红外热像仪原理、主要参数和应用
红外热像仪主要技术参数PPT(完整版)
160×120分辨率红外图
384×288分辨率红外图
红外热成像原理
视场角(FOV): 视场角是由镜头系统主平面与光轴交点看景物或看成像面的线长度时
所张的角度,通俗的说,镜头有一个确定的视野,镜头对这个视野的高度 和宽度的张角称为视场角。
红外热成像原理
焦距(镜头大小): 透镜中心到其焦点的距离,通常用f表示。焦距的单位通常用mm(毫米)
红外探测器: 探测器是红外热像仪的心脏,它可以将红外辐射转变为电信号。
探测器尺寸: 探测器尺寸指探测器上单个探测元的大小,一般的规格有25μm,35μm 等。探测元越小,则成像的质量越好。
红外热成像原理
制冷式热成像仪: 其探测器中集成了一个低温制冷器,这种装置可以给探测器降温度,
这样是为了使热噪声的信号低于成像信号,成像质量更好。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见 光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直 接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布 的热图像。
红外热成像原理
4.红外热像仪基本技术参数解释
红外热像仪分类: 按照工作温度分为制冷型和非制冷型 按照功能分为测温型和非测温型
红外热像仪主要技 术参数
红外热成像原理
1.红外线原理
自然界中的一切物体,只要其温度高于绝对零度(-273℃)的物体都能辐射 电磁波,红外线辐射式自然界存在的一种最为广泛的电磁波辐射,它是基于任何 物体在常规环境下都会产生的自身的分子和原子无规则运动,并不停地辐射出热 红外能量。
2.红外线波段范围
太阳发出的光波又叫电磁波。可见光是人眼能够感受的电磁波,经三棱镜折 射后,能见到红、橙、黄、绿、青、蓝、紫七色光。
红外热成像技术的原理和应用
红外热成像技术的原理和应用一、概述随着现代科技的快速发展,越来越多的新型技术得以应用到生产和生活中。
其中,红外热成像技术(infrared thermal imaging technology)是一种重要的热力学检测工具,其可以通过红外线热辐射捕捉物体表面温度分布信息,实现对物体内部温度分布的无损检测和图像显示。
二、原理红外线是电磁波谱中波长大于0.75μm小于1000μm的中红外光线,其在材料中的传播是基于物体热能的辐射传输方式,其中物体表面温度越高,其辐射出来的红外线能量越大。
红外热成像技术利用热红外波段的红外线辐射进行测量,检测物体表面温度变化,然后将检测结果反映到热成像仪中,输出一张反映物体表面温度分布的热成像图。
三、分类根据热成像仪的工作方式和应用领域不同,红外热成像技术可以分为以下几种类型。
1. 主动式红外热成像技术主动式红外热成像技术是通过激励器来产生红外线辐射以供检测的技术。
常见的主动式红外热成像技术有激光探测器、偏置探测器和光纤传感器等。
2. 被动式红外热成像技术被动式红外热成像技术是依靠被检测物体的红外线辐射来进行测量的技术。
常见的被动式红外热成像技术有基于微波红外成像仪、红外线放射成像仪和红外线热像仪等。
3. 红外热成像技术的应用领域红外热成像技术具有大范围、非接触、高精度等优点,因此被广泛应用于以下领域。
(1)工业制造中的检测应用在工业制造中,红外热成像技术可以用于检测工艺中产生的温度变化来了解设备运行是否正常,及时预防它产生异常状况。
比如,利用红外热成像技术对汽车轮胎进行检测,可以检测到轮胎胎面与路面接触部位是否存在磨损、裂缝、脱胎等异常情况。
(2)建筑工程中的应用红外热成像技术可以用于建筑工程中的能耗分析和建筑物检测。
通过测量建筑物表面温度分布,可以判断建筑物的保温效果,有助于建筑物节能和减排。
除此之外,将红外热成像技术应用于建筑缺陷探测,也可以提高建筑物的安全性和可靠性。
红外热像仪学习总结讲解
红外热像仪学习讲解红外热像仪(Infrared Thermography Camera),简称IRT,是一种能够通过红外辐射对物体进行测温的仪器。
它能够将红外辐射转化为可见光图像,从而实现对物体温度分布的观测和分析。
红外热像仪的应用非常广泛,在建筑、电力、医疗等领域发挥着重要作用。
本文将对红外热像仪的原理、应用以及使用方法进行讲解,并根据个人学习经验相关注意事项。
红外热像仪原理红外热像仪利用物体产生的红外辐射来测量物体的表面温度,从而形成热图像。
其核心原理是基于物体的热辐射特性,在物体的温度不同区域,会产生不同的红外辐射强度。
红外热像仪通过感应物体发出的红外辐射,并将其转换成可见光图像,通过颜色的变化直观地反映物体的温度分布。
红外热像仪使用了红外焦平面阵列(Infrared Focal Plane Array)作为传感器,在接收红外辐射的同时,能够实现对不同波长红外辐射的感应,并将其转化为电信号进行处理。
最终,将处理后的信号转换成可见光图像,供用户观察和分析。
红外热像仪的应用1. 建筑领域在建筑领域,红外热像仪被广泛应用于建筑热工学的研究和冷热损失的检测。
通过对建筑表面温度的测量,可以快速发现隐蔽的热漏点和热桥等问题,从而提高建筑的能源利用效率。
2. 电力行业在电力行业,红外热像仪可以用于电力设备的检测和维护。
通过对电力设备的红外热图像进行分析,可以及时发现设备的过热、短路等问题,从而预防事故的发生,提高电力设备的运行安全性。
3. 医疗领域在医疗领域,红外热像仪可用于体温控制、疾病筛查和诊断等方面。
通过对人体表面温度的测量,可以快速筛查出潜在的感染疾病,并加以进一步诊断和治疗。
4. 工业制造红外热像仪在工业制造中的应用十分广泛。
它可以用于发现设备的异常热点,及时采取措施防止设备损坏或生产事故的发生。
此外,红外热像仪还可以用于产品质量的控制,通过检测产品的热信号,发现可能存在的质量问题,从而提高产品的质量和可靠性。
红外热像仪的原理和应用
红外热像仪的原理和应用1. 红外热像仪的原理红外热像仪是一种能够将对象的红外辐射转化为可视化图像的设备。
它利用红外辐射能够通过物体的特性,通过红外探测器将这些辐射转化为电信号,再通过电子元件将电信号转化为可视化图像。
红外热像仪的原理主要包括以下几个方面:1.1 热辐射:物体在温度高于绝对零度时,会发出热辐射。
热辐射的强度和频率分布与物体的温度有关。
1.2 探测器:红外热像仪的探测器通常采用半导体材料,如铟锗(InSb)、铟镉锌(InGaAs)等。
这些材料具有对红外波长辐射的敏感性。
1.3 光学系统:红外热像仪的光学系统主要包括透镜、滤光片和光学轴等。
透镜用于聚集红外辐射,滤光片则可以屏蔽非红外波段的辐射,并通过光学轴将红外辐射传输到探测器上。
1.4 信号处理:红外热像仪的信号处理主要包括信号放大、滤波、数字化和图像处理等。
通过这些信号处理,可以将红外辐射转化为可视化的图像。
2. 红外热像仪的应用红外热像仪的应用广泛,涵盖了许多领域。
以下是红外热像仪常见的应用场景:2.1 工业检测红外热像仪在工业领域中被广泛应用于机械设备的故障检测和预防维护。
通过检测机器设备表面的温度分布,可以快速识别出异常热点,从而及时预警并采取相应的维修措施,避免机器设备的停机造成的损失。
2.2 建筑热损失检测红外热像仪可以检测建筑物的热损失情况,帮助用户识别出建筑物中的热能漏失,从而进行相应的绝热处理,提高建筑物的能源效率。
2.3 消防安全红外热像仪可用于火灾的早期探测,能够快速发现火源和烟雾,并生成可视化的热像图,帮助消防人员定位和扑灭火源,提高灭火效率和安全性。
2.4 医学诊断红外热像仪在医学领域中被用于进行体温测量、血液灌注的观察等。
通过观察人体或动物的红外辐射,可以快速检测出体温的异常变化以及血液供应的情况,提供诊断参考。
2.5 安全监控红外热像仪在安全监控领域中常用于夜视和隐蔽监控等。
它可以将物体的红外辐射转化为可视化图像,提供夜间监控的能力,并通过隐蔽的方式进行监控,更好地保护安全。
FLIR红外热像仪原理及应用
FLIR红外热像仪原理及应用FLIR(Forward-Looking InfraRed)红外热像仪是一种检测和显示目标热量分布的仪器。
其原理基于物体发射红外辐射的特性,通过捕捉和处理红外辐射图像,可以获取目标物体的温度信息,从而达到提供可见的热像的目的。
接下来,我会详细介绍FLIR红外热像仪的工作原理以及常见的应用。
红外热像仪通过感应红外辐射和转换为电信号的方式来获取目标物体的温度信息。
其工作原理如下:1.捕捉红外辐射:红外辐射是由物体的热量引起的电磁波辐射,其波长长于可见光,人眼无法感知。
FLIR红外热像仪使用感光元件(如能够感应红外波段的光敏材料)来接收并捕捉红外辐射。
2.转换成电信号:红外辐射被感光元件捕获后,会产生电信号。
这些电信号会被转换成能够被数字处理系统分析和显示的形式。
3. 创建热像:FLIR红外热像仪内部的数字处理系统将电信号转换成热像。
通常,热像以假彩色(false-color)或黑白图像的形式显示。
图像中的不同颜色或灰度对应不同的温度值,从而可观察目标物体的温度分布情况。
1.建筑结构检测:FLIR红外热像仪可以用于检测建筑物中的热桥、漏水、能量损失等问题。
通过观察建筑物表面的温度分布图像,可以发现隐蔽在墙壁、地板和屋顶等结构中的问题,提供及时的修复措施。
2.电力设备维护:电力设备过热是电力系统故障和事故的重要先兆。
FLIR红外热像仪可以用于定期监测电力设备的温度,及时发现潜在的故障迹象,避免设备过热引发的事故,并优化设备的维护计划。
3.消防救援:FLIR红外热像仪是消防员工具中的重要装备之一、在火灾现场,通过红外热像仪可以快速探测到火焰及其热辐射的分布,提供给消防员有关火势的即时信息,有助于救援行动的决策。
4.安防监控:FLIR红外热像仪可以用于建立安全监控系统,通过监测目标物体的热量变化来识别潜在的威胁。
例如,在夜间或恶劣天气条件下,红外热像仪可以侦测到人体发出的热辐射,为安防系统提供额外的监控手段。
红外热像仪培训教材-红外热像仪原理
开机与关机
开机
按下电源键,等待仪器自检完毕,即可开始使用。
关机
按下关机键,仪器开始关机程序,等待关机完毕即可。
校准与标定
校准
在每次使用前或使用一定时间后,需要对红外热像仪进行校准,以确保测量结果的准确性。
标定
对红外热像仪进行标定,以消除仪器本身的误差,提高测量精度。
图像采集与处理
图像采集
根据需要选择合适的模式和参数,进行 图像采集。
温度分辨率
总结词
温度分辨率是红外热像仪能够分辨的 最小温差。
详细描述
温度分辨率决定了热像仪对细微温度 变化的敏感程度。分辨率越高,热像 仪能够检测到的温度变化越小,测量 精度也越高。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分辨的最小目标尺寸。
详细描述
空间分辨率越高,热像仪能够识别和定位的目标越小。这对 于需要精确测量小尺寸目标的场景尤为重要,如检测电子设 备的热故障点等。
要求
具有高透过率和低畸变, 能够将目标辐射的能量高 效地传输到探测器上。
探测器
作用
将汇聚的红外能量转换为 电信号。
类型
主要有热电堆、热电偶、 光子探测器等。
要求
具有高灵敏度、低噪声和 快速响应等特点,能够将 微弱的红外能量转换为可 测量的电信号。
信号处理系统
作用
对探测器输出的电信号进行处理 ,包括放大、滤波、模数转换等 。
VS
图像处理
对采集到的图像进行预处理、分析和处理 ,提取所需的信仪的镜头和外壳,保持仪器的清洁和整 洁。
要点二
存储
将红外热像仪存放在干燥、通风的地方,避免阳光直射和 高温环境。
THANKS FOR WATCHING
红外热热成像仪原理及应用范围
我们公司有大量的样机和专业的技术人员,你若感兴趣,可以按本站的联系方式咨询我们,也可以同我们预约,我们免费送样机上门演示,让您更好的了解您所选择的型号是否符合您的要求!也可以为您做免费的检测,当然,这一切是不计任何回报的~!
红外热像仪应用的范围随着人们对其认识的加深而愈来愈广泛:用红外热像仪可以十分快捷,探测电气设备的不良接触,以及过热的机械部件,以免引起严重短路和火灾。对于所有可以直接看见的设备,红外热成像产品都能够确定所有连接点的热隐患。对于那些由于屏蔽而无法直接看到的部分,则可以根据其热量传导到外面的部件上的情况,来发现其热隐患,这种情况对传统的方法来说,除了解体检查和清洁接头外,是没有其它的办法。断路器、导体、母线及其它部件的运行测试,红外热成像产品是无法取代的。然而红外热成像产品可以很容易地探测到回路过载或三相负载的不平衡。
红外热成像技术是一项前途广阔的高新技术。比0.78微米长的电磁波位于可见光光谱红色以外,称为红外线或称红外辐射,是指波长为0.78~1000微米的电磁波,其中波长为0.78~2.0微米的部分称为近红外,波长为2.0~1000微米的部分称为热红外线。自然界中,一切物体都可以辐射红外线,因此利用探测仪测量目标本身与背景间的红外线差可以得到不同的热红外线形成的红外图像。
红外热像仪最早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。由于红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可限量。
电气设备维护中的红外热成像技术使用教程
电气设备维护中的红外热成像技术使用教程红外热成像技术是一种非接触、无损、快速而高效的电气设备检测方法。
它通过检测物体表面的红外辐射,将其转化为图像,从而精确地测量物体温度分布,提供了电气设备维护中重要的信息。
本文将为您介绍红外热成像技术的基本原理、使用步骤以及其在电气设备维护中的应用。
一、红外热成像技术的基本原理红外热成像技术利用物体发射的红外辐射能量与物体温度呈正比的原理,通过红外热像仪将红外辐射能量转化为可见的热图或热度图像。
红外热像仪通过接收器件将红外辐射转化为电信号,然后通过处理器将电信号转化为热图图像。
其基本原理可以通过以下几个步骤简单说明:1.物体发射红外辐射:根据物体温度,物体表面会发射不同强度和波长的红外辐射;2.红外热像仪接收:红外热像仪通过接收器件接收物体发射的红外辐射;3.信号转化:接收到的红外辐射经过信号转换器被转化为电信号;4.图像处理:经过处理器处理,电信号转化为热图图像。
二、红外热成像技术的使用步骤红外热成像技术的使用步骤主要包括设备准备、测量前的准备、数据采集和分析等环节。
1.设备准备:首先,需要准备红外热像仪,确保其正常工作。
检查红外热像仪的电源是否连接,存储介质是否空余,以及测量装置的功能是否正常。
2.测量前的准备:在进行红外热成像测量之前,需要对被测对象进行准备。
确保电气设备的正常运行状态,并排除可能产生误差的因素,比如干扰物、外界环境温度等。
3.数据采集:使用红外热像仪对目标物体进行扫描,确保红外热像仪与被测对象的距离适中。
通常情况下,红外热像仪要与目标物体保持2-3米的距离,且垂直于被测表面。
确保整个测量过程中,红外热像仪不受外界光线干扰。
4.数据分析:在完成数据采集后,可以将图像数据传输至计算机进行分析。
通过分析热图或热度图像,可以判断电器设备是否存在异常热点或故障,提前进行维护和修复。
三、红外热成像技术在电气设备维护中的应用红外热成像技术在电气设备维护中有着广泛的应用。
红外热像仪原理与应用
红外热像仪原理与应用红外热像仪原理与应用红外热像仪(Infrared Thermographic Camera)是一种利用物体在红外波段发出的热辐射进行成像的仪器。
它可以将物体的热能转化为可见的图像,通过不同颜色的图像表示物体不同温度区域的分布情况。
红外热像仪的原理主要是基于物体的热辐射特性和红外感应技术。
红外热像仪的工作原理主要包括热辐射原理和光电转换原理。
首先,根据斯特藩-波尔兹曼定律,物体的热辐射与物体的温度有关,温度越高,热辐射越强。
红外热像仪通过感应目标物体的热辐射,将其转化为电信号。
其次,红外热像仪利用红外探测器将热辐射转化为电信号,再经过电路放大,最后将信号转化为图像。
红外热像仪的应用非常广泛。
以下是红外热像仪在不同领域的应用示例:1. 建筑检测与维护:红外热像仪可以检测建筑物中的热桥、漏水、能源浪费等问题,帮助提高建筑的能效和安全。
2. 电力设备检测与维护:红外热像仪可以检测电力设备中的过热、电路故障等问题,及早发现潜在的故障点,提高设备可靠性和减少停机损失。
3. 工业生产与质量检测:红外热像仪可以在工业生产中对产品质量进行检测,如检测焊接质量、塑料注射成型中的缺陷等。
4. 消防与救援:红外热像仪可以在火灾发生后,帮助消防人员迅速找到火源、人员位置等信息,提高救援效率和安全。
5. 医学诊断与疾病预防:红外热像仪可以用于人体热像图的拍摄,对于体温异常和炎症等疾病的早期诊断具有一定的价值。
红外热像仪具有许多优点。
首先,它无需直接接触物体即可进行测温,即使在远距离也可以准确测量目标的温度。
其次,红外热像仪对光线没有要求,可以在全天候和复杂环境下进行工作。
再次,红外热像仪可以通过图像的方式直观地展示目标物体的温度分布和问题所在,便于快速判断和决策。
然而,红外热像仪也存在一些局限性。
首先,红外热像仪的价格相对较高,限制了其在某些领域的应用。
其次,红外热像仪对红外辐射的感应范围有限,无法观测到非常低温或非常高温的物体。
红外热像仪在建筑中的应用
较大所致。 在下一步的改造工作中,应采取有效的保温措施。在寒冷的冬季,当北 方地区建筑外墙内表面的温度低于室内空气露点温度时,外墙的内表面 就产生结露现象。如果这种现象持续发生,将引发外墙面长霉现象。外 墙内表面结露、长霉,不仅会影响人们的舒适感和身体健康,同时也会 造成室内用具及房屋结构的损坏。分析河北1号小区建筑物气密性差的 主要原因,是空腹钢窗严重变形所致。而预制外墙板之间的拼接以及预 制外墙板与屋面、楼板之间的拼接措施不利等也会影响建筑物的气密 性。建筑物的气密性在节能改造中是必须充分重视的大问题。
军用高性能制冷式焦平面红外热成像仪
非制冷式焦平面红外热成像仪
第二节 红外热像仪系统及配置
一 基本配置: 一般配置为热像仪主机、分析软件、光学镜头 可选镜头:依据实际检测空间和检测距 离可以选择不同的镜头以满足不同的要 求。
分析软件: 对红外热像仪采集的红外图像和数据进行传输、报告、分析和整理 价格所在:分辨率,精度,稳定性,后期处理软件等
谢
谢!
⑶楼西立面红外热像图 楼西立面热工缺陷检 测於年14日17时43分 进行。测试时,室外 温度为-1.9℃,相对 湿度为86%,风向为 SSW,风速为1.8m/s。 图是单元西向外墙的 红外热像图。从建筑 外墙和外窗的外表面 温度分布可以看出, 外窗玻璃外表面温度 较高,为7.1~7.3℃ 墙体外表面温度差别 较大,为2.0~5.4℃ 之间。
利用特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并 以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种 电子装置称为红外热像仪 二 红外技术应用: 热像仪在军事和民用方面都有广泛的应用。在工业中,应用红外热成像 仪对设备进行检测和监控,保证设备的安全运转,发现异常情况;此外, 红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域 均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、 矿石断裂判别、导弹发动机检查、公安侦察以及各种材料及制品的无损 检查等。 1 建筑物红外检测技术的应用:现在得到了广泛,主要是热工缺陷的检测 及温度场分布的检测等. 2 种类:现在市场上常见的红外热成像仪大致分为致冷型和非致冷型两大 类.制冷式的精度更高一些,制冷的目的是给机器创造一个低温恒温的 工作环境,同时避免机器发热带来的误差.常见的有液氮制冷等, 缺点 致冷型产品成本高、寿命短、功耗大和致冷预热时间长等缺点所以价格 较贵.由于光电技术的发展,现在市场上大多是非制冷式的产品.
红外热像仪的用途和原理PDF
红外热像仪的原理和用途红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上从而获得红外热像图这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
一红外热像仪的发展红外热像仪在最早是因为军事目的而得以开发近年来迅速向民用工业领域扩展。
自二十世纪70年代欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。
红外热像仪也经过几十年的发展已经发展成非常轻便的现场测试设备。
由于测试往往产生的温度场差异不大和现场环境复杂等因素好的热像仪必须具备160120像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。
红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上从而获得红外热像图这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪在全球范围内美国拥有绝对领先的技术。
全球前三大红外热像仪品牌RNOFLIR和FLUKE都是美国品牌。
其中RNO是全球红外热像仪的鼻祖也是全球第一大红外热像仪品牌。
其知名的型号也是占据全球40市场份额的单品是PC-160. 作为一款售价4000多美元的红外热像仪这款热像仪拥有高达60HZ的帧频帧频越高热像仪精度越高感应速度也快也更精确成像也更连续这款红外热像仪可以说性价比非常高。
FLIR主要生产低端的2000美元左右的红外热像仪。
FLUKE主要生产中低端的红外热像仪。
二红外热像仪的原理红外热成像技术是一项前途广阔的高新技术。
比0.78微米长的电磁波位于可见光光谱红色以外称为红外线或称红外辐射是指波长为0.781000微米的电磁波其中波长为0.782.0微米的部分称为近红外波长为2.01000微米的部分称为热红外线。
房屋外墙检测方案红外热像仪的应用
房屋外墙检测方案红外热像仪的应用随着科技的进步,红外热像仪的应用范围愈发广泛。
在房屋外墙检测方案中,红外热像仪充当着重要的角色。
本文将介绍红外热像仪在房屋外墙检测方案中的应用,并探讨其优势和局限性。
一、红外热像仪的原理红外热像仪是一种能够将物体辐射的红外辐射转化成可见图像的仪器。
物体发出的红外辐射与其表面温度成正比,红外热像仪通过测量物体表面的红外辐射强度,将其转化成热图,从而可以直观地观察到温度分布情况。
二、红外热像仪在房屋外墙检测中的应用1. 温度检测:红外热像仪可以快速、准确地检测房屋外墙表面的温度分布情况。
通过红外热像仪拍摄并记录热图,可以及时发现墙体存在的异常状况,如漏水、渗水、发霉等。
2. 热桥检测:红外热像仪在检测房屋外墙时可以准确发现热桥问题。
热桥是指墙体中导热性能较差、导致热量集中流失的部分,通过红外热像仪可以识别并标记出热桥位置,为后续的维修和改造提供依据。
3. 能耗评估:红外热像仪可以测量房屋外墙表面的温差,进而计算房屋能耗情况。
通过红外热像仪的应用,可以评估房屋的绝热性能和能源利用效率,为节能改造提供参考意见。
4. 隐蔽缺陷检测:红外热像仪可以非接触式地检测房屋外墙的隐蔽缺陷,如漏水、渗水、空洞等。
通过红外热像仪拍摄出的热图,可以直观地区分出异常区域,并迅速采取修复措施。
三、红外热像仪应用的优势1. 非接触式测量:红外热像仪无需接触被测物体,减少了对房屋外墙的人为损害。
2. 高效快速:红外热像仪可以在较短的时间内对大面积外墙进行检测,提高了工作效率和检测精度。
3. 易于操作:红外热像仪的操作简单,即使是非专业人员也能够快速上手。
4. 数据分析功能:红外热像仪具备数据存储和分析功能,可以对拍摄的热图进行后续的数据处理和分析。
四、红外热像仪应用的局限性1. 环境条件要求:红外热像仪在使用过程中对环境条件要求较高,如太阳辐射、湿度等因素会对检测结果产生一定影响。
2. 距离限制:红外热像仪的测量距离有限,需要与被测物体保持一定的距离才能获得准确的数据。
红外热像仪原理、主要参数和应用
红外热像仪原理、主要参数和应用红外热像仪原理、主要参数和应用1. 红外线发现与分布1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。
当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。
我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。
1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。
红外线的发现标志着人类对自然的又一个飞跃。
随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。
红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2. 红外热像仪的原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。
红外热像仪测温技术
不同的物质和目标在红外波段范围内有不同的辐射特性,因 此选择合适的波段范围对于准确测量温度至关重要。常见的 波段范围包括短波、中波和长波,分别对应不同的应用场景 。
空间分辨率
总结词
空间分辨率决定了红外热像仪能够分 辨目标细节的能力。
详细描述
空间分辨率越高,热像仪能够捕捉到 的目标细节越丰富。这有助于在复杂 背景下准确识别目标,并对其温度分 布进行更精确的测量。
红外热像仪在安全监控、消防 救援和军事侦察等领域中具有
广泛的应用。
02 红外热像仪的组成与分类
红外探测器
探测器类型
探测器阵列
红外探测器分为热探测器和光子探测 器两类,其中热探测器根据工作原理 又可以分为热电堆、热电偶、热敏电 阻等。
红外探测器阵列分为一维线阵和二维 面阵,面阵又可以分为非制冷和制冷 两种类型。
康复理疗
红外热像仪还可用于康复理疗领域, 通过红外热像仪的监测,可以对康复 治疗效果进行量化评估,为康复治疗 方案提供科学依据。
安全监控领域的应用案例
消防安全
在消防安全领域,红外热像仪能够快速定位火源、检测高温区域和人员,为灭火救援提供重要信息,提高救援效 率。
夜间监控
在夜间或低光照条件下,红外热像仪能够清晰地捕捉到目标物体的温度分布,为安全监控提供有力支持。
测温范围
总结词
测温范围决定了红外热像仪能够测量的最高和最低温度。
详细描述
测温范围越宽,热像仪的应用场景就越广泛。了解测温范围对于选择适合应用的 红外热像仪至关重要,以确保能够准确测量目标温度。
04 红外热像仪测温技术的优 势与局限性
优势
非接触式测温
响应速度快
红外热像仪通过接收物体发射的红外辐射 进行测温,无需直接接触被测物体,可在 一定距离内进行快速测量。
红外热成像的原理及应用
红外热成像的原理及应用原理红外热成像技术是利用物体在不同温度下发射的红外辐射来生成图像的一种技术。
它基于热辐射一个基本原理,即每个物体都会以一定的速率发出红外辐射,其强度与温度有关。
红外热成像技术通过检测并测量物体发出的红外辐射的强度,进而将其转换为图像显示。
其原理主要包括红外辐射检测、信号处理和图像显示三个步骤。
在红外辐射检测方面,红外热成像技术主要采用红外热像仪或红外线摄像机。
这些设备能够感应并记录物体发出的红外辐射的强度,一般通过红外探测器实现。
红外探测器是一种能够将红外辐射转换为电信号的装置,常用的红外探测器包括热电偶、热电势器、热电阻和半导体探测器等。
在信号处理方面,红外热成像技术通过将红外辐射测量结果进行信号放大、滤波、数字化等处理,以提高图像质量和准确度。
信号处理可以采用模拟电路、数字信号处理器或嵌入式系统等进行。
最后,在图像显示方面,红外热成像技术通过将处理后的红外辐射测量结果转换为可视化的图像进行展示。
这些图像可以通过红外显示屏、计算机显示器或其他显示设备进行实时观察或保存。
应用红外热成像技术在各个领域都有广泛的应用。
以下列举了几个常见的应用领域:1.工业领域–无损检测:红外热成像技术可以用于检测物体表面的温度分布,从而发现潜在的故障、缺陷或异常情况,如电气设备的过热、管道的漏水等。
–过程监控:红外热成像技术可以实时监测工业过程中的温度变化,用于优化生产过程、提高效率和安全性。
–热设备检测:红外热成像技术可以用于检测工业设备的热状态,如冷却器的堵塞、加热炉的温度分布等,以及判断设备是否正常运行。
2.建筑领域–能效评估:红外热成像技术可以用于评估建筑物的能效,检测建筑物表面的热损失,从而减少能源浪费和改善室内舒适度。
–潜在问题检测:红外热成像技术可以用于检测建筑物中的潜在问题,如漏水、隐蔽的热桥等,以及评估建筑物材料的热性能。
3.医学领域–疾病诊断:红外热成像技术可以用于检测人体表面的温度分布,进而发现异常情况,如癌症、乳腺疾病等。
红外热像仪学习总结讲解
发展趋势:未来红外热像仪将朝着高精度、高稳定性、小型化、智能化的方向发展,同时还将探索更多新的应用领域。
技术创新:随着材料科学、微电子技术等领域的发展,红外热像仪的探测器性能将得到进一步提升,分辨率和灵敏度将更高。
市场竞争:国内外众多企业纷纷进入红外热像仪市场,竞争日益激烈,这也将推动红外热像仪技术的不断进步。
系统参数:包括测温范围、精度、帧频等,这些参数决定了热像仪的测温性能和响应速度。
红外热像仪的使用方法和技巧
打开电源:确保红外热像仪已充满电并开启
校准:根据环境和测量需求进行校准
设置参数:调整焦距、发射率等参数,确保测量准确
测量:对目标进行测量,观察热像图和温度值
记录数据:将测量结果记录在笔记本或电子设备上
更高的帧率和响应速度:未来红外热像仪将会具备更高的帧率和响应速度,能够实现快速获取温度场分布,对于高速运动目标进行实时监测。
智能化和网络化:随着人工智能和物联网技术的发展,红外热像仪将会具备更强的智能化和网络化功能,能够实现远程控制、自动识别和数据分析等功能。
医疗领域:利用红外热像仪检测人体温度分布,辅助诊断疾病
人工智能和机器学习应用:红外热像仪将与人工智能和机器学习技术结合,实现更快速、准确的目标识别和温度异常检测。
多光谱成像技术融合:红外热像仪将与多光谱成像技术融合,提供更丰富的温度和物质成分信息,有助于更全面地了解目标对象的特性。
更高温度测量范围:随着技术的不断进步,红外热像仪有望实现更高温度范围的测量,以满足工业、医疗等领域的需求。
温度范围:热像仪的温度范围表示其能够测量的最高和最低温度度通常在±2℃或±2%之间,具体取决于热像仪的型号和性能。
热灵敏度:热灵敏度表示热像仪能够检测到的最小温差,通常以mK为单位。较高的热灵敏度意味着能够检测到更小的温差。
红外热像仪原理
红外热像仪原理一、引言红外热像仪是一种能够感知并显示目标物体的红外辐射能力的仪器,它利用了红外辐射和热量分布的原理,可以在各种环境条件下实时监测、测量和显示目标物体的温度分布情况。
本文将介绍红外热像仪的原理及其应用。
二、红外辐射红外辐射是一种电磁波,其波长范围在0.75μm到1000μm之间,相比可见光波长更长。
所有物体在温度不为绝对零度时都会发射红外辐射,其强度与物体的温度密切相关。
红外辐射的强度分布与物体的温度分布有关,通过测量红外辐射的强度分布可以得到物体的温度分布信息。
三、红外热像仪的工作原理红外热像仪的工作原理是基于红外辐射的特性。
红外热像仪通过红外探测器接收目标物体发出的红外辐射,然后将其转化为电信号进行处理和显示。
红外探测器是红外热像仪的核心部件,根据工作原理的不同可以分为热电偶探测器、焦平面阵列探测器和铟锑探测器等。
热电偶探测器是一种基于热电效应的红外探测器,它利用两个不同材料的接触点形成的热电偶产生电压信号,该信号与目标物体的温度有关。
焦平面阵列探测器是一种将焦平面上的每个像素点都作为一个探测单元的红外探测器,它可以同时获得多个像素点的温度信息,从而实现对目标物体的温度分布进行快速测量。
铟锑探测器是一种基于半导体材料的红外探测器,它利用半导体材料在红外辐射下的光电效应产生电信号。
四、红外热像仪的应用红外热像仪具有广泛的应用领域,主要包括以下几个方面:1. 工业领域:红外热像仪可以用于工业设备的故障检测和预防性维护,及时发现设备的异常温度分布,避免故障的发生和设备的损坏。
2. 建筑领域:红外热像仪可以用于建筑物的热损失检测和能源管理,通过测量建筑物表面的温度分布,发现热桥和热漏点,进而采取相应的措施进行热能的节约。
3. 电力领域:红外热像仪可以用于电力设备的温度监测和故障诊断,实时监测设备的温度分布,及时发现电力设备的异常情况,保障电力系统的安全和稳定运行。
4. 医疗领域:红外热像仪可以用于医学诊断,通过测量人体皮肤表面的温度分布,可以快速发现体温异常或炎症部位,辅助医生进行诊断和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热像仪原理、主要参数和应用红外热像仪原理、主要参数和应用1. 红外线发现与分布1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。
当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。
我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。
1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。
红外线的发现标志着人类对自然的又一个飞跃。
随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。
红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2. 红外热像仪的原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。
简而言之,红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。
红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。
3. 红外热像仪的主要参数(1) 工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。
(2) 探测器类型:探测器类型是指使用的一种红外器件。
如采用单元或多元(元数8、10、16、23、48、55、60、120、180、等),采用硫化铝(PBS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(PbCdTe)、碲锡(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(SI:X)等。
(3) 扫描制式:一般为我国标准电视制式,PAL制式。
(4) 显示方式:指屏幕显示是黑白显示还是伪彩显示。
(5) 温度测定范围:指测定温度的最低限与最高限的温度值的范围。
(6) 测温准确度:指红外热像仪测温的最大误差与仪器量程之比的百分数。
(7) 最大工作时间:红外热像仪允许连续的工作时间。
4. 红外热像仪分类红外热像仪一般分光机扫描成像系统和非扫描成像系统。
光机扫描成像系统采用单元或多元(元数有8、10、16、23、48、55、60、120、180甚至更多) 光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。
非扫描成像的热像仪,如今几年推出的阵列式凝视成像的焦平面热像仪,属新一代的热成像装置,在性能上大大优于光机扫描式热像仪,有逐步取代光机扫描式热像仪的趋势。
其关键技术是探测器由单片集成电路组成被测目标的整个视野都聚集在上面,并且图象更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结、连续放大,点温、线温、等温和语音注释图像等功能。
仪器采用PC卡,其存储容量可高达500幅图像。
红外热电视是红外热像仪的一种。
红外热电视是通过热释电摄像管(PEV)接受被测目标物体表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号。
因此,热释点摄像管是红外热电视的关键器件,它是一种实时成像、宽譜成像(对比3~5μm及8~14μm有较好的频率响应)具有中等分辨率的热成像图器件。
主要由透镜、靶面和电子枪三部分组成。
其技术功能是将被测目标的红外辐射线通过透镜聚集成像到热释电摄像管,采用常温热电视探测器和电子束扫描及靶面成像技术来实现的。
5. 红外热像仪发展历史1800年,英国物理学家F. W.赫胥尔发现了红外线,从此开辟了人类应用红外技术的广阔道路。
在第二次世界大战中,德国人用红外变像管作为光电转换器件,研制出了主动式夜视仪和红外通信设备,为红外技术的发展奠定了基础。
二次世界大战后,首先由美国经过近一年的探索,开发研制的第一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR0),它是利用光学机械系统对被测目标的红外辐射扫描。
由光子探测器接收两维红外辐射迹象,经光电转换及一系列仪器处理,形成视频图像信号。
这种系统、原始的形式是一种非实时的自动温度分布记录仪,后来随着五十年代锑化铟和锗掺汞光子探测器的发展,才开始出现高速扫描及实时显示目标热图像的系统。
六十年代早期,瑞典研制成功第二代红外成像装置,它是在红外寻视系统基础上增加了测温功能,称之为红外热像仪。
开始由于保密的原因,在发达的国家中也仅限于军用,投入应用的热成像装置可在黑夜或浓厚云雾中探测对方的目标,可探测伪装的目标和高速运动的目标。
由于有国家经费的支撑,投入的研制开发费用很大,仪器的成本很高。
以后考虑到在工业发展中的实用性,结合工业红外探测的特点,采取压缩仪器造价。
降低生产成本并根据民用的要求,通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。
六十年代中期,瑞典研制出第一套工业用的实时成像系统(THV),该系统由液氮制冷,110V 电源电压供电,重约35 公斤,因此使用中便携性很差,经过对仪器的几代改进,1986 年研制的红外热像仪已无需液氮或高压气,而以热电方式致冷,可用电池供电:1988年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7公斤,仪器的功能、精度和可靠性都得到了显著的提高。
九十年代中期,美国首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC 卡上,即完成全部操作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检验报告,由于技术的改进和结构的改变,取代了复杂的机诫扫描仪器重量已小于二公斤,使用中如同手持摄像机一样,单手即可方便地操作。
6. 红外热像仪的应用领域热像仪作为一种红外成像仪器,不但在军事应用中占有很重要的地位在民用方面也具有很强的生命力。
它除具有红外测温仪的优点(如非接触、快速、能对运动目标和微小目标测温等)外,还具有下列优点:(1) 直观地显示物体表面的温度场。
红外测温仪只能显示物体表面某一小区域或某一点的温度值,而热像仪则可以同时测量物体表面各点温度的高低,并以图像形式显示出来。
(2) 温度分析率高。
红外测温仪由于各种一因素的影响,很难分辨0.1以下的温差,而热像仪由于可以同时显示出两点的温度值,因而能准确区分很小的温差,甚至可达0.01:(3) 可采用多种显示方式。
热像仪输出的视频信号包含目标的大量信息,可用多种方式显示出来。
例如,对视频信号进行假彩色处理,便可由不同颜色显示不同温度的热图像;若反视频信号进行模数转换处理,即可用数字显示物体各点的温度值:(4) 可进行数据存储和计算机处理。
热像仪输出的视频信号,可用数字存储器存储,或用录像带记录,这样既可长期保持又可用计算机作运算处理。
热像仪在军事和民用方面都有广泛的应用。
随着热成像技术的成熟,各种低成本适于民用的热像仪的问世,它在国民经济各部门发挥着越来越大的作用。
在工业生产中,许多设备常处于高温、高压和高速运行状态,应用红外热像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。
同时,利用热像仪还可进行工业产品质量控制和管理。
例如,在钢铁工业中的高炉和转炉所用耐火材料的烧蚀磨损情况,可用热像仪进行观测及时采取措施检修防止事故发生。
又如,在石化工业中,热像仪可监视生产设备和管道的运行情况,随时提供有关沉淀形成、流动阻塞、漏热温度隔热材料变质等数据。
再如,在电力工业中,发电机组、高压输电和配电线路等可用热像仪沿线扫查,找出故障隐患,及时排除以利于杜绝事故的发生。
在电子工业中,也可用热像仪检查半导体器件、集成电路和印刷电路板等的质量情况,发现其他方法难以找到的故障。
此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。
如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、导弹发动机检查,公安侦查以及各种材料及制品质无损检查等。
7.红外热成像系统的主要技术指标1). f/数f/数是光学系统相对孔径的倒数.设光学系统的相对孔径为A=D/f(D为通常孔径,f为焦距),IA=f/D, 则数f/D 是表示系统的集中f为通光孔径的多少倍。
例如,f/3 表示光学系统的集中为通光孔径的三倍。
2). 视场视场是光学系统视场角的简称.它表示能够在光学系统像平面视场光阑内成像的空间范围,当目标位于以光轴为轴线,顶角为视场角的圆锥内的(任一点在一定距离内),时候被光学系统发现,即成像于光学系统像平面的视场光阑内。
即使物体能在热像仪中成像的物空间的最大张角叫做视场,一般是a”X 的矩形视场。
3). 光谱响应红外探测器对各个波长的入射辐射的响应称为光谱响应。
一般的光电探测器均为选择性的探测器。
4). 空间分辨率应用热像仪观测时,热像仪对目标空间形状的分辨能力。
本行业中通常以mrad(毫弧度)的大小来表示。
mrad的值越小,表明其分辨率越高。
弧度值乘以半径约等于弦长,即目标的直径。
如 1.3 mrad的分辨率意味着可以在100m的距离上分辨出1.3×10-3 ×100=0.13m=13厘米的物体。
5).温度分辨率温度分辨率:可以简单定义为仪器或使观察者能从背景中精确的分辨出目标辐射的小温度AT。
民用热成像产品通常使用NETD 来表述该性能指标。
6).最小可分辨温差分辨灵敏度和系统空间分辨率的参数,而且是以与观察者本身有关的主观评价参数,它的定义为:在使用标准的周期性测试卡(即高宽比为7:1的4带条图情况下),观察人员可以分辨的最小目标、背景温差。