中位数与众数课件20

合集下载

《平均数中位数众数》课件

《平均数中位数众数》课件

中位数
将数值按大小顺序排列,取中间 位置的数值。
众数
统计每个数值出现的次数,找出 出现次数最多的数值。
总结及注意事项
1
总结
平均数、中位数和众数都是描述一组数
注意事项
2
值特征的统计量。
当数据集中有异常值或极端值时,不同
的统计量可能会产生不同的结果。
3
应用广泛
平均数、中位数和众数在各行各业的数 据分析和决策中都有广泛应用。
《平均数中位数众数》 PPT课件
这个PPT课件旨在介绍平均数、中位数和众数的概念、计算方法以及它们之间 的比较与分析。通过举例演示,帮助大家更好地理解这些重要的统计概念。
什么是平均数?
定义
平均数是一组数值的总和除以数值的个数。
ቤተ መጻሕፍቲ ባይዱ
计算方法
将所有数值相加,然后除以数值的个数。
应用
平均数常用于表示某个数据集或样本的典型数值。
什么是中位数?
定义
计算方法
中位数是将一组数值按照大小顺 序排列后,处于中间位置的数值。
如果数值个数是奇数,直接取处 于中间位置的数值;如果数值个 数是偶数,取中间两个数的平均 值。
应用
中位数常用于表示某个数据集或 样本的中心趋势。
什么是众数?
1
定义
众数是一组数值中出现次数最多的数值。
计算方法
2
统计每个数值出现的次数,找出出现次
数最多的数值即为众数。
3
应用
众数常用于表示一组数据中的最常见数 值,来描述数据的分布。
平均数 vs. 中位数 vs. 众数
1 平均数
求和后除以个数,用于表示典型值。
2 中位数
排序后中间位置的数值,用于表示中心趋势。

中位数和众数ppt

中位数和众数ppt

众数是一组数据中出现次数最多的数值,即 数据中出现次数最多的数值就是众数。
中位数与众数应用的场景
中位数通常用于描述一组数据的集中趋势或中心位置,但不 考虑数据的偏斜程度。
众数则通常用于描述一组数据的离散程度或分布特征,可以 反映一组数据的峰值所在。
中位数与众数在数据分析中的作用
在数据分析中,中位数和众数都可以用于描述数 据的特征和分布情况,但侧重点不同。
能够反映数据的分布情况
中位数可以反映数据的分布情况,如果数据分布较为集中,则中位数能够更好地反映数据 的集中趋势,如果数据分布较为分散,则中位数可能无法代表数据的集中趋势。
比率和相对大小关系
当一组数据中有一些数值重复出现时,中位数可能会更关注这些重复出现的数值,而众数 则会更关注出现次数最多的数值。
03
众数的定义和计算
众数的定义
众数是一组数据中出现次数最多的数值。 在一组数据中,如果某个数值出现的次数比其他数值多,那么这个数值就是众数。 众数可以是一个或多个数值。
众数的计算方法
计数法
逐个统计数据中每个数值出现的次数,出现次数最多的数值即为众数。
公式法
根据众数的定义,利用数学公式计算众数。
此外,还可以探讨如何利用中位数和 众数的特性进行数据预处理、异常值 检测等方面的研究。
THANKS
感谢观看
• 本篇文章将详细介绍中位数和众数的概念、计算方法、性质和实际应用。首先,我们将给出中位数和众数 的定义和计算方法,并介绍它们的简单性质。接着,我们将通过实例来具体说明中位数和众数在各个领域 中的应用,并解释如何利用中位数和众数来解决实际问题。最后,我们将对中位数和众数的优缺点进行总 结,并提供一些拓展性的建议。
在实际应用中,中位数和众数可以用于不同领 域的数据分析,例如金融、医学、社会学等。

初中数学冀教版九年级上册23.中位数和众数中位数和众数的认识课件28张

初中数学冀教版九年级上册23.中位数和众数中位数和众数的认识课件28张
人数
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11
1
(3)该公司员工的中等收入水平大概是多少元?你是怎样
确定的?
知识点 1 中位数
怎样的数据是一组数据的中位数?
4
3
9
3
4
9
将一组数据按大小依次排列,处于中间位置的那个数,叫做
这组数据的中位数.
知识点 1 中位数
5,7,这组数据的中位数和众数分别是( B )
A.5,4
B.5,6
C.6,5
D.6,6
结构导图
中位数
中位数:中间的一个数,或中间的两
个数的平均数.
求中位数:先排序,看奇偶,再确定
中位数和
众数
众数:出现次数最多的数.
平均数、中位数、众数的特征:
平均数是最常用的指标,它表示“一
般水平”,中位数表示“中等水平”,
C.6
D.7
点拨: 根据平均数的定义得,4+5+5+x+6+7+8=6×7,
解得x=7.
从小到大排列这组数据为4,5,5,6,7,7,8,
所以中位数是6.
特别提醒:
1. 一组数据的中位数是唯一的,它可能是这组数据中的某个数,也可能
不是这组数据中的数.
2.中位数是一组数据的“中等水平”的一个代表,反应了一组数据的集
当的统计量对数据做出分析。
下表是某公司员工月收入的资料
月收入/元
人数
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11

人教版《中位数和众数》PPT课件

人教版《中位数和众数》PPT课件
10、8、7、6、6、4、3、2、1、1,中位数是 5.
10、8、7、6、6、4、3、2、1、1,中位数是 5.
归纳新知
概念
中 位 数
特点
①从大到小排列(或从小到大排列) ②中间的数或中间两个数的平均数
可能是这组数据中的某个数,也 可能不是这组数据中的数.
课堂练习
1.(2020·广东)一组数据2,4,3,5,2的中位数是( C) A.5 B.3.5 C.3 D. 2.(2020·荆门)为了了解学生线上学习情况,老师抽查某组10名学生的 单元测试成绩如下:78,86,60,108,112,116,90,120,54,116. 这组数据的平均数和中位数分别为( B) A.95,99 B.94,99 C.94,90 D.95,108
9.(常州中考)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
6.(2020·河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是( )
解:将数据从小到大排列: (1)计算这个公司员工的月收入的平均数.
D.该班学生这次考试成绩的平均数是45分
10.某校九年级(1)班全体学生2020年初中毕业体育学业考试的成绩
D.该班学生这次考试成绩的平均数是45分
(2)6、4、2、7、6、1、1、8、3、10 请根据相关信息,解答下列问题:
(3)利用中位数来反映公司员工的月收入水平合适吗?
1.(2020·广东)一组数据2,4,3,5,2的中位数是( )
3.(2020·衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.

20.1.2 中位数和众数 课件2024-2025学年人教版数学八年级下册

  20.1.2 中位数和众数  课件2024-2025学年人教版数学八年级下册

平均成绩
众数
得分
77
81
a
80
82
80
b
求被遮盖的两个数据a和b.
【自主解答】见全解全析
12
【举一反三】
1.(2023·金华中考)上周双休日,某班8名同学课外阅读的时间如下(单位:时):
1,4,2,4,3,3,4,5,这组数据的众数是
A.1时
B.2时
( D)
C.3时
D.4时
2.已知一组数据:7,a,6,5,5,7的众数为7,求这组数据的中位数.
【解析】∵一组数据:7,a,6,5,5,7的众数为7,
∴a=7,∴这组数据按从小到大的顺序排列为5,5,6,7,7,7,
∴这组数据的中位数是(6+7)÷2=6.5.
13
【技法点拨】
众数的特征
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户
所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否
发生变化?
6
8
【举一反三】
1.(奇数位求法)已知两组数据3,2a,5,b与a,4,2b的平均数都是6,若将这两组数据
5
合并为一组数据,则这组新数据的中位数是_______.
2.(偶数位求法)一组数据:1,0,4,5,x,8.若它们的中位数是3,求x的值.
【解析】除x外5个数由小到大排列为0,1,4,5,8,
∵原数据有6个数,且这组数据的中位数是3;
所以,只有x+4=2×3时才成立,即x=2.

20-1-2 中位数和众数(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

20-1-2 中位数和众数(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)

探究新知
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示. 你能根据表中的数据为这家鞋店提供进货建议吗?
尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1
2
5
11
7
3
1
解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23. 5 cm的鞋销售量最大. 因此可以建议鞋店多进23.5 cm的鞋.
3
探究新知
(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以定为每月18 万元(中位数). 因为从样本情况看,月销售额在18万元以上(含18万元)的有16 人,占总人数的一半左右. 可以估计,如果月销售额定为18万元,将有一半左 右的营业员获得奖励.
探究新知
选择具有代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数作为这组数据的代表值;当
02
众数
思考:下表是某公司员工月收入的资料,如果小张是该公司的一名普通员工,那 么你认为他的月工资最有可能是多少元? 如果小李想到该公司应聘一名普通员工岗位,他最关注的是什么信息?
月收入/元 45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000
人数
如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数 据的整体水平.
探究新知
归纳总结求中位数的步骤.
1.将数据由小到大(或由大到小)排列; 2.数清数据个数是奇数还是偶数,如果数据个数为奇数,则取中间的数作 为中位数;如果数据个数为偶数,则取中间两数的平均数作为中位数.
典型例题
例1:在一次男子马拉松长跑比赛中,抽得12名选手所用的时 间(单位:min)如下: 136 140 129 180 124 154 146 145 158 175 165 148

人教版八年级数学下册20.1.2中位数与众数课件

人教版八年级数学下册20.1.2中位数与众数课件

增加小清后,工资的中位数是多少? 取平均数
先按大小排列:
600,600,1100,1100,1100,1200,1800,2100,5000,9000
工资的中位数是1150元.
中位数误区二: 奇数取中间, 偶数取中间两数平均数.
创设情境
探求新知
当堂训练
小结归纳
工资
/元
1100 1100 1100 1200 2000 2300 5000 9000
600
中位数:
中位数
一组数据按大小顺序排列,位于最中间的一个 数据叫做这组数据的中位数。
创设情境
探求新知
当堂训练
小结归纳
布置作业
中位数理解误区一
根据个人能力表现,上个月老板对员工工资作出了调整.
工种 见习 工资
/元
服务 服务 服务 前台 前台 前台 经理 总监 生1 生2 生3 1 2 3 2300 2000 2300 1200 5000 9000 1100 1100 1100 1200
义务教育课程标准试验教科书
数学
人教版 八年级 下册
20.1.2
中位数和众数
徐闻县和安中学 林朝清
本课目标:
(1)理解中位数和众数的定义. (2)会求一组数据的中位数和众数.
创设情境
探求新知
当堂训练
小结提升
布置作业
创设情境
探求新知
当堂训练
小结提升
布置作业
新同事见面会
见习明强 服务生小丽 前台美玉
(元)
600
1100 1100 1100 1200 2000 2300 5000 9000
请大家帮小清算算该酒店员工月平均工资 是多少?

中位数与众数课件

中位数与众数课件

通过这节课的学习,你有什么收获?
1.知识小结: 众位数 中位数 2.方法小结:
2019SUCCESS
POWERPOINT
2019/5/21
2019SUCCESS
THANK YOU
2019/5/21
实践应用,知识迁移
某商场服装部为了调动营业员的积极性,决定实行目标管理, 即确定一个月的销售目标,根据目标完成的情况对营业员进行 适当的奖惩.为了确定一个适当的目标,商场统计了每个营业 员在某月的销售额,数据如下:(单位万元)
17 18 16 13 24 15 28 26 18 19 22
17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19 (销(你13售))认月如额为销果是月想售多销让额少售一在?额半平哪定左个均为右值的多的的月少营销人合业数售适员最额?都多是说能多?明中达少理间到?由的目.月标, (2)如果想确定一个较高的销售目标,你认为月 销售额定为多少合适?说明理由.
2.求 4, 6, 7, 6, 5, 4 这组数据的众数
3.求 1, 2, 3, 4, 4, 3, 2, 1 这组数据的众数
某面包房在一天内销售面包100个.各类面包销售量如下: 面包种数 奶油 巧克力 豆沙 稻香 三色 椰茸 销售量(个) 10 15 25 5 15 30
在这个问题中,如果你是店主,你最关 心的是哪一个统计量?
(1)指出中位数与众数的区别和共同点. (2)中位数与众数的各自意义是什么?
(3)在一组数据中,平均数、众数,中位数 是否可能为同一个数?试举例说明
15 20 20 25
学以致用,体验成功
1. 10位学生在家政课上进行包水饺比 赛,在同有一 时间内包水饺的个数分别 为:15,17,14,10,15,19,17,16,14,12 求这10 同学包水饺的个数的中位数

2014年人教版八年级下20.1.2中位数、众数课件

2014年人教版八年级下20.1.2中位数、众数课件

n 1 第 个.n为偶数时,中间 2 n n 位置是第 和 1 个 2 2
在一次马拉松长跑比赛中,其中12名选手 的成绩如下(单位:分钟)
124 136 129 140 136 129 148 145 154 146 158
140 124 145 154 146 180 165 165 176 148 180 176
月薪 6000 (元)
中位数
众数
可见本题用中位数或众数反映一般职员的 实际收入比较合适.
求下列各组数据的中位数和众数:

5 2
2
6 2
3
2 3
4
3 5
4
2 6
4
中位数:3 众数:2

4
5
中位数:4
众数:4

5 2
6 3
2 4
4 5
3 5
5 6
中位数:4.5
众数:5

3
7
7
8
8
40
中位数:7.5
众数:7和8
商场统计了30位营业员在某月的 销售额,数据如下:(单位万元)
13 17 28 15 16 17 15 19 15 28
14 18 26 16 19 17 26 22 15 28
15 16 18 16 32 18 15 23 28
15 13 19 16 30 18 32 24 28 30
15 24 22 16 16 19 23 26 16 32
,
2.如果一组数据6,x,2,4的平均数是5,那
么数据 x = 8 。
3.在数据-1, 0, 4, 5, 8中插入一个数据 x,使得这组数据的中位数是3,则x = 2 . 4.数据8, 8, x, 6的众数与平均数相同,那么 8 它们的中位数是 . 5.已知一组数据10,10,x,8(由大到小排列) 的中位数与平均数相等,x = 8 , 9 中位数= .

众数中位数(PPT课件)

众数中位数(PPT课件)

x=
1 ( x1 x2 xn ) n
3
练习: 在一次中学生田径运动会上,参加 男子跳高的17名运动员的成绩如下表所示:
成绩 (单位:米)
1.50 2
1.60 1.65 1.70 3 2 3
1.75 1.80 1.85 1.90 4 1 1 1
人数
分别求这些运动员成绩的众数,中位数与 平均数 解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间 的一个数据,即这组数据的中位数是1.70;
6
2、中位数是样本数据所占频率 的等分线,它不受少数几个极端值的 影响,这在某些情况下是优点,但它 对极端值的不敏感有时也会成为缺点。
7
3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。
也正因如此 ,与众数、中位数比较起 来,平均数可以反映出更多的关于样 本数据全体的信息,但平均数受数据 中的极端值的影响较大,使平均数在 估计时可靠性降低。
S 2的数量单位与原数据的数量单位不
一致了,因此在实际应用时常将求出的方差 再开平方,这就是标准差
(standard deviation).
标准差 方差
方差出下列四组样本数据的条形图,说明它们的异同点.
(1) 5, 5, 5, 5, 5, 5, 5, 5, 5; (2) 4, 4, 4, 5 , 5, 5, 6, 6, 6; (3) 3 , 3 , 4 , 4 , 5, 6 , 6, 7 , 7; (4) 2 , 2 , 2 , 2, 5 , 8 , 8 , 8 , 8 ;

20.平均数、中位数和众数的选用PPT课件(华师大版)

20.平均数、中位数和众数的选用PPT课件(华师大版)

知2-讲
例2 某公司10名销售员,去年完成的销售额情况如下表: 求销售额的平均数、众数、中位数; 今年公司为了调动员工积极性,提高年销售额,准 备采取超额有奖的措施,请根据的结果,通过比较, 合理确定今年每个销售员统一的销售额标准是多少 万元?
销售额/万元 3 4 5 6 7 8 10
人数
132 1 1 1 1
若确定以中位数5万元为标准,多数人能完成 或超额完成,少数人经过努力也能完成,故以5万 元为标准较合理.
总结
知2-讲
选择具有代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数作
为这组数据的代表值;当有极端值时,用中位数或 众数作为这组数据的代表值.
知2-练
1 某公司员工的月工资如下:
知2-讲
导引:利用公式x=- (n1x1+x2+…+xn)计算平均数; 将10名销售员去年的销售额按从小到大的顺序排 列为3,4,4,4,5,5,6,7,8,10,最中间两 个数均为5,所以中位数为 5 5 =5(万元);出现 2 次数最多的数据为4,所以众数为4万元; 制定的标准要使大多数人能够完成,才能起到
知2-练
2 从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产
品,对其使用寿命进行跟踪调查,结果如下(单位:年): 甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12. 三个厂家在广告中都称该产品使用寿命为8年,根据调查结 果判断厂家在广告中分别运用了平均数、众数、中位数中哪 一个反应集中趋势的特征量. 甲:________,乙:________,丙:________.
知2-讲
为准备班级的新年晚会,班长对全班同学爱吃香蕉、 橘子、柚子中的哪一种水果作了民意调查. 最终买 什么水果,显然由众数决定较好,因为它代表了全 班多数同学的意愿.

课件_中位数和众数

课件_中位数和众数

124 129 136
140 145 146
148 154 158
165 175 180
例题
在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单

min)如下:
136 140 129 180 124
154
146 145 158 175 165
148
(1)样本数据(12名选手的成绩)的中位数是多少?
小结 1.如何确定一组数据的中位数 ? 将一组数据按照由小到大(或由大到小)的顺序排列
, 如果数据的个数是奇数, 则称处于中间位置的数为这组数据的中位数; 如果数据的个数是偶数, 则称中间两个数据的平均数为这组数据的中位数. 2.如何确定一组数据的众数 ? 一组数据中出现次数最多的数据称为这组数据的众数 .
众数:是当一组数据中某一数据重复出现较多时,人们往往关心的一个量 ,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众 数的频数相对较小时可靠性小,局限性大.
中位数:仅与数据的排列位置有关,不易受极端值影响,中位数可能出现 在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动 较大时,可用中位数描述其趋势,中位数的计算很少.
如果把数据50改成9,结果又会怎样?
(1)用平均数估计:一
(2)用中位数估计:中位数= ); (3)用众数估计: 众数= 5 (万元) .
(万元
说一说
请你对这三种估计结果进行评价,这些结果是否比较客观 地反映了这些家庭的年收入水平?
平均数、中位数、众数各自的特 点
平均数:计算要用到所有的数据,任何一个数据的变动都会相应引起平均 数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.
想一想 有6户家庭的年收入分别为(单元:万元):4,5,5,6 ,7,50.你认为这6户家庭的年收入水平大概是多少?

《中位数和众数》课件

《中位数和众数》课件

07
总结与回顾
总结中位数和众数的定义、计算方法、特点以及关 系
中位数和众数的定义:中位数是指一组数据中间位置的数值,众数是指一组数据中出现次数 最多的数值。
计算方法:中位数可以通过排序后取中间位置的数值得到,众数可以通过统计每个数值出现 的次数得到。
特点:中位数可以反映数据的集中趋势,众数可以反映数据的离散程度。
众数的局限性
众数可能不存在:当数据集中没有出现次数最多的数时,众数不存在。
众数可能不唯一:当数据集中存在多个数出现次数相同且最多时,众数不唯一。
众数可能不具有代表性:在一些情况下,众数可能不能代表整体数据的特征,因为数据分 布可能非常集中或非常分散。 众数可能受极端值影响:当数据集中存在极端值时,众数的出现次数可能会受到影响,导 致其不具有代表性。
关系:中位数和众数之间没有必然的联系,但有时可以相互补充。
回顾中位数和众数在生活中的应用以及局限性
中位数和众数在生活中的应用:例如,在数据分析、市场调研、金融投资等领域中,中位数和众数可以用于描 述数据的集中趋势和离散程度,帮助决策者做出更加准确和科学的决策。
中位数和众数的局限性:例如,中位数和众数容易受到极端值的影响,如果数据中有一些极端值,那么中位数 和众数的代表性可能会受到影响。此外,中位数和众数也无法反映数据的分布情况,只能描述数据的中心趋势。
的平均值
• 注意事项: a. 数据需要先进行排序 b. 数据个数需要为偶数或奇数 c. 中位数可能不 是唯一的,需要明确数据范围和取值范围
• a. 数据需要先进行排序 • b. 数据个数需要为偶数或奇数 • c. 中位数可能不是唯一的,需要明确数据范围和取值范围
中位数的特点
中位数是一组数据中间位置的数值 中位数不受极端值影响 当数据量奇数时,中位数是中间那个数;当数据量偶数时,中位数是中间两个数的平均值 中位数可以反映一组数据的集中趋势

《中位数和众数》PPT课件

《中位数和众数》PPT课件

的中位数是3,则x=

4.数据8, 8, x, 6的众数与平均数相同,那么它们的中位数


5、10名工人某天生产同一零件,生产的件数是:
15 17 14 10 15
19 17 16 14 12
求这一天10名工人生产的零件的中位数。
总结反思,拓展升华
• ⑴中位数、众数的定义。(注意:确定中位数时要分数据个数 是奇数个还是偶数个)
众数为4,平均数为6。则这组数据是_____ _______________ 。(只写出一组)
(练习4)平均数、中位数和众数都可以作为一组
数据的代表,它们各有自己的特点,能够从不同的角 度提供信息。在实际应用中,需要分析具体问题的情 况,选择适当的量来代表数据。
选择题(选项A:平均数 B:中位数 C:众数) ①为了反映八(1)班同学的平均年龄,应关注学生 年龄的______。 ②为了资金的迅速周转和减少商品库存积压某手机 销售商在进货时要关注各品牌手机销量的 ______ 。 ③为了考察某同学在一次测验中数学成绩是占上等 还是占下等水平,应关注这次数学成绩的______ 。
练习1:下面的条形图描述了某车间36个工人加工零
件数的情况:
人数
10 8 6 4 2 0
工人日加工零件数
89
45
6 4
3 4 5 6 7 8日加工零件数
请找出这些工人日加工零件数的中位数,说明 这个中位数的意义。
问题2:一家鞋店在一段时间内销售了某种女鞋30双,
各种尺码鞋的销售量如下表所示:
尺码/厘米 销售量/双
⑴你想让一半左右的营业员能够达标,这个 目标可定为______ ;
⑵你想确定一个较高的目标,这个目标可定 ______ 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

链接生活
某商店销售5种领口大小分别为 38,39,40,41,42 的衬衫(单位Cm)为了调查各种领口衬衫的销售情 况,商店统计了某天的销售情况并绘制了下面的扇形 统计图,你认为该商店应多进哪种领口大小的衬衫?
答案:40cm, 关键看众数是 哪个.
41cm 25%
42cm 9% 38cm 13%
39cm 19%
员工 经理 副经 职员 职员 职员 职员 职员 职员 杂工 理A B C D E F G
月工 资/
7000
4400
2400
2000
1900
1800
1800
1800
1200

中位数概念
一般地,n个数据按大小顺序排列 ,把处于最中间位置的一个数据 叫做这组数据的中位数
数据 ①14,5,10,3,6, ②4,2,0,-5,2, 5 ③3, 4,2,-1,5,0,-2,1
众数 7
3和-1
发现: 一组数据中众数可能不止一个
课本142页 问 题
某公司员工的月工资如下:
员工 经理
月工 资/ 元
7000
副经 理
4400
职员 A
2400
职员 B
2000
职员 C
1900
职员 D
1800
职员 E
1800
职员 F
1800
杂工 G
1200
我公司员工收入 很高,月平均工 资2700元。
优点 当一组数据中某些数据多次重复出现时,众数

往往是人们尤为关心的一种统计量。
数 不足 当各个数据的重复次数大致相等时,众数往往没
有特别意义
解决问题
某次数学考试,小英得了78分。全班共32人, 其他同学的成绩为1个100分,4 个90分,22个80 分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英 告诉妈妈说,自己这次数学成绩在班上处于 “ 中 上水平 ”。小英对妈妈说的情况属实吗?你对此 有何看法?
成绩(分) 50
607080来自90人数(人) 1
4
x
y
2
➢ ①若成绩的平均数为73分,求x和y的值
➢ ②设此班20名学生成绩的众数为a,中位数b, 求a-b 的值
说说平均数﹑中位数﹑众数的优点和不足各是什么?
平 优点 充分利用所有数据的信息 均 数 不足 但它容易受极端值的影响
中 优点 计算简单,受极端值的影响较小 位 不足 不能充分利用所有数据的信息 数
➢ A、平均数 B、中位数 C、众数 ➢ (2)、八(4)班有66人,八(5)班有70人,要比
较两个班的平均成绩,应选择哪个数据的代表( A)
➢ A、平均数 B、中位数 C、众数 ➢ (3)、在演讲比赛中,你想知道自己在所有选手中
处于什么水平,应该选择哪个数据的代表( B)
➢ A、平均数 B、中位数 C、众数
个节目中又哪一个爸爸是最受欢迎的。收 集好数据,求出这些数据的平均数、中位数 和众数
40cm 34%
链接生活
某市一年(365天)中的30天平均气温状况统 计如下:
温度
2
(°c)
天数
3
4
10
18
26
30
32
5
4
3
7
6
2
问题:该组数据中的众数和中位数是多少的摄氏度?
答案:众数是26摄氏度,中位数是22摄氏度
课堂小测
➢ 1、选一选 ➢ (1)、要调查多数同学们喜欢看的电视节目,应关
注的是哪个数据的代表( C)
课前准备:课本142页、笔和练习本
引入-发现问题
某次数学考试,小英得了78分。全班共32人, 其他同学的成绩为1个100分,4 个90分,22个80 分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英 告诉妈妈说,自己这次数学成绩在班上处于 “ 中 上水平 ”。小英对妈妈说的情况属实吗?你对此 有何看法?
填一填
➢ 2、已知一组数据从小到大依次为-1,0,4,x,6,15,
其中位数为5,则其众数为 _6_
➢ 3、若数据11,12,12,19,11,x的众数是12 ,则x的值是_12_
➢ 4、一组数据23,27,20,18,x,12, 它们的中位数是
21,那么x是 _2_2
➢ 5.下表是某班20名学生的第一次数学测验的成绩 分配表:
中位数
6 2 1.5

发现: 位 数
排序
奇数: 取中间那个数
偶数: 取中间两个数据的 平均数
链接生活
下面是我国近几届奥运会所获金牌数,请指出其中 的中位数
第25届 第26届 第27届 第28届 第29届
16枚
16枚
28枚
32枚
51枚
如果知道第24届我国所获金牌数是5枚,那么这组数 据的中位数是什么?众数又是什么?
经理
我的工资是1900元, 在公司算中等收入。
职员C
我们好几个人 工资是1800元。
职员D
四人小组讨论,交流自己的看法
➢ 议一议: ➢ ⑴经理所说的公员工的平均月薪2700元是否言
过其实? ➢ ⑵平均月薪2700元能客观反映该公司员工的平
均收入吗?若不能,你认为用哪个数据表示该公司 员工收入的平均水平更合适?
成绩超过了平均分就一定是中等偏上吗?
分数 100 90 80 62 30 25 人数 1 4 22 2 1 1
中位数:80 众数:80
小英得了78分,其实在班中排倒数第五
你也来调查
哪一个爸爸是最受欢迎的?
姓名 人数
林志颖 张亮
田亮
郭涛
王岳伦
➢布置作业
➢ 1. 课本习题6.3的第2,4题。 ➢ 2. 课后调查,在本班调查《爸爸去哪儿》 这
全班的平均分受到了两个极端数据30分和25分 的影响,利用平均数反应问题出现了偏差。
课题 6.2 中位数与众数
雨橙
姓名
天天
Kimi
石头
雨橙 天天 Kimi 石头
诗龄
诗龄
人数
16
16
25
14
12
你认为谁最受欢迎呢?
众数的概念
一组数据当中,出现次数最多的数据叫做这组数据的众数.
数据
①7,6,3,6,2,7,10,7 ②-1,0,5,3,6,3,-1
相关文档
最新文档