超导材料发展现状与展望 共23页PPT资料
2超导材料 ppt课件
物质就称为超导体 ( superconductor ) 。
超导体在刚刚进入超导态的温度叫作 超导临
界温度 ( superconducting critical temperature ),
用 Tc 表示。即T<Tc 时,电阻为零,T>Tc时,超
导体出于正常态。 2020/12/27
43
如何理解超导体的”零电阻”
2.临界磁场效应(Hc )
当超H导c (体T处) 于= 超Hc导(态0 时) [,1当-外(磁T场/强T度c )超2 ]过某一数
值Hc时,超导电性被破坏,超导体会突然就变成正常导
体,出现了电阻。Hc被称为临界磁场强度。
实验表明对一定的超导体
临界磁场是温度的函数。
Hc ( T ) = Hc ( 0 ) [ 1 - ( T /Tc ) 2 ]
2020/12/27
31
零电阻是超导体最基本的特性,它意味 着电流可以在超导体内无损耗地流动,使电 力的无损耗传输成为可能;
同时,零电阻允许有远高于常规导体的 载流密度,可用以形成强磁场或超强磁场。
2020/12/27
32
发现超导电性后,昂内斯即着手用超导体来 绕制强磁体,但出乎他的意料,超导体在通上不 大的电流后,超导电性就被破坏了,即超导体具 有临界电流Ic。
2020/12/27
39
在临界温度Tc,临界电流为零,这个现象可 以从磁场破坏超导电性来说明。
当通过样品的电流在样品表面产生的磁场达 到Hc时,超导电性就被破坏.这个电流的大小就 是样品的临界电流。
临界电流随温度变化的关系有
T2 IC(T) IC0[1TC2]
式中,Ic0是绝对零度时的临界电流。
2020/12/27
超导材料及其应用现状与发展前景
超导材料及其应用现状与发展前景超导体不仅在临界温度下具有零电阻特性,而且在一定的条件下具有常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值。
我国在超导材料及其应用领域总体上处于国际先进行列,基本掌握了各种实用化超导材料的制备技术,在多个应用方面也取得了良好的发展。
我国超导材料及其应用领域将不断探索更高临界温度的超导体,提升超导材料及其应用技术的发展水平。
1911年,荷兰莱登实验室的卡麦林·昂尼斯在测量低温下金属的电导率时发现,当温度下降到4.2K时,汞的电阻完全消失(如图1所示),他把具有这种现象的导体称为超导体。
经过近50年的研究,科学家們陆续发现,超导体不仅在一定温度(也称为临界温度,简称Tc)之下具有零电阻特性,而且在一定的条件下具有高密度载流能力、完全抗磁性(迈斯纳效应)、约瑟夫森效应等常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值(见表1)。
根据应用的具体需求,工程师们可以将超导体制备成各种超导材料,如超导线材、超导带材、超导薄膜、复合超导体等。
经历了100多年的研究,人们已经发现了多达数万种超导体。
按照超导体的临界温度,可以将超导体分为低温超导体和高温超导体,临界温度低于25K~30K超导体为低温超导体,临界温度高于25K~30K超导体为高温超导体。
目前,基于低温超导材料的应用装置一般工作在液氦温度(4.2K及以下),基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。
探索出更高临界温度乃至室温的超导体是人类不断追求的梦想。
超导材料的发展现状与前景尽管人们已经发现了数万种超导体,但真正具有实用价值的超导体并不多。
目前得到应用的低温超导体主要包括NbTi、Nb3Sn、Nb3Al等,具有实用价值的高温超导体主要包括铋系(BSCCO,Tc约90K-110K,也称为第一代高温超导材料,主要包括BSCCO-2212和BSCCO-2223两种,也简称Bi-2212或Bi-2223)、钇系(Tc约90K,YBCO或ReBCO,也称为第二代高温超导材料)。
超导材料的发展现状与应用展望
象。 这样 一 来 , 除零 电阻外 , 超 导 体还
有一个本 征性质 , 就是 完全反磁性 。 超 导体 的 2 个 本 征性 质 , 零 电阻 和 完 全 反磁性是相 互独立 又相互关联 的 。
研究 一直保持着 高度 的热情。 尽 管在 2
发 现超 导 现 象 以后 , 人 们 对 超导 的
也是 超导 体独 具 的特性 , 目前 还 没有
发 现世 界 上 其 他 材 料 会 出 现这 个 现
1 9 6 2 年, 布 赖恩 ・ 戴维 ・ 约瑟犬 森
( B r i a n Da v i d J o s e p h s o n ) 在数学 J
w. 安 德森 ( An d e r s o n) 和J . M. 厄 耳( Lo we 1 1 ) 等人就 从实 验 J : 证实 _ r
约瑟 夫森 的 预言 。 约瑟 夫森 效 应 的发 现 奠 定 了超 导 体 在 吲态 电 学 领 域
应用 的基 础 , 约 瑟 夫 森 也 此 被 授 了
可分成传统超导体( 超导机制可完全用B C S 理论解释) 和非传统超导体
( 超 导机制不能完全用BC S 理 论解释 )
可 分 成高温超导 体( 最初指转变温度高于液氮气化温度的铜基氧化物
苏勃 尼 科 夫在 1 9 3 7 年 斯 火 林 的 人 清洗 运 动 中被 错 误 地 杀 害 l r, 而 驯
学 实 验 物 理 学 家 卡 麦林 ・ 昂 尼 斯 ( Ka me r l i n a h On n e s ) 领 导的实验 组 在液 氦温区对汞 导线样 品进行 电阻测
体 的发 现 打 开 了超 导 走 向 实 际 川 的大 门 。
超导材料的发展及应用前景
超导材料的发展及应用前景随着科技的不断进步和发展,超导材料逐渐引起了人们的重视和关注。
超导材料是指某些材料在低温条件下能够完全消除电阻,具有良好的导电性能和磁性能。
目前,超导材料的开发和应用已经深入到了各个领域,比如磁悬浮、能源传输、生物医学、量子计算等。
一、超导材料的基本概念超导材料起源于1911年荷兰物理学家海克·昂内斯·卡梅林格在研究物质的加热性质时意外发现的珍珠母蝴蝶的超导现象。
超导现象是指在一定的温度下某些材料的电阻率变为零,进而表现为完全导电的现象。
超导材料可分为一种和二种两种。
一种超导材料的转变温度较低,必须使温度降到零以下;而二种超导材料的转变温度较高,能够在液氮的温度下实现超导。
二、超导材料的发展历程1、Meissner效应的发现在1933年,德国的物理学家费迪南德.米斯纳发现了一种蕴含着超导物理本质的现象,即“Meissner效应”。
他发现在超导体受到磁场的作用下,磁场将被完全排斥,从而在超导体的内部产生一种磁场,即“Meissner效应”。
2、高温超导材料的发现1986年,在美国IBM公司的发明家库珀和穆勒各自发现了一种新型超导材料,称其为高温超导材料。
这种高温超导材料的转变温度已经可以达到液氮的温度,从而极大地推动了超导技术的发展。
三、超导材料的应用前景1、磁悬浮技术磁悬浮技术是指将磁体和轨道相互作用的原理,实现列车在轨道上的悬浮,从而减小了摩擦阻力和空气阻力,提高了列车的运行效率。
超导材料在磁悬浮技术上有着广泛的应用前景。
2、能源传输目前,国内外的电力输送都采用的是传统的铜铝导线,而超导材料因其能够达到较高的导电性能,因此可以将超导线作为高压输电线路,省去了铜铝线路长距离输电过程中的电力损耗,可以大大提高电力输送的效率。
3、生物医学超导材料在医学领域中的应用也逐渐出现,比如:MRI等医疗成像技术,都是超导材料在这个领域所发挥的作用。
通过这种技术,可以对人体进行准确的诊断,避免了传统医疗设备对人体辐射的危害,同时还能够准确的定位病变和异常病灶。
超导材料的研究现状与应用前景
超导材料的研究现状与应用前景超导技术是当今科学技术领域中备受瞩目的研究方向之一,而超导材料是实现超导技术的核心组成部分。
本文将介绍超导材料的研究现状和应用前景。
1. 超导材料简介超导材料是指在低温条件下,电阻为零的材料。
超导现象指的是由于材料中电子在超导态下已形成电子配对,电子可以以零阻力的方式传输,并产生磁场。
超导材料在科学研究、电力、通信等领域都有着十分重要的应用。
2. 超导材料的研究现状超导材料的研究始于1911年,自此以后科学家们不断地探索各种可能的超导材料。
直到BCS理论和冷却技术的出现,使得超导材料的研究和应用发展迅速。
目前,市场上超导材料的应用越来越广泛,而实际上研究人员仍在不断地探索更好的超导材料。
过去几十年来,大量的研究对复合铜氧物超导材料进行了深入的探索和研发。
其中,发现了多种铜氧化物超导材料,如La-Ba-Cu-O以及Y-Ba-Cu-O。
这些材料的临界温度(即电阻为零的温度)处于液氮的温度范围内,也就是-196摄氏度以下。
此外,一些新型超导材料,如铁系超导材料和镁二硼超导材料也引人关注。
3. 超导材料的应用前景超导材料具有许多优异的性质,如高电流密度、低能耗、高机械刚度、低维护成本等。
因此,超导材料在众多领域中具有广泛的应用前景。
3.1. 电力领域超导电缆是超导材料的重要应用之一。
相对传统电缆,超导电缆在输电效率和能源消耗方面有明显的优势,同时降低了电网建设成本。
对于大型城市的室内输电和高速列车的电动化,超导材料也具有良好的应用前景。
3.2. 能源领域在能源领域,超导材料可以应用于核磁共振成像(MRI)以及核聚变反应等诸多技术。
超导磁体用于MRI可以提高成像的质量和速度,而超导磁体用于磁约束核聚变反应则可以大大提高其能源效率。
3.3. 交通领域超导材料可以应用于磁悬浮列车和磁力船等交通工具中。
与传统交通工具相比,这些超导交通工具在能耗和环保方面均有优势。
3.4. 航空航天领域超导材料的超强电流和超稳定性使其在航空航天领域中具有独特的应用价值。
第三章超导材料-PPT
1986年: LaBaCuO(铜氧化物超导体); Tc达35K;
1987年: YBaCuO; Tc为92K,进入液氮温区;
1993年: HgBaCaCuO; Tc为135K(高压下163K);
有机超导体 1、 电荷转移复合物:最高Tc为12、5K; 2、 掺杂C60:钾掺杂—18K;铷掺杂— 28K;铯铷掺杂— 33K; 氯仿与溴仿结合C60— 117K; 3、 氧化聚丙烯:300K —700K; 4、 掺杂了钾与铷得菲:5K
B B0
Bx B0exp - x
B0 e
X O
磁场强度降为B0/e处距离超导体表面距离,称为穿透深度,通常用 表示; 在X > 区间:认为磁感应强度衰减到零;在0 < X < 区域,磁场可以穿透;
穿透深度约为10-5 ~10-6 cm。
由于超导体得完全抗磁性,在 X > 区域,磁力线不能穿过,因此电流不能由 超导体内通过,只能在表面穿透深度 得范围内流动;
Superconductor
② Hc1< H < Hc2: 超导体失去完全抗磁性,磁力线开始穿过超导体内部;并且随着外磁场得增大,
进入超导体内得磁力线逐渐增多;
Superconductor
H
超导区
正常区
磁力线进入超导体内,说明超导体内部分区域转变为正常态,其余部分仍处于 超导态,称这时得超导体处于混合态;
Schrieffer将电子对得物理图像与当时流行得舞蹈Frug作了类比,在这种 舞蹈中跳舞者在舞池中相互分离,中间隔了许多其它人,但就是她们始终就是一对 。
钉扎作用可以有效得提高临界电流密度Jc,在第二类超导体中产生晶格缺陷或 掺入杂质: ➢ 用各种粒子(中子或各种离子)辐照高温超导体后,其Jc可提高两个数量级; ➢工业生产得NbTi线,临界电流密度2×10-4 ~ 10-5A/cm2,一根没有缺陷得NbTi线, 临界电流密度几乎为零。
超导材料的发展现状与应用展望
超导材料的发展现状与应用展望作者:信赢来源:《新材料产业》2017年第07期一、超导的发现与发展1911年4月8日,荷兰莱顿大学实验物理学家卡麦林·昂尼斯(Kamerlingh Onnes)领导的实验组在液氦温区对汞导线样品进行电阻测量时意外地发现了超导现象,他因这一发现被授予1913年诺贝尔物理学奖。
超导现象的发现不仅是物理学领域一个具有里程碑意义的事件,使人类扩展了对物质物理性质的认识,而且推动了工业技术的发展。
发现超导现象以后,人们对超导的研究一直保持着高度的热情。
尽管在2次世界大战期间被迫放慢了节奏,甚至停滞,但一旦战争结束,科技工作者们就又以不断增长的兴趣继续超导相关领域的研究。
这一百余年来,诺贝尔物理学奖曾7次授予16位科学家,表彰他们在超导研究方面的贡献。
人们把能够在温度低到一定程度时(这个温度被称作超导临界转变温度,用Tc表示)出现超导现象的物质叫做超导体。
1933年之前,人们一直认为零电阻是超导体的唯一本征性质。
1933年,情况发生了变化。
那一年德国物理学家华尔特·迈斯纳(Walter Meissner)和罗伯特·奥克森费尔德(Robert Ochsenfeld)发现超导体在处于超导状态时,会把所有的磁力线排挤到其体外,表现出完全的反磁性。
这个现象后来被称为迈斯纳效应。
和零电阻一样,迈斯纳效应也是超导体独具的特性,目前还没有发现世界上其他材料会出现这个现象。
这样一来,除零电阻外,超导体还有一个本征性质,就是完全反磁性。
超导体的2个本征性质,零电阻和完全反磁性是相互独立又相互关联的。
1936年,前苏联物理学家L.V.舒勃尼科夫(Shubnikov)等发现了某些单晶超导体及某些纯相合金超导体的磁化性质并不完全显现迈斯纳效应,而展现出一种以前未知的特性。
为了区别于完全显现迈斯纳效应的超导体,这类超导体被称为第2类超导体,而前者被称为第1类超导体。
从1930年代到1950年代,舒勃尼科夫、金茨堡(Ginzburg)、朗道(Landau)和阿布里科索夫(Abrikosov)等前苏联理论物理学家先后对创建有关第2类超导体的理论作出了重大贡献。
超导材料发展历程及现行理论解释与应用.pptx
6
发展历程
• 1911年,荷兰科学家H. K. Ones 利用低温技术研究金属的电阻特性时发现Hg在温度 低至4.2K时电阻降为零。后人把这种状态叫超导态。并把电阻突然降为零的温度 称为临界温度,记为Tc。
• 但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。 人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌 三锗的23.22K,才提高了19K,科学家们用乌龟来形容这个程度。
• 一个比较形象的理解:当一个电子在晶格中运动时,由于异性电荷相吸而导 致局域晶格畸变,当另外一个电子通过时,会感受到第一个电子通过时导致 的晶格畸变的影响,从而在两个电子之间产生间接吸引相互作用,这就是 “库珀对”,其总动量和总自旋为零。所有电子对在运动过程中能够保持 “步调一致”(相位相干,即相位相同),即使受到杂质等散射也将保持总 动量不变,从而在外加电场作用下能够不损失能量而运动——这种现象就是 超导。所以说,超导是微观量子凝聚态的宏观表现。
• (3)临界电流密度Jc:当通过超导体的电流密度超过临界电流密度Jc时, 超导体由超导体恢复为正常状态。临界电流密度Jc与温度、磁场强度有关。
4
实验检验
为了证实(超导体)电阻为零,科学家将一 个铅制圆环,放入温度低于Tc=7.2K的空间, 利用电磁感应使环内激发起感应电流。结果 发现,环内电流能持续下去,从1954年3月16 日始,到1956年9月5日止,在两年半的时间 内的电流一直没有衰减,这说明圆环内的电 能没有损失,当温度升到高于Tc时,圆环由 超导状态变正常态,材料的电阻骤然增大, 感应电流立刻消失,这就是著名的昂尼斯持 久电流实验。
的崔田教授组在“传统
高温超导体”的研究上
超导材料的发展和应用前景
超导材料的发展和应用前景超导材料是一种在极低温下电阻消失的材料,其独特的性质使其在科学和工程领域具有广阔的应用前景。
本文将对超导材料的发展历程、关键技术以及未来应用前景进行探讨。
自从超导现象于1911年被发现以来,学术界一直致力于发展和研究超导材料。
早期的超导材料主要是金属元素和合金,但其需要极低的温度才能实现超导状态,限制了其实际应用。
1960年代,高温超导材料的发现彻底改变了超导领域的格局。
高温超导材料是一类复杂的化合物,使用复杂的结构和配方能在相对较高温度下实现超导状态。
这一发现引发了全球范围内的科研热潮,并极大地推动了超导领域的发展。
关键技术在超导材料的研究和应用中起着至关重要的作用。
一项重要的技术是制备高质量的超导材料。
高温超导材料的制备必须在特定的条件下进行,同时对材料的化学成分和纯度也有严格要求。
因此,研究人员需要进行反复尝试和优化,以获得最佳的制备工艺。
另一个关键的技术是超导材料的测量和性能分析。
超导材料的超导特性是其应用的基础,因此必须对其进行准确的测量和分析。
研究人员已经开发出各种各样的测量技术,如磁性测量、电阻测量和热容测量等,以揭示超导材料的性质和机制。
超导材料具有广泛的应用前景。
在能源领域,超导材料可以用于制造高性能电缆和输电线路,进一步提高电能的传输效率,并减少能源的损耗。
此外,超导材料还可以用于磁体的制造,用于医学成像设备、磁悬浮列车和核聚变研究等领域。
超导材料的应用还延伸到电子和通信领域,可以用于制造高频微波器件和高速计算机芯片,以提高计算机的运行速度和处理能力。
此外,在科学研究方面,超导材料可以用于研究量子现象和制造量子计算机,为人类解决重大科学难题提供新的可能性。
虽然超导材料在理论和实验方面取得了重要的突破,但在实际应用中依然面临一些挑战。
首先,高温超导材料的制备仍然较为困难,需要更深入的理论研究和技术创新。
其次,超导材料在工作温度范围和稳定性方面仍有一定限制,需要进一步提高。
超导材料解析PPT教学课件
2020/10/16
8
而后朱经武发现的铊钡钙铜氧系合金的超导温度更 接近室温,达120K。使超导温度从极为寒冷的液氦区 进入到比较温暖的液氮区。
2020/10/16
9
二 超导基本原理
• 二流体模型
·BCS理论
2020/10/16
10
二流体模型
比热:
金属晶体的基本组成单位是原子,而原子又是
由原子核和核外电子组成,电子在金属内共有
外电子的吸引作用。这样两个电子通过晶格点阵发生
间接的吸引作用。
2020/10/16
21
库柏电子对
• 库柏(Cooper)证明:当2个 电子间存在净的吸引作用 时,在费米面附近就存在 一个动量大小相等、方向 相反且自旋相反的束缚态 ;它的能量比2个独立的电 子总能量低,这种2个电子 对的束缚态称为库柏对。
2020/10/16
22
BCS超导微观理论
1. 超导电性来源于电子间通过晶格作媒介所产生的相互吸引 作用,
2. 当这种作用超过电子间的库仑排斥作用时,电子会形成 束缚对,也就是库柏电子对,从而导致超导电性的出现。
3. 库柏对会导致能隙存在,超导临界场、热力学性质和大 多数电磁学性质都是这种库相对活动的结果。
2020/10/16
19
机理解释
L. N. Cooper认为超导态是由正则动量(机械 动量与场动量之和)为零的超导电子组成的,它是 动量空间的凝聚现象。要发生凝聚现象,必须有 吸引力的作用存在。
2020/10/16
20
电子在晶格点阵中运动,它对周围的正离子有吸
引作用,从而造成局部正离子的相对集中,导致对另
4.
5. 元素或合金的超导转变温度与费米面附近电子能态密度 N(EF)和电子-声子相互作用能U有关,可用电阻率来估计。
超导材料ppt
☆超导电机 在大型发电机或电动机中,一旦由超导体取代铜材则可望实现电阻损耗极小的大功率传输 。在高强度磁场下,超导体的电流密度超过铜的电流密度,这表明超导电机单机输出功率 可以大大增加。在同样的电机输出功率下,电机重量可以大大下降。小型、轻量、输 出功率高、损耗小等超导电机的优点,不仅对于大规模电力工程是重要的,而且对于航海 、航空的各种船舶、飞机特别理想。 ☆在核能开发中的应用 若想利用热核反应来发电,首先必须解决大体积、高强度的磁场问题。产生这样磁场的磁 体能量极高,结构复杂,电磁和机械应力巨大,常规磁体无法承担这一任务。只有通过超 导磁体产生强大的磁场,将高温等离子体约束住,并且达到一个所要求的密度,这样才可 以实现受控热核反应。
超导理论能较好的说明超导现象和第一类超导体的性质,但是尚不能完满解决完全抗 磁性的问题,随着超导材料的发展,BCS理论出现很多不足,超导理论尚不成熟。
9
四.超导材料分类
☆超导材料包括的材料大类:常规超导体(如铌钛合金)高温超导体(如YBa2Cu3O7-x)、 非晶超导材料、复合超导材料(如超导线带材料)、重费米子超导体(如 CeCu2Si2)有机超导材料(如富勒烯等) ☆按临界转变温度来分 1.低温超导材料 具有低临界转变温度(TC<30K=在液氦温度条件下工作)的超导材料,分为金属、合金 和化合物 。在常压下有28中元素具有超导特性,其中铌和铅在实际中应用较广.合金系低 温超导材料是以为基的二元或三元合金组成的β相固溶体,TC在9K以上。如铌锆合金,铌 钛合金。超导化合物有如Nb3Sn ,V3Ga 等。 2.高温超导材料 具有高临界转变温度(TC>77K)在液氮温度条件下工作的超导材料,主要为多元系氧化物 包括铋系、钇系、铊系、汞系等高温超导体系,如钇钡铜氧系材料。 ☆按超导体的磁化特性不同可分为两类: 第一类超导体在低于临界磁场HC的磁场H重处于超导态,表现出完全抗磁性,即在超导内 部B=0;在高于HC的磁场中则处于正常态。 第二类超导体有两个临界磁场:下临界磁场HC1和上临界磁场HC2。当外加磁场低于HC1时, 第二类超导体也表现出完全抗磁性;当外磁场达到HC1时,就失去完全抗磁性,磁力线开 始穿过超导体内部,在达到HC2之前,超导体内的部分区域转变为正常态,其余仍处于超 10 导态,此称为混合态。在混合态时,超导体既具有抗磁性(不完全),又仍没有电阻 。当H=HC2时,超导区消失,整个材料都变为正常态。
超导材料发展现状与展望24页PPT
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超导材料的探索与发展
导电材料的电阻会不断消耗电能,这在远距离 电能传输中一直是一个很大的问题。寻找一种极 低电阻甚至没有电阻的材料一直是物理科学家们 梦寐以求的愿望。人们很早就发现了良导体的电 阻会随着环境温度的降低而减小,因而科学工作 者致力于创造一个低温环境,寻求电阻减小的规 律。17世纪末阿蒙顿提出了温度下限(绝对零度) 的概念,到了18世纪,盖.吕萨克.查理斯确定了绝 对零度为-273°C。直到1908年莱顿实验室成功液 化氦,获得4.25K以下极低温,开创了极低温物性 研究。
超
导
材
料
发
展
现
状
与
展
姜羽佳 201931201910
望
贠潇 刘飞
201931304052 201931201927
努尔扎提 201931201924
马云洲 201931201925
刘志明 201931201926
廖冬淋 201931201921
现今科学技术告诉发展的年代,在许多领域产生了巨变!任 何一点不经意地发现都能促使一个领域翻天覆地的变化。如今, 超导材料的进展是有目共睹的。本文旨在介绍超导现象,基本 理论和一些重要的超导材料的研究应用;阐述超导材料发展历 史,目前的进展及未来的发展前景。
不同的材料具有不同 的临界温度。某些物质临 界温度非常低,例如汞为 4.15K,不具有太大的应用 价值。而有的超导材料的 临界温度比较高,达到几 十K甚至上百K,随着临界 温度的提高,其应用价值 也大大提高。所以如何提 高超导材料的临界温度, 发展出具有常温下工作能 力的高温超导材料是人们 重点关注的地方。
约瑟夫森效应
同位素效应
超导体的临界温度Tc与其同位素质量M有关。M越大, Tc越低,这称为同位素效应。例如,原子量为199.55的汞 同位素,它的Tc是4.18开,而原子量为203.4的汞同位素, Tc为4.146开。
超导材料应用价值
在国民经济中
电流应用
电子学应用
抗磁性应用
在军事上
强磁
弱磁
在科学实验中
1955年到1985年,合金与金属化合物超导体的发现使人们冲破了应用超导 体的重要阻力电磁壁垒。这其中重要的发展标志之一就是几种重要化合物 超导体的发现。标志之二是Nb3Sn金属间化合物超导线材制备技术的出现。 从此为超导材料的应用打开了局面。
1986年至今,高温超导材料的出现是又一大重要突破,冲破了“温度壁 垒”。高温超导材料的发现被视为科学界得一次“飞跃和革命”。人们终 于看到了超导技术的应用希望。超导现象的研究和超导材料的制备成为科 技前沿,发展越来越快。
超导磁悬浮列车(抗磁应用)
利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由 于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力, 使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁 悬浮列车。
超导电机 超导电机包括发电机和电动机。由于采用了超导绕组,
与常规电机相比,能够承载更大的电流从而产生更强的磁场,所以 在与常规电机功率相同的情况下,其体积和重量可以减小到常规电 机的1/5 左右。这种电机的体积和质量将比常规电机显著缩小,功 率成倍增长,效率大大提高,可为武器装备提供动力。
电磁推进装置 用超导强磁材料制造的电磁推进装置,把电能直接
转变为动力,将能以很高的速度推进大质量的物体,在军事上用作 舰艇的动力装置,可消除传动噪声,提高隐蔽性;也可用作电磁炮 的动力装置。
超导强磁技术
超导计算机(电子学应用)
高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集 排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面 临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用 接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计 算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来 制造晶体管,甚至完全用超导体来制作晶体管。
迈斯纳效应
迈斯纳效应也叫完全抗磁性。即超导体进入超导状态后,超导体内 部的磁通量会全部被排除到超导体外,超导体磁场强度恒为零。而且 不论是先降温后加入磁场还是先加入磁场后降温,只要进入超导状态, 磁通完全被排除体外。上世纪末磁悬浮技术就是依据这个原理。
超导态临界参数三维图
(临界温度、电流、外磁场强度)
在这个发展过程中,各种理论的提出也极大推动了超导材料研究的发展。 其中比较著名的是BCS理论,获得了广泛认可。
超导材料的基本物理特性
(1)零电阻现象 (2)迈斯纳效应 (3)超导态临界参数三维
图 (4)约瑟夫森效应 (5)同位
零电阻现象
将超导体的温度降到某临界温度Tc时,超导体电阻突然变为零的现 象,称为零电阻现象。实验表明:超导状态下的零电阻现象不仅与临 界温度有关,也与超导体中的电流强度和外磁场强度有关,所以也存 在着类似的临界电流和临界外磁场。
强磁场
超导电缆(电流应用)
超导电缆的发展经历了直流低温超导电缆、交流低温超导电缆和交 流高温超导电缆等几个发展过程,目前交流高温超导电缆已经成为超导 电缆研究的重点。超导电缆是利用超导材料零电阻特性的新一代电力 输电电缆。与常规电缆相比,超导电缆具有损耗低、容量大、材料省、 无污染等优势。超导电缆的广泛应用,将降低输电损耗,改进和提高 电网的稳定性和安全性,节省土地资源,保护生态环境。
Hale Waihona Puke 1911年,昂尼斯发现温度降到4.2K时,汞的电阻突然降为零的现象,当
温度回到4.2K以上,汞重新恢复电阻性的。某些金属、合金和化合物,在 温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测 量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。
1911年到1955年,是人类对超导体基本认识和探索阶段,相继发现了临 界温度(1911),临界电流(1933),迈斯纳效应(1933)。