数列知识点总结及题型归纳
数列知识点归纳总结
数列知识点归纳总结一、基本概念1. 数列的定义数列是按照一定的顺序排列的一组数,通常用a1, a2, a3, …,an来表示,其中ai表示数列中的第i个数。
数列中的数称为项,n称为项数。
2. 数列的类型数列可以根据项的规律和性质进行分类,主要包括等差数列、等比数列、递推数列等。
3. 数列的通项公式数列的通项公式是描述数列中任意一项与其序号之间的关系的公式,通常用an或者Un 表示第n个项,用n表示项数。
数列的通项公式可以根据数列的类型和性质进行求解。
二、等差数列1. 定义如果一个数列满足任意相邻两项之差都相等的条件,那么这个数列就是等差数列,差值为d。
2. 性质(1)通项公式:对于等差数列an,其通项公式为an=a1+(n-1)d。
(2)前n项和:等差数列的前n项和Sn= (a1+an) * n /2。
(3)求和公式推导:对于等差数列Sn= (a1+an) * n /2,可用数学归纳法进行证明。
3. 等差数列的应用等差数列在数学和现实生活中有着重要的应用,如计算机算法中的序列求和、物理学中等速直线运动、金融学中的等额本息贷款等。
三、等比数列1. 定义等比数列是指数列中的任意相邻两项的比值都相等的数列,比值为q。
2. 性质(1)通项公式:对于等比数列an,其通项公式为an=a1*q^(n-1)。
(2)前n项和:等比数列的前n项和Sn= (a1*(q^n - 1)) / (q-1)。
3. 等比数列的应用等比数列在数学和现实生活中也有着重要的应用,如复利计算、生物学中种群增长问题、物理学中的指数衰减等。
四、递推数列1. 定义递推数列是指数列中的每一项都可以由前面的一项或几项通过某种规律得到的数列。
2. 性质递推数列的通常是通过递推关系式进行求解,递推数列的解可以是显式公式和递推公式。
3. 递推数列的应用递推数列是数学中的重要概念,它在代数、离散数学、概率论等领域都有着广泛的应用。
五、常见数列形式1. 斐波那契数列斐波那契数列是指数列中第n项等于其前两项之和的数列,通常用F(n)表示,前几项为0, 1, 1, 2, 3, 5, 8, 13, …2. 调和数列调和数列是指数列中的每一项是调和级数的一部分的数列,通常用H(n)表示,前几项为1, 1/2, 1/3, 1/4, 1/5, …2. 等差-等比混合数列等差-等比混合数列是指数列中的相邻两项之间既满足等差数列的条件,又满足等比数列的条件的数列。
2024高考数学数列知识点总结与题型分析
2024高考数学数列知识点总结与题型分析数列是高中数学中的重要内容,作为数学的一个分支,数列的掌握对于高考数学的考试非常关键。
在本文中,我们将对2024年高考数学数列的知识点进行总结,并分析可能出现的相关题型。
一、等差数列与等差数列的通项公式等差数列是数学中最常见的数列类型之一。
对于等差数列,首先要了解等差数列的概念:如果一个数列中任意两个相邻的项之差都相等,则称该数列为等差数列。
1.1 等差数列的通项公式等差数列的通项公式是等差数列中非常重要的一个公式,它可以用来求解等差数列中任意一项。
设等差数列的首项为$a_1$,公差为$d$,第$n$项为$a_n$,则等差数列的通项公式为:$a_n = a_1 + (n-1)d$1.2 等差数列的性质与常用公式等差数列有一些重要的性质与常用的公式,掌握这些性质与公式可以帮助我们更好地解决与等差数列相关的题目。
(1)等差数列中,任意三项可以构成一个等差数列。
(2)等差数列的前$n$项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$(3)等差数列的前$n$项和的差为:$S_n - S_m = (n-m+1)\frac{a_1 + a_{n+m}}{2}$二、等比数列与等比数列的通项公式等比数列也是数学中常见的数列类型之一。
与等差数列不同的是,等比数列中的任意两项的比值都相等。
2.1 等比数列的通项公式等比数列的通项公式可以用来求解等比数列中的任意一项。
设等比数列的首项为$a_1$,公比为$q$,第$n$项为$a_n$,则等比数列的通项公式为:$a_n = a_1 \cdot q^{(n-1)}$2.2 等比数列的性质与常用公式等比数列也有一些重要的性质与常用的公式,下面我们来了解一下:(1)等比数列中,任意三项可以构成一个等比数列。
(2)等比数列的前$n$项和公式为($q\neq1$):$S_n = \frac{a_1(1-q^n)}{1-q}$(3)当公比$q \neq 1$时,等比数列的前$n$项和与第$n$项的关系为:$S_n = \frac{a_nq - a_1}{q - 1}$三、数列题型分析与解题技巧在高考数学中,对于数列的考察主要包括以下几个方面:3.1 数列的递推关系与通项公式的应用常见的数列题目往往要求我们根据已知的递推关系或者通项公式来求解数列中的某一项或者求解前$n$项的和。
数列求通项知识点总结与题型归纳讲义
10.3数列求通项知识梳理.数列求通项1.利用n S 与n a 的关系求通项公式;2.累加法:若已知1a 且()()12n n a a f n n --=≥的形式;3.累乘法:若已知1a 且()()12nn a f n n a -=≥的形式;4.构造法:若已知1a 且()12,0,1n n a pa b n p p -=+≥≠≠的形式qpa a n n +=+1()n f pa a n n +=+1n n n qa pa a +=++12(其中p ,q 均为常数);题型一.利用Sn 与an 的关系考点1.已知Sn 与an 的关系求an1.已知数列{a n }为等差数列,且a 3=5,a 5=9,数列{b n }的前n 项和S n =23b n +13.(Ⅰ)求数列{a n }和{b n }的通项公式;【解答】解:(Ⅰ)数列{a n }为等差数列,∴d =12(a 5﹣a 3)=2,又∵a 3=5,∴a 1=1,∴a n =2n ﹣1,当n =1时,S 1=23b 1+13,∴b 1=1,当n ≥2时,b n =S n ﹣S n ﹣1=23b n −23b n ﹣1,∴b n =﹣2b n ﹣1,即数列{b n }是首项为1,公比为﹣2的等比数列,∴b n =(﹣2)n ﹣1,2.已知数列{a n }的前n 项和S n 满足2=3(−1)(∈∗).(1)求数列{a n}的通项公式;【解答】解:(1)当n=1时,2S1=3(a1﹣1)=2a1,得a1=3,当n≥2时,2S n=3(a n﹣1),2S n﹣1=3(a n﹣1﹣1),两式作差可得2a n=3a n﹣3a n﹣1,即a n=3a n﹣1,所以数列{a n}是以3为首项,3为公比的等比数列,所以a n=3n;3.记S n为数列{a n}的前n项和,已知a n<0,a n2﹣3a n=4﹣6S n.(1)求数列{a n}的通项公式;【解答】解:(1)当n=1时,12−31=4−61,所以a1=﹣4或a1=1(舍)当n≥2时,因为2−3=4−6,所以K12−3K1=4−6K1,两式相减得(a n+a n﹣1)(a n﹣a n﹣1+3)=0,因为a n<0,所以a n﹣a n﹣1=﹣3,所以数列{a n}是以﹣4为首项﹣3为公差的等差数列,所以a n=﹣4+(n﹣1)⋅(﹣3)=﹣3n﹣1.考点2.带省略号1.设数列{a n}满足1+32+⋯+(2−1)=2o∈∗).(Ⅰ)求a1,a2及{a n}的通项公式;【解答】解:(Ⅰ)∵a1+3a2+…+(2n﹣1)a n=2n,当n=1时,a1=2,当n=2时,a1+3a2=4,∴a2=23,∵a1+3a2+…+(2n﹣1)a n=2n,①,∴n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1),②①﹣②得:(2n﹣1)•a n=2,∴a n=22K1,又n=1时,a1=2满足上式,∴=22K1;2.已知数列{a n},a n=2n+1,则12−1+13−2+⋯+1r1−=()A.1+12B.1﹣2n C.1−12D.1+2n【解答】解:a n+1﹣a n=2n+1+1﹣(2n+1)=2n∴1r1−=12∴12−1+13−2+⋯+1r1−=12+122+⋯+12=1−12故选:C.题型二.累加法1.已知数列{a n}满足a1=1,a n+1=a n+n+1.(1)求{a n}的通项公式;【解答】解:(1)由a1=1,a n+1=a n+n+1,可得n≥2时,a n﹣a n﹣1=n,可得a n=a1+(a2﹣a1)+(a3﹣a2)+...+(a n﹣a n﹣1)=1+2+3+...+n=12n(n+1),即a n=12n(n+1),n∈N*;2.设数列{a n}满足a1=2,a n+1﹣a n=3•22n﹣1,则数列{a n}的通项公式是a n=22n﹣1.【解答】解:∵a1=2,a n+1﹣a n=3•22n﹣1,∴n≥2时,a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+3•2+3•23+…+3•22n﹣3=2+3⋅2(1−4K1)1−4=22n﹣1;当n=1时a1=2适合上式.∴=22K1.故答案为:22n﹣1.3.在数列{a n}中,1=2,r1=+B(1+1),则数列{a n}的通项a n=.【解答】解:a1=2=2+ln1,3=2+B2+B(1+12)=2+ln [2×(1+12)]=2+ln 3,4=2+B3+B(1+13)=2+ln 4.由此可知a n =2+lnn .故选:D .题型三.累乘法1.在数列{a n }中,已知(n 2+n )a n +1=(n 2+2n +1)a n ,n ∈N +,且a 1=1,求a n 的表达式.【解答】解:由题意,r1r1=∵a 1=1,∴{}是以1为首项,0为公差的等差数列,∴=1,∴a n =n .2.已知数列{a n }满足a 1=3,a n +1=3K13r2a n (n ≥1),求a n 的通项公式.【解答】解:∵数列{a n }满足a 1=3,a n +1=3K13r2a n (n ≥1),∴K1=3K43K1(n ≥2),∴a n =K1⋅K1K2•…•32•21⋅1=3K43K1•3K73K4•…•58•25•3=63K1,当n =1时也成立.∴a n =63K1.3.已知正项数列{a n }的首项a 1=1,且2na n +12+(n ﹣1)a n a n +1﹣(n +1)a n 2=0(n ∈N *),则{a n }的通项公式为a n =(12)K1⋅.【解答】解:∵2na n +12+(n ﹣1)a n a n +1﹣(n +1)a n 2=0,∴(2na n +1﹣(n +1)a n )•(a n +1+a n )=0,∵数列{a n }为正项数列,∴2na n +1﹣(n +1)a n =0,∴r1=r12,∴21=22,32=34,43=46,…K1=2(K1),两边累乘得,1=22×34×46×⋯×2(K1)=n •(12)K1∴a n =(12)K1⋅,故答案为:(12)K1⋅,题型四.构造法1.已知数列{a n }的前n 项和为S n ,满足a n +1=2a n +1,且a 1+2a 2=a 3.(1)求数列{a n }的通项公式;【解答】解:(1)数列{a n }的前n 项和为S n ,满足a n +1=2a n +1,整理得:a n +1+1=2(a n +1),由a 1+2a 2=a 3=2a 2+1,解得a 1=1,故数列{a n +1}是以a 1+1=2为首项,2为公比的等比数列;所以=2−1.2.已知数列{a n }满足a n =3a n ﹣1+3n (n ≥2,n ∈N *),首项a 1=3.(1)求数列{a n }的通项公式;【解答】解:(1)数列{a n }满足=3K1+3(n ≥2,n ∈N *),∴−3K1=3,又∵3n ≠0,∴3−K13K1=1为常数,∴数列{3}是首项为13=1、公差为1的等差数列,∴3=n,∴=⋅3(n∈N*);3.已知数列{a n}满足1=12,r1=+1,则a2021=()A.12019B.12020C.12021D.12022【解答】解:因为r1=+1,则1r1−1=1,又1=12,则11=2,所以数列{1}是首项为2,公差为1的等差数列,则1=+1,所以=1r1,则a2021=12021+1=12022.故选:D.。
数列复习基本知识点及经典结论总结+练习题
数列复习基本知识点及经典结论总结1、数列的概念:数列是按一定次序排成的一列数。
数列中的每一个数都叫做这个数列的项。
数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。
数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125);(2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )A B C D递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项a n 与它的前一项a n 1-(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。
数列的前n 项和:a a a a s n n ++++=...321.已知s n 求a n 的方法(只有一种):即利用公式 a n =⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。
2.等差数列的有关概念: 1、 等差数列的定义:即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). (1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
数列知识点总结和题型归纳
数列知识点总结和题型归纳一、数列的定义和性质数列是由一系列有序的数按照一定规律排列而成的序列。
数列中的每个数叫做数列的项,用an表示第n个项。
1. 等差数列等差数列是指一个数列中相邻两项之差都是相等的。
公差d是等差数列中相邻两项的差值。
2. 等比数列等比数列是指一个数列中相邻两项之比都是相等的。
公比q是等比数列中相邻两项的比值。
二、数列的通项公式和前n项和公式1. 等差数列的通项公式设等差数列的首项为a1,公差为d,则该等差数列的通项公式为an = a1 + (n-1)d。
2. 等差数列的前n项和公式设等差数列的首项为a1,公差为d,前n项和为Sn,则该等差数列的前n项和公式为Sn = n(a1 + an)/2。
3. 等比数列的通项公式设等比数列的首项为a1,公比为q,则该等比数列的通项公式为an = a1 * q^(n-1)。
4. 等比数列的前n项和公式设等比数列的首项为a1,公比为q,前n项和为Sn,则该等比数列的前n项和公式为Sn = a1 * (1 - q^n)/(1 - q)。
三、数列的常见题型1. 求等差数列的第n项已知等差数列的首项a1和公差d,求该等差数列的第n项an,则可以利用等差数列的通项公式an = a1 + (n-1)d进行计算。
2. 求等差数列的前n项和已知等差数列的首项a1、公差d和项数n,求该等差数列的前n项和Sn,则可以利用等差数列的前n项和公式Sn = n(a1 + an)/2进行计算。
3. 求等比数列的第n项已知等比数列的首项a1和公比q,求该等比数列的第n项an,则可以利用等比数列的通项公式an = a1 * q^(n-1)进行计算。
4. 求等比数列的前n项和已知等比数列的首项a1、公比q和项数n,求该等比数列的前n项和Sn,则可以利用等比数列的前n项和公式Sn = a1 * (1 - q^n)/(1 - q)进行计算。
四、数列的应用数列在数学中有广泛的应用,特别是在数学建模和实际问题的解决中常常用到。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
职高数列知识点总结及题型归纳
职高数列知识点总结及题型归纳一. 数列的定义和性质数列是按照一定规律排列的一组数的集合。
它可以有无穷个数,也可以有有限个数。
数列中的每个数被称为数列的项,用 a1, a2, a3...表示。
1. 等差数列等差数列是一种常见的数列形式,其特点是每一项与它的前一项之差相等。
设等差数列的首项为 a,公差为 d,则其通项公式为 an = a + (n-1)d,其中 n 表示数列中的第 n 项。
常用等差数列公式:- 数列前 n 项和公式:Sn = (a + an) * n / 2- 前 n 项和与项数的关系:Sn = (2a + (n-1)d) * n / 2- 前 n 项和与差数的关系:Sn = (a2 - an) / (2d)例题1:某数列的首项是 3,公差是 4,求该数列的第 10 项。
解:根据等差数列的通项公式,an = a + (n-1)d = 3 + (10-1)4 = 3 + 36 = 39。
所以该数列的第 10 项是 39。
例题2:某数列的首项是 2,公差是 3,求数列的前 5 项和。
解:使用等差数列前 n 项和公式,Sn = (a + an) * n / 2 = (2 + (2 + (5-1)3)) * 5 / 2 = 35。
所以数列的前 5 项和为 35。
2. 等比数列等比数列是一种常见的数列形式,其特点是每一项与它的前一项之比相等。
设等比数列的首项为 a,公比为 r,则其通项公式为 an = a * r^(n-1),其中 n 表示数列中的第 n 项。
常用等比数列公式:- 数列前 n 项和公式:Sn = a * (1 - r^n) / (1 - r)- 前 n 项和与项数的关系:Sn = a * (1 - r^n) / (1 - r)- 无穷项和公式:S∞= a / (1 - r)例题3:某数列的首项是 2,公比是 3,求该数列的第 4 项。
解:根据等比数列的通项公式,an = a * r^(n-1) = 2 * (3^(4-1)) = 2 * 27 = 54。
数列知识点总结及题型归纳
数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9;(2)2010年各省参加高考的考生人数。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
例:画出数列12+=n a n 的图像.(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
完整版)数列知识点归纳
完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。
因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。
特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。
7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
【专题训练】数列(等差、等比) 知识点总结及题型归纳
基本量法求数列的通项公式11.复习 等差数列(1)定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常.数.,那么这个数列就叫等差数列, 1(2)n n a a d n --=≥d a a n n =1--d a a n n =2-1--(由定义,累加法推得通项公式)…… d a a =12-(2)通项公式1(1)n a a n d =+-(3)性质: 在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;(4)前项和公式d n n na a a n S n n 2)1(2)(11-+=+=等比数列(1)定义 : 如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,1n a +:(0)n a q q =≠ (2)通项公式11-⋅=n n q a a(3)性质:在等比数列{}n a 中,q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(4)前项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例1(2015年全国卷I ) n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(1)求{}n a 的通项公式:变式1:(湖北省武汉部分重点中学2020届高三起点考试)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (1)求数列{a n }的通项公式;变式2:已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式;例2已知数列{a n }的前n 项和为S n ,且2n n S a n =-.(1) 证明数列{1n a +}是等比数列,并求数列{}n a 的通项公式;变式1:(湖北省黄冈中学2019届高三数学模拟试题1)已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;变式3:已知数列{}n a ,{}n b ,其中1,511-==b a ,且满足)3(2111---=n n n b a a ,)3(2111----=n n n b a b ,2*,≥∈n N n .(1)求证:数列{}n n b a -为等比数列,并求数列{a n }、{b n }的通项公式;例3 .已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; 变式(浙江省名校联盟2020届高三第一次联考试题)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项.数列{}n b的通项公式nn b =Νn *∈.(1)求数列{}n a 的通项公式;数列(等差、等比)知识点清单一、数列的概念1.数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
数列知识点及典型题分析
数列的概念与简单表示法知识要点梳理知识点一:数列的概念⒈数列的定义:按一定顺序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.)⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. (如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….)⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项,第2项,…,第项,….其中数列的第1项也叫作首项。
3. 数列的一般形式:,或简记为,其中是数列的第项知识点二:数列的分类1. 根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列2. 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
递减数列:从第2项起,每一项都小于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列知识点三:数列的通项公式与前项和1. 数列的通项公式如果数列的第项与之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.如数列:的通项公式为();的通项公式为();的通项公式为();注意:(1)并不是所有数列都能写出其通项公式;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…;它的通项公式可以是,也可以是.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.(4)数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.2. 数列的前项和数列的前项逐个相加之和:;当时;当时,,.故.知识点四:数列与函数的关系数列可以看成以正整数集(或它的有限子集)为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
《数列》知识点、题型、解法全方位解析
《数列》知识点、题型、解法全方位解析 内蒙古赤锋阿旗天山一中:尹国玉数列的基础知识与一般性结论:(一)数列的概念:项,项数。
一般式:}{n a 或 ,,,,,4321n a a a a a注:①数列与函数的关系:数列可以看作是一个定义域为正自然数集N 或它的有限子集{1,2,3,……,n}的函数.当自变量从小到大依次取值时对应的一列函数值,通项公式a n =f(n)就是该函数的解析表达式,数列的图象是一个点列.因此在学习数列时还应学会用函数的观点、方法研究数列.②数列分有穷数列与无穷数列。
(二)数列的有关公式:(注:并不是所有的数列都有各种公式,)1.递推公式:如)(1n n a f a =+或),(12n n n a a f a ++=等,即由数列的前若干项表示后一项的关系式,2.通项公式:a n =f(n)即由项数来表示项的关系式,即第n 项,3.前n 项和公式:①有穷数列和:即用n 表示前n 项和的式子,(有时也用售含有项和项数的混合式子表示,如2)(1n n a a n S +=)注:掌握数列的通项n a 与前n 项和n S (前项积n G )之间的关系式n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .n a =11(1)(2)n n G n G n G -=⎧⎪⎨≥⎪⎩②*无究数列和(前n 项和的极限): n n S lin S →+∞=(三)定义数列的方式方法:1.用递推公式定义:①简单一阶线性递归数列:等差等比数列等. ②简单一阶分式递归数列(倒数成等差数列) ③简单的周期数列; ④其它形式:2.用通项公式定义:3.用和或和与项的关系定义. (四)数列的图象(五)数列的单调性及最值 (六)数列的分类1.从项的个数上分:有穷数列,无穷数列.2.从”函数”类型及项与项的关系分:①简单数列:等差数列;等比数列;调和数列;幂级数.②复杂数列(数列的组合):复合数列;组合数列;分段数列;子数列. 3.从数列的性质分:单调数列;摆动数列;周期数列;不规则数列。
数列常见题型总结经典(超级经典)
高中数学《数列》常见、常考题型总结题型一 数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。
2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。
3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。
2.形如)(1n f a a n n =-+型(累加法)(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法.例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.2. 已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.3.形如)(1n f a a nn =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
数列知识点总结和题型归纳总结
数列、不等式一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
(3)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(4)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥题型.利用11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩求通项.1.已知数列{}n a 的前n 项和,142+-=n n S n 则2.设数列{}n a 的前n 项和11,21n n a S a ==-,则二、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
题型二、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
题型三、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA += a ,A ,b 成等差数列⇔2a bA += 即:212+++=n n n a a a (m n m n n a a a +-+=2)题型四、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (5)在等差数列{}n a 中,{}n n a b λμ±仍然为等差数列。
高中数学数列考点分析总结(精华版~)
一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++=Λ21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn . 5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1Λ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.1、已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
数列知识点归纳及例题分析
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
小学数列知识点归纳总结
小学数列知识点归纳总结数列是小学数学中的重要概念之一,它在数学中有着广泛的应用。
本文将对小学数列的基本概念、性质以及常见题型进行归纳总结。
一、数列的基本概念数列是由一组按照一定规律排列的数所组成的序列。
数列中的每个数称为该数列的项,用an表示。
数列中的第一个数称为首项,用a1表示。
数列中的规律称为项的通项公式,表示为an=f(n)。
二、常见数列1. 等差数列等差数列中的相邻两项之差是一个常数。
其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
常见的等差数列有自然数列、偶数列和奇数列等。
2. 等比数列等比数列中的相邻两项之比是一个常数。
其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。
常见的等比数列有2的倍数列、3的倍数列和10的倍数列等。
3. 斐波那契数列斐波那契数列是一个特殊的数列,其前两项为1,从第三项开始,每一项都是前两项的和。
即数列的第三项开始,an=a(n-1)+a(n-2)。
斐波那契数列的前几项为1, 1, 2, 3, 5, 8, 13, 21...三、数列的性质1. 有界性数列可以是有界的,也可以是无界的。
如果数列中的所有项都小于或等于某个数M,那么称数列是上界为M的有界数列;如果数列中的所有项都大于或等于某个数N,那么称数列是下界为N的有界数列。
2. 单调性数列可以是递增的,也可以是递减的。
如果数列中的每一项都大于前一项,那么称数列是递增数列;如果数列中的每一项都小于前一项,那么称数列是递减数列。
3. 求和公式有些数列可以通过求和公式来计算其前n项和。
等差数列的前n项和公式为Sn=(a1+an)*n/2;等比数列的前n项和公式为Sn=a1*(q^n-1)/(q-1)。
四、数列的常见题型1. 求第n项的值:根据数列的通项公式,可以直接计算出第n项的值。
2. 求前n项和:根据数列的通项公式和求和公式,可以计算出前n项和的值。
3. 判断数列的性质:观察数列中相邻项之间的关系,判断数列是等差数列、等比数列还是斐波那契数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,… 说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。
例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn Sn a S S n -=⎧=⎨-⎩≥二、等差数列(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )6703.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)(三)、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA += a ,A ,b 成等差数列⇒2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .75(四)、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (五)、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。
(),(2为常数B A BnAn S n +=⇒{}n a 是等差数列 )递推公式:2)(2)()1(1na a n a a S m n m n n --+=+= 例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )352.(湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.(全国卷Ⅰ) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 5.已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 6.(全国卷Ⅱ)设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 7.已知{}n a 数列是等差数列,1010=a ,其前10项的和7010=S ,则其公差d 等于( )3132--..B A C.31 D.328.(陕西卷文)设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a =9.(全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n 。
(六).对于一个等差数列:(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ②1n n S aS a +=奇偶; (2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②1S nS n =-奇偶。
1.一个等差数列共2011项,求它的奇数项和与偶数项和之比__________2.一个等差数列前20项和为75,其中奇数项和与偶数项和之比1:2,求公差d3.一个等差数列共有10项,其偶数项之和是15,奇数项之和是225,则它的首项与公差分别是_______(七).对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。
例:1.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A.130B.170C.210D.2602.一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 4.设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== 5.(全国II )设S n 是等差数列{a n }的前n 项和,若36S S =13,则612SS = A .310 B .13 C .18D .19(八).判断或证明一个数列是等差数列的方法: ①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列例:1.已知数列}{n a 满足21=--n n a a ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 2.已知数列}{n a 的通项为52+=n a n ,则数列}{n a 为 ( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断3.已知一个数列}{n a 的前n 项和422+=n s n ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断4.已知一个数列}{n a 的前n 项和22n s n =,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 5.已知一个数列}{n a 满足0212=+-++n n n a a a ,则数列}{n a 为( )A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断 6.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ) ①求数列{}n a 的通项公式;7.(天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 (九).数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,n S 的最值可求二次函数2n S an bn =+的最值;可用二次函数最值的求法(n N +∈);②或者求出{}n a 中的正、负分界项,即: 若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或10n n a a +≤⎧⎨≥⎩。
例:1.等差数列{}n a 中,12910S S a =>,,则前 项的和最大。
2.设等差数列{}n a 的前n 项和为n S ,已知 001213123<>=S S a ,, ①求出公差d 的范围,②指出1221S S S ,,, 中哪一个值最大,并说明理由。
3.(上海)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( )A.d <0B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值4.已知数列{}n a 的通项9998--n n (*∈N n ),则数列{}n a 的前30项中最大项和最小项分别是5.已知}{n a 是等差数列,其中131a =,公差8d =-。
(1)数列}{n a 从哪一项开始小于0?(2)求数列}{n a 前n 项和的最大值,并求出对应n 的值.(十).利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.1.数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?2.设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;3.(安徽文)设数列{}n a 的前n 项和2n S n =,则8a 的值为( )(A ) 15 (B) 16 (C) 49 (D )64 4、北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.三、等比数列等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠(一)、递推关系与通项公式mn m n n n n n q a a q a a a a --+⋅=⋅==推广:通项公式:递推关系:111q 1. 在等比数列{}n a 中,2,41==q a ,则=n a 2. 在等比数列{}n a 中,712,a q ==则19_____.a =3.(07重庆文)在等比数列{a n }中,a 2=8,a 1=64,,则公比q 为( ) (A )2 (B )3 (C )4 (D )84.在等比数列{}n a 中,22-=a ,545=a ,则8a =5.在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++=( )A 33B 72C 84D 189(二)、等比中项:若三个数c b a ,,成等比数列,则称b 为c a 与的等比中项,且为ac b ac b =±=2,注:是成等比数列的必要而不充分条件.例:1.2+2-( )()1A ()1B - ()1C ± ()2D2.(重庆卷文)设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n +C .2324n n+ D .2n n +(三)、等比数列的基本性质,1.(1)q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中 (2))(2*+--∈⋅==N n a a a a a qm n m n n mn mn , (3){}n a 为等比数列,则下标成等差数列的对应项成等比数列. (4){}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.例:1.在等比数列{}n a 中,1a 和10a 是方程22510x x ++=的两个根,则47a a ⋅=( )5()2A -()2B 1()2C - 1()2D2. 在等比数列{}n a ,已知51=a ,100109=a a ,则18a =3.等比数列{}n a 的各项为正数,且5647313231018,log log log a a a a a a a +=+++=则( )A .12B .10C .8D .2+3log 5 4.(广东卷)已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -(四)、等比数列的前n 项和,)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n例:1.已知等比数列}{n a 的首相51=a ,公比2=q ,则其前n 项和=n S2.(北京卷)设4710310()22222()n f n n N +=+++++∈,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +-3.(全国文,21)设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q ;(五). 等比数列的前n 项和的性质若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.例:1.(辽宁卷)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S =A. 2B. 73C. 83 D.32.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( ) A .83 B .108 C .75 D .633.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, (六)、等比数列的判定法 (1)定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; (2)中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;(3)通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; (4)前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列。