4题图第5题图第6题图第7题图第8题图5.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个7.如图,已知两个全等的直角三角形纸片的直角边分别为a、b(a≠b),将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有()A.3个B.4个C.5个D.6个8.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④9.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形的个数有(不包含△ABC本身)()A.4个B.3个C.2个D.1个第9题图第10题图第12题图第13题图第14题图第15题图10.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个二.填空题(每小题3分共30分)11.请在下列一组图形符号中找出所蕴含的内在规律,然后在图形空白处填上恰当的图形.12.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:(填字母).13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.14.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有____种.第16题图第17题图第18题图第19题图17.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.18.在九个相同的小正方形拼成的正方形网格中,其中两个小正方形涂成黑色,若再涂黑一个,使黑色部分组成一个轴对称图形,则共有种不同的涂法.19.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.20.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(40分)21.(8分)认真观察下图的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:____________________________;特征2:____________________________.(2)请在下图中设计出你认为最美丽的图案,使它也具备你所写出的上述特征.22.(6分)用两个圆,两个三角形,两条线段,拼出至少两个对称图形.(画在以下方框内)23.(8分)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.24.(6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内添涂两个小正方形,使阴影部分成为轴对称图形.25.(6分)某小区搞绿化,要在给定的一块空长方形地上设计一个花坛,只允许用正方形和圆形,并使整个图案成轴对称图形,请你帮助设计一个.26.(6分)现有8张纸条:,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案.(画出的两个图案不能相同)参考答案一.选择题(每小题3分共30分)1.D2.C3.D4.B5.C6.D.7.B.8.D.9.B.10.D.二.填空题(每小题3分共30分)11..12.c,h,k,m.13.5.14.5.15.4.16.317.318.519.420.a+8b三.解答题(40分)21.(1)都是轴对称图形面积均为4个单位(2)略22.解:如图,23.解:参考图如下图:24.解:如图所示.25.解:如图所示.26.解:如图所示.。

秋苏科版八年级上2.3设计轴对称图案同步练习含答案

秋苏科版八年级上2.3设计轴对称图案同步练习含答案

第二章 2.3 设计轴对称图案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个3.)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有______个.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:______(填字母).10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到______个.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为______次.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有______个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)参考答案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有4个位置使之成为轴对称图形.故选C.【点评】此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.3.下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.【解答】解:如图所示:故选:A.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种【分析】根据轴对称的定义,及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:,共6种.故选C.【点评】本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形.故选C.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解.二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有4个.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).【分析】直接利用轴对称图形的性质分析得出即可.【解答】解:如图所示:现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).故答案为:c,h,k,m.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有4种.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到2个.【分析】利用轴对称图形的性质,分别得出符合题意的图形即可.【解答】解:如图所示:符合题意有2个点.故答案为:2.【点评】本题考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为7次.【分析】根据题意画出图形,然后即可作出判断.【解答】解:根据图形可得总共反射了7次.故答案为7.【点评】本题考查轴对称的知识,难度不大,注意画出图形会使问题比较简单直观.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:所设计图案如下所示:【点评】本题考查利用轴对称设计图案,注意掌握轴对称的特点,选择不同的直线当对称轴是解决本题的突破点.三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.【分析】根据勾股定理可得平行四边形的一边长为5,根据网格可得另一边长为6,因此可以截出一个等腰三角形,也可截出一个菱形.【解答】解:如图1所示:△ABC是等腰三角形,是轴对称图形;如图2所示:四边形ABCD是菱形,是轴对称图形.【点评】此题主要考查了利用轴对称设计图案,关键是正确掌握轴对称图形的定义:一个图形沿一条直线折叠,直线两旁的部分能完全重合.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:【点评】此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键.17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.【分析】可以利用轴对称设计一个图案,再利用平移设计一个图案即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,利用平移设计图案,关键是正确理解题目要求.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有3个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)【分析】(1)根据轴对称图形的定义:沿着一直线折叠后直线两旁的部分能完全重合进行添图.(2)首先画出A、B所在直线的交点P,再延长AP使AP=CP,然后再作AC的垂直平分线即可得到l.【解答】解:(1)如图:,共3个,故答案为:3;(4)如图所示:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握对称轴是对称点连线的垂直平分线.。

2.3《设计轴对称图案》ppt课件

2.3《设计轴对称图案》ppt课件
过了中后卫布林德的头顶下落就算德罗巴不用跳起不用移动也可以顶到这个球这个球距离球门不到 的向禁区内移动抢点或者解围但是一切都太晚了布隆坎普几步来到底线附近在无人盯防的情况下右脚传出了一记漂亮的弧线球找中路的德罗巴这脚球传的速度奇快又非常舒服越 松的接到皮球把球一磕改变了方向然后快速下底这个时候阿贾克斯的球员发现了布隆坎普的动作顿时大惊失色梅尔奇奥特快速向移向边路防止布隆坎普的传中双方的球员都纷纷 慢慢移动不知不觉的已经到了几乎和禁区平行的位置就在几乎所有人都以为阿尔蒂多雷要远射的时候阿尔蒂多雷却突然把球传到了一个所有人都想不到的地方右边路布隆坎普轻 太阳穴的位置触球球直接飞出了底线顿时眼镜碎了一地谁都想不到在距离球迷 击德罗巴德罗巴庞大的身躯在德波尔有意的撞击之下发生了一点改变这一点改变就是致命的因为布隆坎普的这脚传球太快德罗巴本来是想用额头把球砸进球门这一下却变成了用 有那么强大了早就看到了这个落点却被德罗巴卡住位置的德波尔终于等到了机会老奸巨猾的德波尔也貌似要跳起头球其实他根本就不可能碰到球他只是佯装跳起用身体狠狠的撞 状的看着禁区看着德罗巴希望德罗巴不要抢到点这时候德罗巴却出人意料的起跳了他想微微跳起然后把球砸向球门如果双脚站在地面上德罗巴就是巨人安泰但是跳起之后他就没 被打丢了德罗巴沮丧的跪在草皮上不住的摇头痛骂自己是傻 呼的这时气得狠狠的蹲下捶地他不能想象在这一瞬间德罗巴那浆糊脑袋里想的是什么距离球门这么近怎么顶不不能进非要玩花样尼玛觉得是花样滑冰玩艺术了加分啊一个必进球 略了这是防守失误的起因阿贾克斯逃过一劫但是这样的错误不能再犯下一次阿尔克马尔人海会再给你们机会吗解说员指责阿贾克斯的球员在这个球的处理上太大意竟然没发现移 X啊啊啊不可思议一个必进球被德罗巴打飞这是一个打飞比打进更难的球阿尔克马尔的球员真是奇葩啊布隆坎普被忽 5米的情况下德罗巴把这个球顶飞了阿贾克斯的球迷为德罗巴发

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(1) 练习试题试卷 含答案

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(1) 练习试题试卷 含答案

课时练2.3设计轴对称图案一.选择题(每小题3分共30分)1.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.3.如图,将一正方形纸片沿图①、②的虚线对折,得到图③.然后沿图③中虚线的剪去一个角,展开得平面图形④,则图③的虚线是(D)4.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A,则如图所示8个点中,可以瞄准的点的个数为()A.1B.2C.4D.6第4题图第5题图第6题图第7题图第8题图5.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个7.如图,已知两个全等的直角三角形纸片的直角边分别为a、b(a≠b),将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有()A.3个B.4个C.5个D.6个8.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④9.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形的个数有(不包含△ABC本身)()A.4个B.3个C.2个D.1个第9题图第10题图第12题图第13题图第14题图第15题图10.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个二.填空题(每小题3分共30分)11.请在下列一组图形符号中找出所蕴含的内在规律,然后在图形空白处填上恰当的图形.12.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:(填字母).13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.14.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有____种.第16题图第17题图第18题图第19题图17.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.18.在九个相同的小正方形拼成的正方形网格中,其中两个小正方形涂成黑色,若再涂黑一个,使黑色部分组成一个轴对称图形,则共有种不同的涂法.19.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.20.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(40分)21.(8分)认真观察下图的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:____________________________;特征2:____________________________.(2)请在下图中设计出你认为最美丽的图案,使它也具备你所写出的上述特征.22.(6分)用两个圆,两个三角形,两条线段,拼出至少两个对称图形.(画在以下方框内)23.(8分)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.24.(6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内添涂两个小正方形,使阴影部分成为轴对称图形.25.(6分)某小区搞绿化,要在给定的一块空长方形地上设计一个花坛,只允许用正方形和圆形,并使整个图案成轴对称图形,请你帮助设计一个.26.(6分)现有8张纸条:,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案.(画出的两个图案不能相同)参考答案一.选择题(每小题3分共30分)1.D2.C3.D4.B5.C6.D.7.B.8.D.9.B.10.D.二.填空题(每小题3分共30分)11..12.c,h,k,m.13.5.14.5.15.4.16.317.318.519.420.a+8b三.解答题(40分)21.(1)都是轴对称图形面积均为4个单位(2)略22.解:如图,23.解:参考图如下图:24.解:如图所示.25.解:如图所示.26.解:如图所示.。

2.3设计轴对称图案

2.3设计轴对称图案
⑴CA平分∠BCD; ⑵AC平分∠BAD; ⑶DB⊥AC; ⑷BE=DE. A.⑵ C.⑵⑶⑷ B.⑴⑵ D.⑴⑵⑶⑷
B C E D A
A
B
C
D
将一张正方形的得 ( ).
A B A B A BA N M D C D C D C D C B
A.多个等腰直角三角形 B.一个等腰直角三角形和一个正方形 C.两个同的正方形 D.四个相同的正方形
如图,在四边形ABCD中,边AB与 AD关于AC对称,则下面结论正确 的是( D)
乐哈哈
2008年北京好运
申奥成功喜洋洋
神州五号飞天成功

在如图所示的4×4的网格中,将8个 小方格用 、 X、 三种图形 填入,使之成为有2条对称轴的美丽 图案。
X X
用如图所示的四块正方形,形成轴对称 图形,看看谁的拼法多。
把一圆形纸片对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分 展开后的平面图形是 ( )
剪纸也常用轴对称来进行图案设 计,请看“庆丰灯笼”剪纸。
1.在方格纸上画一台以简单几何图形为 “元件”组成的天平图案
如图:聪明的机器人是由2条线段、2个 圆、2个三角形、2个长方形组成的,请 用上述图形,自己设计一幅对称图案, 并添加解说词。
许多集合图案是优美的,对称本身就是一种 美,请你用“两个圆、两个三角形、两条线段”, 在图中所示的方框内设计一幅对称图案,并用简 练的文字说明这幅图形的名称或创意。
2.3 设计轴对称图案
图案常给人美的享受,对称是设计图案常用 的方法,欣赏下列图案:
绿色食品标志
中国环境标志
国家免检产品标志
你能说出它们的含义吗?它们是什么图形?又 是怎样设计的?
正方形,三角形等网格纸,为轴对称图 案的设计提供了方便.如:盆花

最新苏科版八年级数学上册 设计轴对称图案(含解析)

最新苏科版八年级数学上册 设计轴对称图案(含解析)

2.3 设计轴对称图案一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.45.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有种.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.答案与解析一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了轴对称图形的概念.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.【点评】此题主要考查了轴对称变换,正确把握轴对称图形的性质是解题关键.3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【解答】解:如图所示:,共5种,故选:C.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了利用轴对称设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【分析】根据轴对称图形的特点进行判断即可.【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个【分析】直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键.9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有 5 种.【分析】根据轴对称图形的定义即可解决问题;【解答】解:如图有5种方法:故答案为5.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的定义,属于中考常考题型.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 3 种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有 3 种.【分析】根据轴对称图形的性质进行作图即可.【解答】解:如图所示,新图形是一个轴对称图形.故答案为:3.【点评】本题主要考查了利用轴对称变换进行作图,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有6 种.【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:共6种.故答案为:6.【点评】本题考查了利用轴对称设计图案,培养学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 2 个.【分析】利用轴对称图形的性质,分别得出符合题意的答案.【解答】解:如图所示:一个涂成黑色的图形成为轴对称图形.故答案为:2.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有 4 种.【分析】根据题意再添加一个正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形即可.【解答】解:如图所示:故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.【分析】本题可以选择画长为2宽为1的长方形、上底为1下底为3的等腰梯形及边长为的正方形.【解答】解:所画图形如下:【点评】此题考查了在正方形组成的网格中画一定面积的轴对称四边形,对于此类题目要熟悉掌握几种常见的轴对称图形,然后结合题意要求的面积进行设计作图.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【分析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.【解答】解:如图所示:【点评】本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.。

苏教版八上数学2.3 设计轴对称图案

苏教版八上数学2.3 设计轴对称图案
主备人:张伟平核校人:刘晓亮备课时间: 年 月 日
第 2 课(章) 第 3 节(单元) 第 1课时 授课时间: 年 月 日
课 题
2.3 设计轴对称图案
课 型
新授课
教 学
目 标
1.欣赏生活中的轴对称图案,感受数学丰富的文化价值;
2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验;
3.能利用轴对称的性质设计简单的轴对称图案.
2.完成课本上练习2、3.
三、数学实验
(一)制作4张如图2-14的正方形纸片,将纸片拼合.
1.图2-15中的3个图案各有几条对称轴?
2.这些图案可以看成是由一个小正方形纸片经过怎样的变换得到的?
3.你有不同于课本的拼法吗?拼出的图案是轴对称图形吗?如果是,有几条对称轴?
(二)人们在剪纸时,常常利用轴对称设计图案.欣赏剪纸作品,探讨它是怎么得到的?例如,按照图2-16(1)进行剪切,就能得到“庆丰灯笼”的剪纸作品(如图2-16(2)).
你来试试看呢?
四、实践操作
利用轴对称,设计并剪出一幅奖杯图案.能按要求完成某些轴对称图案.
2.会设计简单轴对称标志.
3.轴对称具有美感,轴对称在生活中无处不在.


布置作业:课本P49练习1和P50习题2.3习题1、2.
预习内容:



检查
记录
该课时教案已检查,同意上课使用。
2.如果不考虑颜色的“对称”,图2-13中(1)和(2)中各有几条对称轴?考虑颜色的“对称”呢?
3.如果将图2-13(1)中左上方和右下方的小方格也涂上色,那么它有几条对称轴?
4.改变图2-13(2)哪些小方格的颜色,就能使它有4条对称轴?

2.3 设计轴对称图案 课件(苏科版八年级上册) (6)

2.3 设计轴对称图案 课件(苏科版八年级上册) (6)

例题
下面的五角星是轴对称图形吗?如果是, 请画出它的对称轴,它有几条对称轴?
例题
圆是轴对称图形吗?它有几条 对称轴?
zxxkw
啊!无数条!
观察发现与思考
卷网

1、你每天都照镜子,如图,想 一想,你在镜子里的像与你的模 样完全一样吗?哪些一样?哪些 不一样? 大小 一样, 形状一样, 位置相反
照镜子的实质是轴对称
交流与发现
中国象棋棋盘,如果把棋盘沿着中间的虚线对折,棋盘的上下 两部分将分怎样? 在下棋开局之前,双方要按照规则把棋子摆放到棋盘上,如图, 这些棋子的摆放有什么规律?摆一摆,试试看。
脸谱艺术 建筑欣赏
剪纸艺术
交通标志 几何图案 实物案例 国旗欣赏 车标设计
面对生活中这些美丽的图片,你是否强烈地感受到美 就在我们身边!这是一种怎样的美呢? 请你谈谈你的感想?
观察发现与思考
请欣赏
通过图片欣赏,请观察一下,图片中真实的景物与它在水 中的倒影有什么关系? 形状,大小相同;景物中上下位置不同的两个点在倒影中 的位置恰好相反。
水中倒影的实质也是轴对称
L
做一个如图所示的梯形,如果 看右边的蝴蝶,如果沿中间的直线 沿直线L对折,直线请观察…… 吗?请观察……
轴对称图形
一个图形的一部分,以某一条直线为对称轴, 经过轴对称能与图形的另一部分重合,这样的图形 叫做轴对称图形。
中学学科网
L
你知道的几何图形中哪些是轴对称图形? 请列举出来。

2.3设计轴对称图案+课件-2024-2025学年苏科版数学八年级上册

2.3设计轴对称图案+课件-2024-2025学年苏科版数学八年级上册
应 数要相同).图形设计问题要注意题目各方面的设计要求,既 用 要注意形状,也要注意大小和颜色等.

活动3 能根据已有的基础图案设计轴对称图案
究 与
[操作尝试]
应 (1)制作4张如图2-3-4①的正方形纸片;

(2)将制作好的4张纸片拼合,能得到不同的图案,图②③④是
轴对称图形吗?如果是,它们分别有几条对称轴?
与 阴影方块组成一幅图案,请依照此图案,按下列要求在其他

用 网格中分别设计出一幅轴对称图案.要求:(1)不得与图①的
图案相同;(2)阴影方块与白色方块的个数要相同.
图2-3-3
探 解:如图所示(答案不唯一).
究 与 应 用
探 防 易错 究 本题易错在忽视题中的设计要求(阴影方块与白色方块的个

(3)你还能拼出其他轴对称图案吗?并指出所得图案有几条
对称轴.
图2-3-4
探 解:(2)题图②③是轴对称图形,题图④不是.题图②有1条对称轴,

与 题图③有2条对称轴.
应 用
(3)答案不唯一,如图.
探 究
例3 (教材典题)如图2-3-5,“聪明的机器人”是由2条线段、2
与 个圆、2个三角形、2个长方形组成的.请你用这8个图形,自

应 设计轴对称图形时要先确定对称轴,通常有以下四种方法: 用 一是对称轴为水平的,图形上下对称;二是对称轴为铅直的,
图形左右对称;三是对称轴为从左到右斜向上的,图形左上
部分与右下部分对称;四是对称轴为从左到右斜向下的,图
形左下部分与右上部分对称.
探 究
例2 如图2-3-3①,在4×3的网格上,由个数相同的白色方块与

用 己设计一幅轴对称图案.

八年级数学苏科版上册 第二单元《2.3设计轴对称图案》教学设计 教案

八年级数学苏科版上册 第二单元《2.3设计轴对称图案》教学设计 教案

2.3设计轴对称图案教学目标:1、欣赏生活中的轴对称图案,感受数学丰富的文化价值.2、能利用轴对称设计简单的图案,培养创新意识.教学重点:设计简单的轴对称图案.教学难点:设计轴对称图案.教学过程:环节一:情境引入、探索新知活动1轴对称图形均衡、和谐、给人以美的享受,人们常常利用轴对称设计图案.欣赏下列图案:注意:课本还给出了一个设计案例也一起展示.【教学建议】多给出一些有震撼力的轴对称图案,引导学生感受数学与生活的密切联系,体会数学的应用价值.【设计意图】激起学生学习数学的兴趣和热情.环节二:例题讲解,新知内化活动2动手实践:对称的美术图案,除图形对称外,有时颜色也要“对称”.问题1、如果不考虑颜色“对称”,那么下面这两个图形各有几条对称轴呢?2、如果考虑颜色“对称”,那么下面这两个图形各有几条对称轴呢?你能画出下面两个图形的对称轴吗?图1 图23、图1只有2条对称轴,最少还要给哪几个小方块着色,它就有4条对称轴?学生练习:问题2:如果要将图2改变成有4条对称轴,最少还要给哪几个小方块着色?在图2中画出来.【教学建议】本例题以问题串的形式给出,教师可以跟学生一起动手操作.引导并让学生回答老师黑板上操作.对于每一种答案给予肯定和纠正.【设计意图】引导学生发现轴对称图形是怎么来的,本质上就是先定好对称轴然后再根据对称性进行设计.环节三:拓展延伸,深化新知活动31、如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.2、认真观察4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征;(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.活动4:数学实验室1、制作4张如图所示的正方形纸片2、将制作好的4张纸片拼合在一起,能得到不同的图案,如果考虑颜色“对称”你能画出下面三个拼成的图形的对称轴吗?3、你还能设计出其它的轴对称图案吗?请画出对称轴.4、人们在剪纸时,常常利用轴对称设计图案.欣赏剪纸作品,探讨它是怎么得到的?例如,按照图(1)进行剪切,就能得到“庆丰灯笼”的剪纸作品(2),请你利用轴对称,设计并剪出一副奖杯图案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 设计轴对称图案
教学目标:
1.欣赏生活中的轴对称图案,感受数学丰富的文化价值.
2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验.
3.能利用轴对称的性质设计简单的轴对称图案.
教学重点:
利用对称轴掌握颜色对称与图形对称.
教学难点:
利用对称性质设计轴对称图形.
教学过程:
一、情境创设
欣赏轴对称图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?
欣赏轴对称图案:
1.绿色食品标志、中国环境标志、国家免检产品标志等;
2.课本P48美丽的“盆花”图案.
二、探索活动
1.对称的美术图案,除图形对称外,有时颜色也“对称”.如果不包括色彩因素在内,下列图形有几条对称轴?请你画出图中(1)和(2)的对称轴.
动手实践、探究、交流,分别画出下列图形的对称轴.
要点:画全.
2.如果不考虑颜色的“对称”,图2-13中(1)和(2)中各有几条对称轴?考虑颜色的“对称”呢?
3.如果将图2-13(1)中左上方和右下方的小方格也涂上色,那么它有几条对称轴?
4.改变图2-13(2)哪些小方格的颜色,就能使它有4条对称轴?
学生动脑想、动手画,积极参与活动.
2.答案:4条,4条;2条,1条.
(1) (2)
3.答案:4条.
4. 答案:涂色如图.
试一试:
1.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在右图方格内填涂黑二个小正方形,使它们成为轴对称图形.
2.完成课本上练习2、3.
三、数学实验
(一)制作4张如图2-14的正方形纸片,将纸片拼合.
1.图2-15中的3个图案各有几条对称轴?
2.这些图案可以看成是由一个小正方形纸片经过怎样的变换得到的?
3.你有不同于课本的拼法吗?拼出的图案是轴对称图形吗?如果是,有几条对称轴?
(二)人们在剪纸时,常常利用轴对称设计图案.欣赏剪纸作品,探讨它是怎么得到的?例如,按照图2-16(1)进行剪切,就能得到“庆丰灯笼”的剪纸作品(如图2-16(2)).
你来试试看呢?
画出图案的对称轴,并说出它的变换方式.
展示学生拼合的图案,交流所拼图案的对称轴及图形变换方式.
讨论、交流剪纸的要点,动手操作,展示作品.
四、实践操作
利用轴对称,设计并剪出一幅奖杯图案,班内展览,评选精品.
五、全课小结
1.能按要求完成某些轴对称图案.
2.会设计简单轴对称标志.
3.轴对称具有美感,轴对称在生活中无处不在.
六、课后作业
1.课本P49练习1和P50习题2.3习题1、2.
2.拓展:请用2块大小一样的三角尺(两锐角分别是60°和30°)拼出不同的轴对称图形,看看你能拼出几种.。

相关文档
最新文档