电流环速度环位置环
伺服电机速度环位置环扭矩环的控制原理

伺服电机速度环位置环扭矩环的控制原理Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID 调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环 PID 调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做 PID 调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/ 转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID 调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID 调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了 3 个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服电机速度环位置环扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服电机速度环位置环扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
PMSM电流环速度环位置环设计与实现中的心得体会

一:电流环参数的调节1:PMSM传动控制系统中,电机运行速度范围很宽,电流频率范围从零到上百赫兹,要在这么宽的频率范围内准确地检测电机电流,常选用霍尔元件实现电机电流的检测。
霍尔检测方法优点:动态响应好,信号传输线性及频带范围宽等优点。
为保证电机对称运行,电流三相各反馈信道的反馈系数必须相等,这就要精心选择调理电路组件,仔细调整反馈回路参数。
信号调理电路使用模拟放大器时,放大器的零漂是影响电机低速运行性能的主要因素,要仔细调整放大器,将零点漂移控制在10mv以内。
2:PMSM调速系统需要电机有很宽的调速范围,达到10^4:1以上,要在这么宽的速度范围内检测出电机的速度,以实现调速系统的控制确实是个很重要的问题。
尽管T法在低速时有很好的测速精度,但研究调速系统控制的论文极少见使用(T或M/T)法测速的,基本上都是采用M法测速。
实际上,当电机处于极低转速时,电机能否稳定运行不仅仅取决于位置传感器及其所送来的脉冲信号,还有速度调节器的作用,以及电流环与电机转子惯性环节的影响,所以,M法仍可用于低速范围内电机速度的检测与反馈。
3:电流调节器参数对电流环的动态响应具有决定性影响。
电流调节器比例系数越大,电流阶跃跟踪响应速度越快,响应的超调越大,振荡次数越多。
电流调节器的积分系数越大,电流阶跃跟踪响应的稳态误差越小,但太大会引起电流环振荡。
PMSM调速控制系统的电流环控制对象为PWM逆变器、电机电枢绕组、电流检测环节组成。
在实际系统运行过程中,电流环的相应受电机反电势的影响,电流环动态响应不好,为提高永磁同步电机调速系统电流环动态响应性能,抑制反电动势对电流环的影响,在实际系统电流调节器制作时,比例和积分系数均做了调整,增大比例系数,减小积分时间常数。
电流环响应若不加微分负反馈环节,电流环动态响应将会出现振荡与超调。
然而实际应用中,通常不加微分反馈环节,因为微分极易引起系统的振荡。
而且按照电流环I型系统的校正原则,采用PI控制才能实现电流环系统的稳定性和高动态响应。
伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服驱动三环控制的原理

运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。
位置环的反馈也来自于编码器。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
谈谈PID各自对差值调节对系统的影响:1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。
增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。
2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,。
伺服电机速度环位置环扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
伺服电机速度环位置环扭矩环的控制原理

伺服电机速度环位置环扭矩环的控制原理运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。
1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,速度环输入值和速度环反馈值进行比较后的差值在速度环做PID 调节(主要是比例增益和积分处理)后输出到电流环。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
速度环控制包含了速度环和电流环。
3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。
位置环的反馈也来自于编码器。
位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
三种控制模式位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
foc技术指标

foc技术指标FOC技术指标是电机控制技术中的一种,也被称为场定向控制技术(Field Oriented Control),其核心思想是在电机控制系统中引入了磁场定向控制。
这样,可以实现电机的高效和精准控制,带给使用者更高的体验。
下面,我们将一步一步地来了解FOC技术指标,以及在电机控制上的应用。
一、FOC技术的基本原理FOC技术是基于向量控制思想的,利用三相交流电的线路,将输出磁场沿着特定的轴向量化。
FOC技术可以将电机的电压和电流控制在同一轴上,从而实现较好的控制效果,同时也能够减少电机的噪音。
二、FOC技术指标的分类FOC技术指标包括电流环、速度环和位置环等三个方面。
其中,电流环是FOC技术的核心,又称为电压反馈环或电流环。
电流环的功能是利用反馈电路和电流传感器,实时监测电机的实际电流和期望电流,并给出校正值。
速度环是FOC技术的辅助环节,用于控制电机的转速。
在电机控制系统中,速度环采用PID控制器进行控制,可以利用反馈传感器来实现良好的转速控制。
位置环是一个重要的环节,其主要作用是确定电机的实际位置。
在FOC系统中,位置环采用编码器等传感器来实时检测电机转子的角度,并进行定位和准确控制。
三、FOC技术指标的应用FOC技术广泛应用于各种类型的电机控制系统中。
其中,最常见的应用领域是无刷直流电机(BLDC)、交流电机(AC)和永磁同步电机(PMSM)等。
在无刷直流电机中,FOC技术可以实现高效、精准的电机控制,同时保持电机转速稳定。
在交流电机中,FOC技术可以提高电机的效率和性能,并有效缓解反电动势带来的异常。
在永磁同步电机中,FOC技术可以保持电机的稳定性和精准性,并提高应用性能。
同时也可以应用于医疗设备、工业自动化、风力发电、新能源等众多领域。
总之,FOC技术指标是电机控制技术中的一种重要技术,其引入了磁场定向控制,可以实现高效、精准的电机控制。
在未来,FOC技术将在各种应用领域不断发挥其重要作用。
三环控制的原理

运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。
位置环的反馈也来自于编码器。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
谈谈PID各自对差值调节对系统的影响:1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。
增加比例将会有效减小残差并增加系统响应,但容易导致系统激烈震荡甚至不稳定。
2、单独的I(积分)就是使调节器的输出信号的变化速度与差值信号成正比,大家不难理解,如果差值大,则积分环节的变化速度大,这个环节的正比常数的比例倒数我们在伺服系统里通常叫它为积分时间常数,积分时间常数越小意味着系统的变化速度越快,所以同样如果增大积分速度(也就是减小积分时间常数)将会降低控制系统的稳定程度,直到最后出现发散的震荡过程,。
速度环、位置环增益作用

一文让你了解伺服驱动系统增益的作用以及调整的原则伺服是由3个反馈系统构成:位置环、速度环、电流环,越是内侧的环,越需要提高其响应性,不遵守该原则,则会产生偏差和震动。
由于电流环是最内侧的环,以确保了其充分的响应性,所以我们只需要调整位置环和速度环即可。
调整的主要参数是:位置环增益、速度环增益、速度积分时间常数。
位置环增益是决定对指令位置跟随性的参数。
与工件表面的优劣有密切关系,仅在驱动器工作在位置方式时有效,当伺服电机停止运行时,增加位置环比例增益,能提高伺服电机的刚性,即锁机力度。
伺服系统的响应性取决于位置环增益,提高位置环增益,位置环响应和切屑精度都会改善,同时减少调整时间和循环时间,但位置环增益又受限于速度环特性和机械特性。
为了提高响应性,如果仅提高位置环增益,作为伺服系统的整体的响应,容易产生震动,所以请一边注意响应性一边提高速度环增益。
特点:位置环增益提高,响应性越高,定位时间越短。
过大会引起震动和超调位置环增益调整原则:在保证位置环系统稳定工作,位置不超差(过冲)的前提下,增大位置环的增益,以减小位置滞后量。
简单的方法,提高位置环增益直至过冲,然后再降低位置环增益,即为刚度较好的位置环增益速度环比例增益、速度积分时间常数.速度环比例增益、速度积分时间常数仅对电机在运行时(有速度)起作用。
速度环比例增益的大小,影响电机速度的响应快慢,为了缩短调整时间,需要提高速度环增益,控制超程或行程不足。
速度环积分时间常数的大小,影响伺服电电机稳态速度误差的大小及速度环系统的稳定性。
当伺服电机带上实际负荷时,由于实际负载转矩和负载惯量与缺省参数值设置时并不相符,速度环的带宽会变窄,如果此时的速度环带宽满足需求,没有发生电机速度爬行或振荡等现象,可以不调整速度环的比例增益及积分时间常数。
如果实际负荷使电机工作不稳定,发生爬行或振荡现象,或者现有的速度环带宽不理想,则需要对速度环的比例增益、积分时间常数进行调整。
PMSM电流环速度环位置环设计与实现中的心得体会

PMSM电流环速度环位置环设计与实现中的心得体会一:电流环参数的调节1:PMSM传动控制系统中,电机运行速度范围很宽,电流频率范围从零到上百赫兹,要在这么宽的频率范围内准确地检测电机电流,常选用霍尔元件实现电机电流的检测。
霍尔检测方法优点:动态响应好,信号传输线性及频带范围宽等优点。
为保证电机对称运行,电流三相各反馈信道的反馈系数必须相等,这就要精心选择调理电路组件,仔细调整反馈回路参数。
信号调理电路使用模拟放大器时,放大器的零漂是影响电机低速运行性能的主要因素,要仔细调整放大器,将零点漂移控制在10mv以内。
2:PMSM调速系统需要电机有很宽的调速范围,达到10^4:1以上,要在这么宽的速度范围内检测出电机的速度,以实现调速系统的控制确实是个很重要的问题。
尽管T法在低速时有很好的测速精度,但研究调速系统控制的论文极少见使用(T或M/T)法测速的,基本上都是采用M法测速。
实际上,当电机处于极低转速时,电机能否稳定运行不仅仅取决于位置传感器及其所送来的脉冲信号,还有速度调节器的作用,以及电流环与电机转子惯性环节的影响,所以,M法仍可用于低速范围内电机速度的检测与反馈。
3:电流调节器参数对电流环的动态响应具有决定性影响。
电流调节器比例系数越大,电流阶跃跟踪响应速度越快,响应的超调越大,振荡次数越多。
电流调节器的积分系数越大,电流阶跃跟踪响应的稳态误差越小,但太大会引起电流环振荡。
PMSM调速控制系统的电流环控制对象为PWM逆变器、电机电枢绕组、电流检测环节组成。
在实际系统运行过程中,电流环的相应受电机反电势的影响,电流环动态响应不好,为提高永磁同步电机调速系统电流环动态响应性能,抑制反电动势对电流环的影响,在实际系统电流调节器制作时,比例和积分系数均做了调整,增大比例系数,减小积分时间常数。
电流环响应若不加微分负反馈环节,电流环动态响应将会出现振荡与超调。
然而实际应用中,通常不加微分反馈环节,因为微分极易引起系统的振荡。
位置环速度环电流环控制原理

位置环速度环电流环控制原理位置环速度环电流环控制原理引言在控制系统中,位置环速度环电流环控制原理是一种常用的闭环控制方法,广泛应用于各种机电设备中。
本文将从浅入深,逐步解释位置环速度环电流环控制原理的相关概念和工作原理。
什么是位置环、速度环和电流环?•位置环:位置环是控制系统中的最外层环节,用于控制被控对象(如电机)的位置。
它通过比较设定值和反馈值之间的差异,来调整输出信号。
•速度环:速度环位于位置环之内,负责控制被控对象的速度。
它通过比较设定值和反馈值之间的差异,来产生位置环的输入信号。
•电流环:电流环是最内层的环节,负责控制被控对象的电流。
它通过比较设定值和反馈值之间的差异,来产生速度环的输入信号。
位置环控制原理1.设定位置环的目标位置值。
2.获取被控对象的当前位置反馈值。
3.计算设定位置值与当前位置反馈值之间的差异,得到位置误差。
4.根据位置误差,利用控制算法计算出位置环的输出信号。
5.将位置环的输出信号作为速度环的输入。
速度环控制原理1.设定速度环的目标速度值。
2.获取被控对象的当前速度反馈值。
3.计算设定速度值与当前速度反馈值之间的差异,得到速度误差。
4.根据速度误差,利用控制算法计算出速度环的输出信号。
5.将速度环的输出信号作为电流环的输入。
电流环控制原理1.设定电流环的目标电流值。
2.获取被控对象的当前电流反馈值。
3.计算设定电流值与当前电流反馈值之间的差异,得到电流误差。
4.根据电流误差,利用控制算法计算出电流环的输出信号。
5.将电流环的输出信号作为电机的驱动信号。
系统稳定性分析为了保证控制系统的稳定性,需要对位置环、速度环和电流环进行合理的参数设计。
一般可以通过频域或时域分析的方式,对系统进行评估和优化。
结论位置环速度环电流环控制原理是一种常用的闭环控制方法,通过层层嵌套的控制环路,实现对被控对象的精确控制。
合理的参数设计和系统稳定性分析是保证控制系统良好性能的关键。
掌握这些原理,可以为我们日后在实际工程应用中提供帮助。
PID三环控制原理

三环控制的原理Post By:2008-7-7 16:49:00从工控上转过来的一片文章,很基本但却不能不知的一些原理,原文署名"凡夫俗子".运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。
速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分环节)后输出和位置给定的前馈信号的合值就构成了上面讲的速度环的给定。
位置环的反馈也来自于编码器。
编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。
而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。
谈谈PID各自对差值调节对系统的影响:1、单独的P(比例)就是将差值进行成比例的运算,它的显著特点就是有差调节,有差的意义就是调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差,残差具体值您可以通过比例关系计算出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流环速度环位置环 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
电流环是以电流信号作为反馈信号的控制环节。
速度环是以速度信号作为反馈信号的控制环节。
位置环是以位置信号作为反馈信号的控制环节。
电流环为最内环,在数控机床的伺服系统中它主要起到提高系统的机械特性的作用。
其反馈元件一般为电流互感器。
速度环在电流环外面,在数控机床的伺服系统中它主要起到控制转速的作用。
其反馈元件一般为模拟测速机或编码器。
位置环在速度环的外面,在数控机床上就是数控系统的位置控制单元。
其反馈元件一般为编码器、光栅尺、感应同步器、旋转变压器等。
数控的驱动由电流环,速度环和位置环组成的,其优化一般由里及外层层优化,但由于电流环的参数在电机和功率模块的型号确定后用厂家的默认参数即可,一般不需要优化,故优化时先优化速度环,再优化位置环即可.
速度环的优化,一般涉及到速度环增益和速度环时间常数,速度环时间常数越大和增益越低,速度环越稳定,但精度和动态特性越差,一般来说,速度环时间常数设在10ms左右,而速度环增益调整在使速度环的阶约响应有20-40的超调.
位置环的优化涉及到位置环增益和加速度,调整时先可以减少加速度值,再增加位置环增益值,保证系统稳定,然后在适当增加加速度值,使之适应机床的机械特性,注意同一组的插补轴的位置环增益要一致,否则会影响加工精度
电流环和速度环属于伺服控制系统的内部双闭环控制。
位置环为数控机床位置控制环,通过数控系统和伺服系统共同控制,使伺服轴运动到数控系统指定的坐标,并在数控系统的屏幕上显示坐标值。
先将电流内环调稳,再调速度外环。
“电流在一个小的范围震荡,电机在低速时有一定振颤”——这个震荡误差带是多大小范围的震荡是允许的。
有几句口诀可以供你调试参考:
PID常用口诀:参数整定找最佳,从小到大顺序查,先是比例后积分,
最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,
比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,
积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,
微分时间应加长,理想曲线两个波,前高后低4比1。