质量管理常用的统计技术简介

合集下载

常用统计技术在质量管理中的应用

常用统计技术在质量管理中的应用

方差分析在质量管理中的应用
方差分析是一种用于比较不同组数据的变异和误差的统计 方法。在质量管理中,方差分析可用于评估不同批次、不 同生产条件或不同供应商的产品质量稳定性。
通过比较不同组之间的变异和误差,分析它们对产品质量 的影响,从而确定哪些因素对产品质量有显著影响,并采 取相应的改进措施。
相关与回归分析在质量管理中的应用
常用统计技术在质量管理中的贡献与限制
数据依赖性
统计技术需要大量数据作为基础,数据的质量和完整 性直接影响分析结果。
技术复杂性
统计技术需要专业人员操作,且技术更新快,需要不 断,统计技术不能一刀切 地应用于所有情况。
未来研究方向与展望
01
研究方向
02
智能化技术:随着人工智能和大数据的发展,如何将智能 化技术与统计技术结合,提高质量管理效率是未来的研究 重点。
控制图的优缺点与注意事项
优点
能够及时发现异常波动,预防不良品的产生。
缺点
需要收集大量数据,计算和控制限可能随时 间变化。
注意事项
定期检查控制图,确保其有效性;当发现异 常时,及时采取措施纠正。
06
案例分析
描述性统计在质量管理中的实际应用案例
总结词
描述性统计用于收集、整理、描述数据,帮 助我们更好地理解数据分布和特征。
控制图的原理与绘制
原理
控制图是一种统计工具,用于监控过程 是否处于控制状态,并检测异常波动。
VS
绘制
通过收集数据,计算中心线(CL)和上下 控制限(UCL和LCL),绘制控制图。
控制图的应用与解读
应用
用于监控生产过程中的关键质量特性,如产品尺寸、重量等。
解读
通过观察数据点是否超出控制限,判断过程是否受控,并找出异常波动的原因。

质量管理中的统计技术与方法

质量管理中的统计技术与方法
AQL不是描述抽样方案特征的指标,而是描述过程平均质量的指标。它被看着是接受收 的过程和不可接受的过程平均之间的分界线。
抽样检验
五、检验水平(IL):
检验水平反应了批量(N)和样本量(n)之间的关系,分为I 、 II 、 III 三个检验水平,水平 II 为正常检验水平。
GB2828中,检验水平的设计原则是:如果批量增大,一般样本量也随之增大, 大批量中一般样本量占的比例比小批量中样本量所占的比例要小。
散布图(Scatter)
直方图(Histogram)
定义:直方图是通过对数据的加工整理,从而分析和掌握数据 的分布状况和估算工序不合格率的一种方法。
用途:常用于分析质量原因,测量工序能力,估计工序不合格 率等,
作直方图的三大步骤: (1)作频数分布图; (2)画直方图; (3)进行相关计算。
总结一
总结二
提高过程能力指数方法
1)减少质量特性值分布的标准差s:
标准差s表示质量特性的离散(质量不一致性)的程度。 在实际生产过程中减少标准差s往往是困难的,需要通过技术改造、质量改
进等措施来实现。
2)放宽公差范围:
产品公差是设计过程所确定的,是以给社会(客户)造成损失最小为出发点, 通过质量损失函数的计算、分析而确定的。因此,对放宽公差来提高过程能 力必须持非常慎重的态度,轻易不可采用。
P = d1+d2+d3+…dK/n1+n2+n3+…nk; 对于老产品,k≥20批; 新产品:先用k = 5—10批初估,然后补充到20批再估; 预测供应商方可能提交产品的平均质量; 需求方用以规定或改变合同中的AQL值。
四、可接收质量水平(AQL)
在抽样检验中,认为可以接受的连续提交检验批的过程平均上限值,它又称为合格质量 水平。

质量管理常用技术

质量管理常用技术

Method Environment 原因
特性
结果
2、利用逻辑推理法绘制因果图的步骤
❖ 确定结果 ❖ 主骨 ❖ 大骨 ❖ 中骨 ❖ 小骨 ❖ 作出相关标记
3、利用发散整理法绘制因果的步骤
❖ ——选题,确定质量特性 ❖ ——尽可能找出所有可能会影响结果的因素 ❖ ——找出各原因之间的关系 ❖ ——将认为对结果有显著影响的因素标出来 ❖ ——标出必要的信息 ❖ 小骨中骨大骨进行系统分类
❖ (一)概念 ❖ ——是为了对发生频次从最高到最低的项目进
行排列而采用的简单图示技术。组成如下: ❖ 一个横纵坐标 ❖ 两下纵坐标 ❖ 几个按高低顺序(“其他”除外)排列的矩形 ❖ 一条累计百分比折线(Parato曲线)确定
(二)制作排列图步骤
❖ 1、确定所要调查的问题驻及如何收集数据 ❖ (1)选题,确定问题的种类 ❖ (2)确定问题调查的期间 ❖ (3)对数据进行分类 ❖ (4)制作排列图用数据表 ❖ 2、设计数据记录表 ❖ 3、填表、统计 ❖ 4、制作排列图用数据表 ❖ 5、按从大到小顺序填表,“其他”排最后
额最好在纵轴上表示。
2、使用排列图的注意要点
❖ 排列图的目的在于有效解决问题, ❖ 基本点是抓住“关键的少数”。 ❖ 分析主要原因,确定主要问题。 ❖ 确定采取措施的顺序,解决主要问题。 ❖ 对照采取措施前后的排列图,研究组成各个项目
的变化,找到主要原因,可以连续使用,找到复杂 问题的最终原因。
(五)排列图和因果结合使用
业方法。
(四)排列图的注意事项
❖ 1、制作排列图的注意要点 ❖ (1)分类方法不同得到排列图不同。 ❖ (2)抓住“关键的少数”; ❖ A:0-80%;B:80-90%;C:90-100% ❖ (3)如果“其它”项所占的百分比很大,则分类

质量管理统计学

质量管理统计学

质量管理统计学是应用统计学的一个分支,主要关注如何通过收集、分析和解释数据来改进产品和服务的质量。

它涉及到一系列统计技术和方法,用于评估和监控产品和过程的质量,识别质量问题,确定改进的机会,并验证改进措施的有效性。

质量管理统计学的主要目标是通过使用统计方法来实现以下几个方面的目标:
质量控制:通过对生产过程进行监控和控制,确保产品或服务的质量符合规定的标准和要求。

质量改进:通过对质量数据的分析,确定质量问题的根本原因,并采取相应的改进措施,以提高产品或服务的质量。

质量保证:通过对产品或服务的质量进行评估和验证,确保其符合客户的需求和期望。

质量管理统计学涉及的统计技术和方法包括:控制图、过程能力分析、假设检验、方差分析、回归分析、实验设计等。

这些技术和方法可以帮助质量管理人员更好地理解和控制生产过程,提高产品和服务的质量,降低成本,提高客户满意度。

质量管理体系的数据分析和统计技术

质量管理体系的数据分析和统计技术

质量管理体系的数据分析和统计技术质量管理体系是现代企业中至关重要的一部分,它对产品质量的掌控起着决定性的作用。

数据分析和统计技术是质量管理体系中不可或缺的工具,通过对数据进行深入分析和统计,企业可以更好地了解产品质量状况,发现问题并迅速采取相应措施,从而不断提升产品质量和企业竞争力。

一、数据分析和统计技术的重要性数据分析和统计技术在质量管理体系中的重要性不可忽视。

首先,它可以帮助企业了解产品性能和质量特征。

通过对产品生产、销售和服务过程中所产生的数据进行分析和统计,企业可以准确地获得产品的性能指标、质量特征等信息,从而判断产品的质量是否达到预期要求。

其次,数据分析和统计技术可以帮助企业发现问题和隐患。

通过对大量数据进行分析,可以找出其中存在的问题和隐患,进而找到问题发生的原因,并及时采取措施进行改进。

例如,通过对生产过程中的数据进行统计分析,企业可以发现生产过程中存在的不良品率过高、生产效率低下等问题,并采取相应的措施进行改进。

最后,数据分析和统计技术还可以帮助企业进行决策和管理。

通过对数据进行分析和统计,企业可以获得决策所需的信息和依据,比如产品质量的参数设定、流程改进的方向等。

同时,统计技术也可以帮助企业进行质量管理的评估和监控,提供决策者对质量管理的全面了解,从而更好地指导企业的质量管理工作。

二、数据分析和统计技术的应用数据分析和统计技术广泛应用于质量管理体系的各个环节。

以下是一些常用的数据分析和统计技术的应用示例。

1. 流程能力分析流程能力分析是一种常用的统计技术,用于评估和监控生产过程的稳定性和能力。

通过对生产过程中所产生的数据进行分析,可以计算出流程的平均值、标准差等指标,从而判断流程的稳定性和能力是否满足要求。

如果流程的能力不足,企业可以通过改进流程、提高设备质量等方式来提升流程的能力。

2. 故障分析故障分析是一种通过对故障问题所涉及的数据进行分析和统计,找出故障原因并制定相应对策的方法。

质量管理工具之QC七大统计手法

质量管理工具之QC七大统计手法
6
QC新旧七大手法的起源:
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获 得成功之后,1979年又提出新七种工具。
所以称之为“七种工具”,是因为日本古代武士在出 阵作战时,经常携带有 七种武器,所谓七种工具就是沿用 了七种武器。
是发现与解决问题的一种思想、方法以及工具。 是一种统计手法在品质管理中的应用。
138 139 144 131 140 145 134 135 137 136 142 140 138 127 130 141 136 134 132 131 148 141 139 138 136 135 137 132 130 131 145 138 136 137 128 131 133 134 135 139 140 138 137 137 138 136 134 120 135 136 141 139 137 133 132 131 132 129 134 135
柏拉图 (Pareto Diagram)
柏拉图抓重点
排列图、帕累托图、80/20法则
直方图 (Histogram)
直方图显分布
层别法 (Stratification)
层别法作解析
分层法
散布图 (Scatter Diagram)
散布图看相关
控制图 (Control Chart)
控制图找异常 3
应用数据要注意的重点
▪ 收集正确可用的数据; ▪ 避免个人主观的判断; ▪ 掌握事实的真相。
有了科学的数据,适宜的QC统计手法就可以快速地找到问题发生的原因和果 断采取必要的措施,不断持续改善。
10
一、检查表
定义:是为了使数据看起来简单明了好整理而而事先设计好的表格或图表, 利用此表可以只依靠简单的检查就可以获得主要情报,另外检查时也不会 遗漏掉主要的项目,即可提供量化分析或比对检查,有时也称为点检表或 查核表。

常用质量管理统计方法1

常用质量管理统计方法1

常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。

简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。

2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。

3、用途:用在对现状的调查,以备今后作分析。

4、制作步骤(1)确定搜集资料的具体目的。

(2)确定为达到目的所需搜集的数据资料。

(3)确定对资料的的分析方法、所釆用的统计工具。

(4)根据不同目的,设计用于记录资料的调查表格式。

(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。

(6)如有必要应评审和修改调查表。

5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。

6、应用实例二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。

2、分类方法:数据分层可根据实际情况按多种方式进行。

例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。

数据分层法经常与统计分析表结合使用。

3、应用步骤(1)收集数据。

【直方图】第四章质量管理中的统计技术

【直方图】第四章质量管理中的统计技术

i
2
0.011
CPU
TU 3S
0.2 0.176 3 0.011
0.73
p 1(3Cpu) 1 (3 0.73) 1.43%
单侧下限
例、某绝缘材料,规定其击穿电压不低于1400v,随机 抽取20个样品,经实验得μ=1460v,σ=28v,求 过 程能力指数?不合格品率?
解:
CPL
TL
=2-(2.51) (2.05) 2.62%
单侧上限
例、某产品规定表面粗糙度X≤0.2(μm)
为合格品,今任抽5件,测得表面粗糙度为
0.162, 0.184, 0.178, 0.167, 0.188,
求 过程能力指数?不合格品率?
解:
=1 n
n i1
i 0.176, S
1n n 1 i1
4、陡壁型
直方图像高山上的陡壁,向一边倾 斜。
原因:通常在产品质量较差时,为得 到符合标准的产品,需进行全数检查,以 剔除不合格品。当用剔除了不合格品的产 品数据作直方图时容易产生这种陡壁型。 这是一种非自然状态。
(a)
(b)
陡壁型直方图
5、偏态型
直方图的顶峰偏向一侧,有时 偏左,有时偏右。
原因:下限受到限制,容易发生 “偏左型”。如用标准值控制下限。 反之,会发生“偏右型”。
50.001 mm,S=0.003 mm,求CPK
解: M=50.0025
ε= M-X = 50.0025-
50.00T1-=20ε.0010.0525-2×0.0015 0.022
6S
6×0.003 = 0.018
CPK= =
=1.22
•过程能力指数的评定
对有偏过程能力的判断(供参考)

质量管理常用的统计方法

质量管理常用的统计方法
方法(Method):加工工艺、操作规程和作业指导书的 正确程度等;
测量(Measure):测量设备、试验手段和测试方法等; 环境(Environment):工作场地的温度、湿度、含尘度、 照明、噪声、震动等;
第三节、产品质量波动性的规律
由概率统计理论可知,任何一个随机变 量一般都有一个相应的概率分布。
总体和样本
总体:指在某一次统计分析中研究对
象的全体,又叫母体,用N表示。
个体 个体
个体
个体
组成总体的每 个单元
从总体中随机抽取出来并且要对 它进行详细研究分析的一部分个 体、子样,叫样本,用n表示。
抽样和随机抽样
抽样:指从总体中抽取样品组 成样本的过程。 随机抽样:使总体中的每一个 个体(产品)都有同等机会被 抽取出来的组成样本的过程。
准、规格、公差而言的。一个零件和产品不符合
标准、规格、公差的质量项目叫不良项目,也称
不合格项目。
如表4—1
表4-1
不良品项目调查表
项目 日期
交合 验格 数数
不良品
废品数
次品 数
返修品数
废品类型
不良品类型
次品类型
返修品类 型
良品率 (%)
2. 缺陷位置调查表
缺陷位置调查表宜与措施相联系,能充分反映 缺陷发生的位置,便于研究缺陷为什么集中在那 里,有助于进一步观察、探讨发生的原因。缺陷 位置调查表可根据具体情况画出各种不同的缺陷 位置调查表,图上可以划区,以便进行分层研究 和对比分析。如表4—2。
二、产品质量特性值的波动性
同一个人用同一批原材料在同一台 机器设备上所生产出来的同一种零件, 其质量特性值不会完全一样。这就是 我们常说的产品质量特性值有波动 (或称分散、差异)的现象。这种现 象反映了产品质量具有“波动性”这 个特点。

常用的几种质量管理统计方法(QC7手法实例)

常用的几种质量管理统计方法(QC7手法实例)

常用的几种质量管理统计方法统计方法是一种科学的方法,其理论基础是数理统计学,它是以概率论为基础的一门数分支。

广泛应用于各个领域,包括质量管理领域。

人们为了解决实践中出现的各种质量问题,往往先搜集各种数据,然后,对数据归纳加工整理,对比分析,由表及里,去粗取精,去伪存真,找出其中的统计规律,对症下药,问题才能迎刃而解。

这一切都须运用科学的统计方法。

全面质量管理的基础要求之一,是尊重客观事实,一切凭数据说话。

因此,统计方法是质量管理不可缺少的得力工具,通过对产品质量形成全过程数据的收集、分析和使用,有助于预防质量缺陷、维持合格质量、达到质量的不断改进。

所以,对所有企业而言,统计方法的应用都是需要的,只是应用的程度不同而已。

这里有两点必须加为说明:第一,统计方法对所有企业虽然都是需要的,但并不是不分企业类型、产品性质,强求使用某些统一的统计方法。

各企业应根据自身的实际需要,规定适用的统计技术的选定程序。

第二,统计方法是一种帮助企业搞好质量管理的工具,可借助它揭示质量形成的客观规律,找出质量问题的症结所在,至于能否实现质量突破,尚有待于进一步采取有效的改进措施。

因此不能误认为应用了几种质量管理统计方法就是全面质量管理。

本章对企业生产过程中最常用的几种统计方法介绍如下:第一节排列图一、什么是排列图排列图是寻找主要质量问题或寻找影响质量的主要原因的一种有效的统计方法。

排列图由两个纵坐标(项目、因素)、几个从左到右,由高向低,按顺序依次排列的长方块(问题项目)和一条累计百分比曲线(帕累托曲线)所组成,它的基本图形见图7-1。

在生产中即使是同一批次的产品,其质量也不可能是完全一致的,由于受多种原因的影响,会出现不同的质量问题。

为了辨别质量问题的主次要性及影响这些问题的主次原因,排列图应用“关键的少数,次要的多数”的原理,可抓住主要矛盾,集中加以解决,取得事半功倍的效果。

二、排列图的绘制1.采集数据采集一段时期内的质量问题数据,并按问题的不同项目进行分类。

质量管理 常用几种统计工具与技术

质量管理 常用几种统计工具与技术
3)汇总、整理卡片。当所有观点都记录到黑 板上后(或将卡片贴到黑板上后),根据特定 的主题将所记录的内容分组归类,但对记录 内容暂不能进行讨论或评论。
4)为每类的记录内容选定标题。找出或另写 出一张能代表该组内容的主卡片;把主卡片 放在最上面。
5)按类(组)将卡片中的信息加以登记、汇总; 画出亲和图。
第5章
几种常用统计工具与技术
一、系统图(树图)
树图(Treed)又叫系统图。树图是表示某个 质量问题与其组成要素之间的关系,从而明 确问题的重点,寻求达到目的所应采取的最 适当的手段和措施的一种树枝状图。
主要用途有:
(1)企业方针目标实施项目的展开; (2)在新产品开发中进行质量设计展开; (3)为确保质量保证活动而进行的保证质量要素(事项)
进行FMEA的目的
1)发现,评价产品/过程中潜在的失效及其结 果;
2)确定与产品有关的过程潜在失效及其结果; 3)确定失效对顾客的影响; 4)确定潜在制造或安装过程失效起因,确定
减少失效发生或找出失效条件的过程控制变 量; 5)减少缺陷的严重性; 6)提高对缺陷的发现概率。
实施FMEA的步骤
①确定被分析的缺陷名称:根据零件的工艺特性,对 特定工序列出每一个可能发生的潜在失效模式。
▪ 8D报告适用的范围和作用
范围: 8D报告适用于解决各类可能遇到的简单或复
杂的问题。 作用:
1、提高解决问题的效率,积累解决问题的经验。 2、提供找出现存的与质量相关问题的框架, 杜 绝或尽量减少重复问题出现。
8D报告的主要内容
1、8D 包含8个解决问题的步骤。8D报告针对出现的 问题,找出问题产生的根本原因,提出短期,中期,和长 期对策,并采取相应行动措施。
头脑风暴法的用途:

质量管理常用的统计方法

质量管理常用的统计方法
孤岛型
4)双峰型:两组机器、或材料、或操作工人施工; 然后把这两方面数据混在一起整理产生的。
双峰型
5)陡壁型:有意将不合格的产品剔除;
陡壁型
对于正常型直方图,将其分布范围B=[S,L](S 为一批数据中的最小值,L为一批数据中的最大 值)与标准范围T=[SL,Su], SL为标准下界限, Su为标准上界限)进行比较,就可以看出产品质 量特性值的分布是否在标准范围内,从而可以 了解生产过程或工序加工能力是否处于所希望 的状态。为了方便,可在直方图上标出标准下 界限值和标准上界限值。
i 1
加权算数平均数
k
X
x1
f1
x2
f2
k
xk
fk
xi fi
i1 k
fi
fi
i1
i1
xi 第i组组中值 fi 第i组的频数
列表计算例6-4中50个混凝土试块的平均强度
k
xi fi
X
i1 k
fi
i1
18880 37.76 50
②计算中位数 X~
中位数是全部数据由小到大顺次排列中位置居
中的那个数据,其确定方法有两种。
当出现非正常型直方图时,表明生产过程或 者数据的收集、整理方法存在问题,需要进一步分 析判断,找出原因,采取相应措施加以纠正。
折齿型、缓坡型、孤岛型、双峰型、绝壁型
1)折齿型:是由于分组不当或组距确定不当 出现的分布状态
折齿型
2)缓坡型:主要是由于操作中上限或下限控 制太严造成的。
缓坡型
3)孤岛型:原材料一时发生变化,工人一时变换;
(3)数据分组。包括确定组数、组距和划分组限。 ①确定组数k。原则是使分组的结果能正确反映数 据的分布规律,参考表6-7.例6-4中,取k=9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因子试验:
若试验中所考察的因子只有一个。
[例2.1-1] 现有甲、乙、丙三个工厂生产同一种零 件,为了了解不同工厂的零件的强度有无明显的差 异,现分别从每一个工厂随机抽取四个零件测定其 强度,数据如表所示,试问三个工厂的零件的平均 强度是否相同?
三个工厂的零件强度
工厂
量件强度

103 101 98 110
当因子A是显著时,我们还可以给出每一水 平下指标均值的估计,以便找出最好的水平。在 单因子试验的场合,第i个水平指标均值的估计 为:
ˆi yi , i 1 ,2 , ,r
总计T
ST
fTn1
各个离差平方和的计算:
STi r1j m 1yijy2i r1j m 1yi2jT n 2
SAi r1m yiy2i r1T m i2T n 2
SeSTSA
其中 T i 是第i个水平下的数据和;T表示 所有n=rm个数据的总和。
进行方差分析的步骤如下:
(1)计算因子A的每一水平下数据的和 T1,T2,…,Tr及总和T;
二、单因子方差分析
假定因子A有r个水平,在Ai水平下指标服从 正态分布,其均值为 , i方差为 ,2 i=1,2, …, r。 每一水平下的指标全体便构成一个总体,共有r 个总体,这时比较各个总体的问题就变成比较各 个总体的均值是否相同的问题了,即要检验如下 假设是否为真:
H 0 : 1 2 r
(2)计算各类数据的平方和yi2j,Ti2,T2; (3)依次计算ST,SA,Se; (4)填写方差分析表;
(5)对于给定的显著性水平α,将求得的F 值与F分布表中的临界值 F 1 fA ,fe比较,当 F F 1 fA ,fe 时认为因子A是显著的,否则认为 因子A是不显著的。
对上例的分析 (1)计算各类和: 每一水平下的数据和为: T 1 4,1 T 2 2 4,4 T 3 4 344 数据的总和为T=1200 (2)计算各类平方和: 原始数据的平方和为:yi2j 121492 每一水平下数据和的平方和为 Ti2 485216
M A S SAfA Me SSe fe
两者的比记为:FMASMeS
当F F 1 (fA ,fe)时认为在显著性水平上因
子A是显著的。其中 F1(fA,fe)是自由度为 fA, fe 的F分布的1-α分位数。
单因子方差分析表
来源 偏差平方和 自由度
均方和
F比
因子A
SA
误差e
Se
fAr1 MA SSA fA FMA SMeS fenr MeSSe fe

113 107 108 116

82 92 84 86
在这一例子中,考察一个因子: 因子A:工厂
该因子有三个水平:甲、乙、丙 试验指标是:零件强度
这是一个单因子试验的问题。每一水平下的 试验结果构成一个总体,现在需要比较三个总体 均值是否一致。如果每一个总体的分布都是正态 分布,并且各个总体的方差相等,那么比较各个 总体均值是否一致的问题可以用方差分析方法来 解决。
当 H 0 不真时,表示不同水平下的指标的均 值有显著差异,此时称因子A是显著的,否则 称因子A不显著。检验这一假设的分析方法便 是方差分析。
方差分析的三个基本假定
1. 在水平 A i 下,指标服从正态分布N(i,2); 2. 在不同水平下,各方差相等; 3. 各数据 y ij 相互独立。
ቤተ መጻሕፍቲ ባይዱ
设在一个试验中只考察一个因子A,它有r个 水平,在每一水平下进行m次重复试验,其结果用 yi1,yi2,,yim 表示,i=1,2, …, r。 常常把数据列成 如下表格形式:
因子A 误差e 总计T
SA 1304 Se 188 ST 1492
fA2 MSA 652 F=31.21 fe 9 MSe 20.9 fT 11
(5) 如果给定 =0.05,从F分布表查得
F 0.9(5 2,9)4.26
由于F>4.26,所以在 =0.05水平上结论是因
子A是显著的。这表明不同的工厂生产的零件强 度有明显的差异。
r m
Se
yijyi
2
i1j1
Se:也称为误差的离差平方和
可以证明有如下平方和分解式:
STSASe
ST、SA、Se 的自由度分别用 fT 、 f A、f e 表示,它们也有分解式: fTfAfe,其中:
fT试验1数fA水平1数fefTfA
因子或误差的离差平方和与相应的自由度 之比称为因子或误差的均方和,并分别记为:
第一节 方差分析
一、几个概念 二、单因子方差分析
一、几个概念
在试验中改变状态的因素称为因子,常用大写 英文字母A、B、C、…等表示。
因子在试验中所处的状态称为因子的水平。 用代表因子的字母加下标表示,记为A1,A2,… ,Ak。
试验中所考察的指标(可以是质量特性也可 以是产量特性或其它)用Y表示。Y是一个随机变 量。
(3)计算各离差平方和:
ST=121492-12002/12=1492, SA=485216/4-12002/12=1304, Se= 1492-1304=188,
fT=3×4-1=11 fA=3-1=2 fe=11-2=9
(4)列方差分析表: [例2.1-1]的方差分析表
来源 偏差平方和 自由度 均方和 F比
水平
单因子试验数据表
试验数据

均值
A1
y11, y12, , y1m
T1
y1
A2
y21, y22, , y2m
T2
y2




Ar
yr1, yr2, , yrm
Tr
yr
m
记第i 水平下的数据和为Ti,Ti yij ; j1
记第i水平下的数据均值为 y i ,总均值为 y 。此 时共有n=rm个数据,这n个数据不全相同,它们的 波动(差异)可以用总离差平方和ST去表示
ST
rm
(
yij
y)2
i1j1
引起数据波动(差异)的原因不外如下两个:
一是由于因子A的水平不同,当假设H0不真 时,各个水平下指标的均值不同,这必然会使试 验结果不同,我们可以用组间离差平方和来表示, 也称因子A的离差平方和:
r
SAmyi
y2
i1
这里乘以m是因为每一水平下进行了m次试验。
二是由于存在随机误差,即使在同一水平下 获得的数据间也有差异,这是除了因子A的水平 外的一切原因引起的,我们将它们归结为随机误 差,可以用组内离差平方和表示:
相关文档
最新文档