椭圆的定义及其标准方程教学设计
高中数学“椭圆的定义与标准方程”教学设计
精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。
椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。
此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。
二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。
2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。
3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。
4.培养直观想象、数学建模和数学运算等数学学科素养。
三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。
四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。
五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。
根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。
2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。
3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。
4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。
5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。
椭圆的定义及其标准方程教学设计
椭圆的定义及其标准方程教学设计
一、教材分析
椭圆是选修2-1第二章《椭圆》第一节的内容,在这一节中主要学习椭圆的定义及其标准方程,它是本章也是整个解析几何中最重要的内容之一,这节课是在学生学习了坐标平面上圆的方程的基础上,运用曲线与方程理论解决具体的二次曲线的又一个实例,它是坐标法研究曲线的几何性质的又一次实际演练,同时也是进一步研究椭圆几何性质的基础,此外,它还为后面研究双曲线和抛物线这两种圆锥曲线提供打下基础,因此本节课具有承上启下的重要作用。
二、教学目标
目标:1)知识与技能:感受椭圆定义构建的过程,归纳出椭圆的定义;
2)过程与方法:经历从具体情境中抽象出椭圆模型的过程,依据椭圆的定义推导椭圆的标准方程;
3)情感、态度与价值观:进一步体会数形结合的数学思想方法。
三、教学重难点
重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。
难点:椭圆的标准方程的建立、推导和化简过程以及坐标法的应用。
四、学情分析
学情:在学习本节课之前,学生已经学习了直线与圆的方程,对曲线和方程的概念具备了一些了解和运用的经验,用坐标法研究几何问题也有了初步的认识,但由于学生对解析几何的学习程度还不够深,对坐标法解决几何问题掌握还不够,此外,对含有两个根式之和的等式化简的运算较为生疏,去根号的方法选择不当等会成为学生推导标准方程的“拦路虎”。
椭圆的定义与标准方程教案
椭圆的定义与标准方程教案教案标题:椭圆的定义与标准方程教案目标:1. 理解椭圆的定义及其特征性质。
2. 掌握椭圆的标准方程及其相关参数。
3. 能够应用椭圆的定义和标准方程解决相关问题。
教学准备:1. 教师准备:椭圆的定义、标准方程及其相关性质的教学材料、白板、白板笔、投影仪等。
2. 学生准备:笔、纸、教材等。
教学过程:步骤一:导入新知识(5分钟)1. 教师通过引入一个生活中的例子(如椭圆形的运动轨迹)引起学生对椭圆的兴趣。
2. 引导学生思考并回答问题:“你们对椭圆有什么了解?你们知道椭圆的定义吗?”步骤二:椭圆的定义与特征性质(15分钟)1. 教师向学生介绍椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
2. 教师解释椭圆的特征性质:椭圆的离心率小于1,焦点到椭圆上任意一点的距离之和等于常数2a。
3. 教师通过图示和示例帮助学生理解椭圆的定义和特征性质。
步骤三:椭圆的标准方程(20分钟)1. 教师向学生介绍椭圆的标准方程:(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
2. 教师解释标准方程中各参数的含义,并通过示例演示如何确定椭圆的中心、长短半轴等参数。
3. 教师提供一些练习题,让学生通过给定的标准方程确定椭圆的相关参数。
步骤四:应用与解决问题(15分钟)1. 教师提供一些实际问题,引导学生运用椭圆的定义和标准方程解决问题。
2. 学生个别或小组合作完成问题,并展示解决过程和结果。
3. 教师对学生的解答进行点评和总结。
步骤五:课堂小结与作业布置(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要掌握的知识点。
2. 布置相关的课后作业,包括练习题和思考题。
教学反思:通过本节课的教学,学生能够了解椭圆的定义和特征性质,并能够应用椭圆的标准方程解决相关问题。
椭圆的定义及标准方程教案
椭圆及其标准方程长治八中 李玲一、教学目标 1.知识与技能理解椭圆的定义,掌握椭圆的标准方程及推导过程. 2.过程与方法通过椭圆定义概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法. 3.情感、态度与价值观通过椭圆定义及标准方程的学习,渗透数形结合的思想,启发学生研究问题时,抓住问题本质,严谨细致思考,规范解答,体会运动变化、对立统一的思想. 二、教学重点难点1.重点:椭圆的定义和椭圆的标准方程.2.难点:椭圆标准方程的推导,椭圆定义中对常数加以限制的原因. 三、教学方法:启发引导,合作探究 四、教具:多媒体、三角板 五、教学过程(一)创设情境,引入概念由嫦娥二号绕月飞行的运动轨迹,太阳系中行星的运行轨道等及现实生活中的多幅椭圆图片引入,让学生从感性上认识椭圆。
(二)实验探究,形成概念动手实验:学生分组动手画出椭圆。
试验一:把一根长为a 2的细绳的两端用图钉分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的是什么图形? (1)在这个运动过程中,什么是不变的?(2)在上面过程中,你能说出移动的笔尖(动点)满足的几何条件吗?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点21,F F 距离的和等于常数的点的轨迹叫椭圆。
(三)归纳定义,完善定义试验二:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?(学生分组讨论)M 2F 1F当两定点间距离等于线段||AB 长度时的轨迹(为一条线段)和当两定点距离大于线段||AB 长度时的轨迹(不存在),由学生完善椭圆定义中常数的范围。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+定义的应用例1.已知定点F 1,F 2 ,且|F 1F 2 |=10,动点M 分别满足下列条件时的轨迹是什么? (1)|MF 1|+|MF 2| =10; (2)|MF 1|+|MF 2| =16; (3)|MF 1|+|MF 2|=6.(1)因为|MF 1|+|MF 2|=10= | F 1F 2 | ,所以动点M 的轨迹是线段F 1F 2.(2)因为|MF 1|+|MF 2| =16>10= | F 1F 2 | ,所以动点M 的轨迹是以F 1 , F 2为焦点的椭圆.(3)因为|MF 1|+|MF 2| =6<10= | F 1F 2 | ,所以动点M 的轨迹不存在. 变式练习1.若动点M 到定点F 1(-1,0), F 2 (1,0)的距离之和为2,则动点M 的轨迹是( ) A.椭圆 B.直线F 1F 2C.线段F 1F 2D.线段F 1F 2的垂直平分线 点拨:|MF 1|+|MF 2| =2= | F 1F 2 |,故M 的轨迹为线段F 1F 2(四)研讨探究,推导方程1、知识回顾:利用坐标法求圆的方程的一般方法和步骤是什么?(1)建系 (2)设点 (3)列式 (4) 化简2、研讨探究问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有a MF MF 221=+,尝试推导椭圆的方程。
《椭圆及其标准方程》教学设计(精选3篇)
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
椭圆的定义与标准方程教学设计
结论:
(1)当 2a>|F1F2|时,是椭圆; (2)当 2a=|F1F2|时,是线段; (3)当 2a<|F1F2|轨迹不存在.
通过师生探索交 流、讨论解决问题方 法,揭示知识间的内 在联系,对学生的思 维进行启迪,方法及 时的点拨,培养学生 的语言表达能力,思 维的严谨性,让学生 在交流中学习数学。
数形结合 学习新知
1、 教师引导学生建立坐标系,教师 利用多屏互助软件展示
2、 选取较为简洁美观的两种方案, 进行研究
设为 M(x,y)椭圆上的任意一点,椭圆
的焦距是 2c ( c 0 ).
则 F1 (c,0), F2 (c,0) , 又 设 M 与 F1, F2 距 离 之 和 等 于 2a ( 2a 2c )
椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐 标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法. 3. 情感态度、价值观目标:
通过数学实验,培养学生的动手能力和合作意识。
二、重点和难点
重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程. 难点:椭圆标准方程的建立和推导.
a2 b2
y2 + x2 =1a > b > 0
a2 b2
课堂小结, 总结提高
课题 2.1.1 椭圆的定义与标准方程
科目 数学
教学对象 高二学生
课时 1 课时
授课类型 新授课
一、教学目标
主备人
1.知识与技能目标: (1)掌握椭圆的定义和椭圆标准方程的两种形式及其推导过程; (2)能根据条件确定椭圆的标准方程; (3)掌握用待定系数法求椭圆的标准方程.
2.过程与方法目标: 通过数学实验探究椭圆的行程过程,培养学生的观察能力和探索能力;通过对
《椭圆及其标准方程》教案(通用4篇)
《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
椭圆的定义及其标准方程说课稿及教案
椭圆的定义及其标准方程说课稿及教案一、说课稿1. 椭圆的定义椭圆是一种平面内到两个固定点(焦点)距离之和为常数的点的轨迹。
这两个固定点称为椭圆的焦点,常数称为椭圆的长轴。
椭圆的焦点可以在平面上任意位置,但椭圆的对称轴必须通过焦点。
2. 椭圆的标准方程椭圆的标准方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,a是椭圆的长轴的一半,b是椭圆的短轴的一半。
椭圆的长轴和短轴分别与x轴和y轴平行。
3. 焦点与椭圆的关系椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴的长度。
即\[ 2a = |PF_1| + |PF_2| \]其中,\( PF_1 \)和\( PF_2 \)分别是椭圆的两个焦点。
4. 椭圆的性质(1)椭圆的长轴和短轴互相垂直,且通过椭圆的中心点。
(2)椭圆的焦点在长轴上,且距离中心点的距离分别为\( c \)和\( -c \),其中\( c \)满足\( c^2 = a^2 b^2 \)。
(3)椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴的长度。
(4)椭圆的面积为\( S = \pi ab \)。
二、教学目标1. 了解椭圆的定义及其性质。
2. 掌握椭圆的标准方程及其求法。
3. 能够应用椭圆的知识解决实际问题。
三、教学内容1. 椭圆的定义及其性质。
2. 椭圆的标准方程及其求法。
3. 椭圆在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习相结合的方法进行教学。
2. 使用多媒体课件辅助教学,增强学生的直观感受。
3. 设置实例分析,引导学生运用椭圆知识解决实际问题。
五、教学步骤1. 导入:通过展示生活中常见的椭圆形状物体,引导学生关注椭圆的形状特征。
2. 讲解椭圆的定义及其性质,引导学生理解椭圆的基本概念。
3. 推导椭圆的标准方程,让学生掌握椭圆方程的求法。
4. 结合实际问题,让学生运用椭圆知识进行分析。
5. 课堂练习:设置相关练习题,让学生巩固所学知识。
椭圆及其标准方程教案
椭圆及其标准方程教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆的标准方程解决相关问题。
2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)利用数形结合,提高学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 椭圆的性质:(1)椭圆的两个焦点在x轴上,且距离为2c;(2)椭圆的长轴为2a,短轴为2b,其中a>b>0;(3)椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1。
3. 椭圆的标准方程求法:(1)已知椭圆的两个焦点坐标和长轴、短轴长度,求椭圆的标准方程;(2)已知椭圆的离心率e和长轴、短轴长度,求椭圆的标准方程;(3)已知椭圆上的三点坐标,求椭圆的标准方程。
三、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法。
2. 教学难点:(1)椭圆标准方程的求法;(2)椭圆性质的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究椭圆的定义、性质和标准方程;2. 利用数形结合,让学生直观地理解椭圆的性质和标准方程;3. 设计具有针对性的练习题,巩固所学知识。
五、教学过程1. 引入:通过展示椭圆的实际应用场景,激发学生的兴趣,引出椭圆的定义;2. 讲解:讲解椭圆的性质和标准方程,引导学生理解并掌握;3. 例题:讲解椭圆标准方程的求法,分析解题思路,让学生跟随解题过程;4. 练习:布置练习题,让学生独立完成,巩固所学知识;六、教学策略1. 采用互动式教学,鼓励学生提问和发表见解,提高学生的参与度;2. 利用多媒体课件,直观展示椭圆的性质和标准方程,增强学生的理解;3. 注重个体差异,针对不同学生的学习水平,给予适当的指导和帮助;4. 创设情境,引导学生运用椭圆的知识解决实际问题,提高学生的应用能力。
椭圆标准方程的教案6篇
椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。
椭圆及其标准方程(定义)微课教学设计
椭圆及其标准方程(定义)微课教学设计1.指导思想与理论依据新课程标准要求高中数学课程应该返璞归真,揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。
因此,在教学中应该遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生研究知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。
此外,建构主义研究理论认为“情境创设”、“协作研究”、“会话交流”是研究环境的基本要素,因此在教学中也应该注重这些要素的运用。
2.教学背景分析教材中,解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。
在必修2中,学生已经初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。
在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。
本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的研究的重点放在了椭圆上,通过求椭圆的标准方程,让学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。
因此,“椭圆及其标准方程”起到了承上启下的重要作用。
在学情分析方面,学生已经研究了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础。
根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战。
在初中阶段没有涉及过含两个字母、两个根式的方程化简问题,因此需要在教学中注重这方面的讲解和练。
我教的是文科班,学生们普遍对数学感到困难,但他们思维灵活,对新鲜事物充满好奇心和探索欲望。
他们勇于质疑老师的授课,有自己的想法和主见,愿意通过探索来了解事物的本质。
此外,他们已经具备了初步的探索能力。
学生们对数学概念的研究只停留在表面,对概念的形成过程不重视,因此无法深刻理解。
椭圆的定义及标准方程教学设计
3
解:设点 M x, y ,则 kAM
x
y
5
x
5
,
kBM
y x 5 ;
x5
根据题意得: y y 4 , x5 x5 9
化简得点 M 的轨迹方程: x2 y2 1(x 5)
25 100 9
4.课堂练习
关系
1)求下列椭圆的焦点和焦距长轴长和短轴长
动,则称点 M 是点 P 的伴随点,因点 M 为线段 PD 的中点,则点 M 的 坐标可由点 P 来表示,从而能求点 M 的轨迹方程.
解:设 M x, y , P x1, y1 ;
∵
M
为线段
AP
的中点,∴
x1 y1
2x 6 2y 2
;
∵ x12 y12 1 , 25 9
相交于点 M ,且它们的斜率之积为 4 ,求点 9
M 的轨迹方程.
分析:若设点 M x, y ,则直线 AM ,BM
的斜率就可以用含 x, y 的式子表示,由于直线 AM , BM 的斜率之积是 4 ,因此,可以求
9 出 x, y 之间的关系式,即得到点 M 的轨迹方程.
寻找动点所满 足的几何条 件,建立等量
两个图钉的距离之和不变;笔尖的位置是一直变化的)。
的概念
师:归纳椭圆的定义和相关概念。
定义:平面内与两个定点 F1 、F2 的距离之和等于常数 2a(大于 F1F2 )
的点的轨迹叫做椭圆。其中两个定点叫做焦点,两焦点的距离叫 做焦距,记为 2c。即当动点设为 M 时,椭圆即为点集
P M | MF1 MF2 2a.
师:解释设参量 b 的意义: 第一、写出椭圆的标准方程更简洁;
椭圆及其标准方程讲课教案
椭圆及其标准方程讲课教案第一章:引言1.1 椭圆的定义讲解椭圆的概念:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。
通过实际例子演示椭圆的形成过程,让学生直观理解椭圆的定义。
1.2 椭圆的性质介绍椭圆的基本性质:椭圆有两个焦点,两个半轴,对称性等。
通过图形和数学公式展示椭圆的性质,让学生理解椭圆的特性。
第二章:椭圆的标准方程2.1 椭圆的标准方程定义讲解椭圆标准方程的概念:椭圆的标准方程是\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\) 是半长轴,\(b\) 是半短轴。
通过实际例子解释椭圆标准方程的含义和作用。
2.2 椭圆标准方程的推导讲解椭圆标准方程的推导过程:利用椭圆的定义和性质,通过几何方法和代数方法推导椭圆的标准方程。
分步解释推导过程,让学生理解并掌握椭圆标准方程的来源。
第三章:椭圆的长轴和短轴3.1 椭圆的长轴讲解椭圆的长轴的概念:长轴是椭圆上距离两个焦点最远的点的线段。
通过图形和数学公式展示椭圆长轴的性质和计算方法。
3.2 椭圆的短轴讲解椭圆的短轴的概念:短轴是椭圆上距离两个焦点最近的点的线段。
通过图形和数学公式展示椭圆短轴的性质和计算方法。
第四章:椭圆的焦点和焦距4.1 椭圆的焦点讲解椭圆的焦点的概念:焦点是椭圆上到两个固定点(焦点)距离之和为常数的点的集合。
通过图形和数学公式展示椭圆焦点的性质和计算方法。
4.2 椭圆的焦距讲解椭圆的焦距的概念:焦距是椭圆上两个焦点之间的距离。
通过图形和数学公式展示椭圆焦距的性质和计算方法。
第五章:椭圆的离心率5.1 椭圆的离心率定义讲解椭圆的离心率的概念:离心率是椭圆的焦距与长轴长度的比值,用\(e\) 表示。
通过图形和数学公式展示椭圆离心率的性质和计算方法。
5.2 椭圆的离心率的应用讲解椭圆的离心率的应用:离心率可以用来判断椭圆的形状和大小,以及与焦点和焦距的关系。
通过实际例子演示椭圆的离心率的应用,让学生理解并掌握椭圆离心率的重要性。
椭圆的定义与标准方程教学设计
2.1.1椭圆的定义与标准方程一、教材分析圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。
本节是《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。
它是本章也是整个解析几何部分的重要基础知识。
第一,在教材结构上,本节内容起到一个承上启下的重要作用。
前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的一种有效方法。
第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。
而这种思想,将贯穿于整个高中阶段的数学学习。
第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。
二、学生情况分析1.在学习本节内容以前,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠定了基础。
2.在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时加以点拨指导。
三、教学目标1.知识目标①熟记椭圆的定义,知道什么是焦点和焦距,并能根据椭圆的定义推导椭圆的标准方程。
②明确a、b、c之间的关系,并能指出焦点坐标。
2.能力目标培养观察能力、归纳能力、探索发现能力3.情感目标通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨.四、教学重点和难点重点:感受椭圆形成的基本过程,知道椭圆的标准方程及其推导方法. 难点:椭圆的标准方程的推导。
五、教法与学法1.教法为了使学生更主动地参加到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。
椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计
椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。
椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
教学比赛教案椭圆的定义与标准方程
教学比赛教案-椭圆的定义与标准方程教学目标:1. 了解椭圆的定义及其性质。
2. 掌握椭圆的标准方程及其求法。
3. 培养学生的数学思维能力和解决问题的能力。
教学内容:1. 椭圆的定义2. 椭圆的性质3. 椭圆的标准方程4. 椭圆方程的求法5. 椭圆的应用教学准备:1. 教学PPT2. 教学素材(图形、例题等)3. 练习题教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆的图形。
2. 引导学生思考:椭圆有哪些特点?与圆有何区别?二、椭圆的定义与性质(15分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹。
2. 介绍椭圆的性质:椭圆的两个焦点距离、长轴、短轴等。
3. 通过PPT展示椭圆的性质示意图,引导学生理解并记忆。
三、椭圆的标准方程(15分钟)1. 引入椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
2. 解释椭圆标准方程的含义:a为椭圆的长半轴,b为椭圆的短半轴。
3. 引导学生通过性质推导椭圆标准方程的求法。
四、椭圆方程的求法(15分钟)1. 给出椭圆方程的求法:根据椭圆的性质,列出方程组,求解得到椭圆的标准方程。
2. 通过例题讲解椭圆方程的求法,引导学生掌握解题思路。
五、椭圆的应用(10分钟)1. 介绍椭圆在实际生活中的应用,如地球绕太阳的运动、卫星绕地球的运动等。
2. 给出一些与椭圆相关的实际问题,引导学生运用椭圆的知识解决问题。
教学评价:1. 课堂问答:检查学生对椭圆定义、性质、标准方程的理解。
2. 练习题:评估学生对椭圆方程求法的掌握。
3. 课后作业:布置与椭圆应用相关的问题,检验学生对知识的综合运用能力。
六、椭圆的参数方程与图形变换(15分钟)1. 引入椭圆的参数方程:\(\begin{cases}x=a\cos t\\y=b\sin t\end{cases}\),其中\(t\)为参数。
2. 解释椭圆参数方程的含义:通过参数\(t\)的变化,可以得到椭圆上的点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§椭圆的定义及其标准方程
鹿城中学田光海
一、教案背景:
1.面向对象:高中二年级学生
2.学科:数学
3.课时:2课时
4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§椭圆及其标准方程
二. 教材分析
本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章的重点内容之一。
1. 教法分析
结合生活经验观察发现、启发引导、探究合作。
在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。
利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。
主要采用探究实践、启发与讲练相结合。
2. 学法分析
从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。
从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。
从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。
他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。
3.教学目标
知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。
过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。
情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。
4.教学重点与难点
重点:椭圆的定义和椭圆标准方程的两种形式
难点:椭圆的标准方程的建立和推导教学方法
5.教学准备
通过百度搜索与椭圆有关的图片资料,利用百度搜索相关的教学资料制作多媒体课件,自制教具:绘图板、图钉、细绳。
三、教学过程
方程
方程22221x y a b
+=(0a b >>)(☆)叫做椭圆的标
准方程。
它表示焦点在x 轴上,焦点坐标为
1(,0)F c -,2(,0)F c ,其中2
2
2
c a b =-.
2222
1y x a b +=(0a b >>),它也是椭圆的标准方程。
此时,椭圆的焦点在y 轴上,
焦点坐标为1(0,)F c 2(0,)F c -,其中222c a b =- 我们可以发现,以上两种方案是最好的。
问:观察一下焦点分别在x 轴、y 轴上的椭圆
的标准方程,如何根据方程判断其焦点在x 轴
上还是在y 轴上?(看分母大小,哪个分母大
焦点就在哪一条轴上)
说明:
学生思考后主动发言回答。
以上三条,尽量由学生总结出
解曲线与
方程的关
系,感受恰
当选择坐
标系的优越性,感受标准方程的简洁、对称、和谐之美,并在实践中通过对比提高决策能力、计算能力、培养学生简约的思维能力。
培养学生
的观察、分
六、板书设计
七、教学反思
本节课整个教学过程为:提出问题——探索——解决问题——归纳反思——提高。
在问题的设计中,从多角度探究,纵向挖掘知识深度,横向加强知识间的联系,这样的设计不但突出了重点,更使难点的突破水到渠成。
本节课以问题为纽带,以探究活动为载体,学生在自觉进入问题情境后,在问题的指引下和老师的指导下,通过实践、探索、体验、反思等活动把探究活动层层展开、步步深入,亲身经历知识的产生过程。
使学生在知识的形成过程中,获得数学的情感体验,享受到成功的乐趣,同时在思想方法运用、思维能力等方面得到提高和发展。
课堂进行中通过实际操作、多媒体课件演示等,激发学生的学习兴趣,使学生让学生在生生互动、师生互动中把学生的学习过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。
本节课学生活动较多,知识拓展较深,运算较困难,因此本节课不能按预计完成,剩余问题下节课解决。