最新初中数学类比探究综合测试卷

合集下载

类比探究综合测试(通用版)(含答案)

类比探究综合测试(通用版)(含答案)

类比探究综合测试(通用版)试卷简介:测试学生在处理类比探究问题过程中,有没有类比照搬的意识,能否根据题干或者问与问之间的联系,照搬辅助线,照搬思路来解决问题,同时考查学生对于类比探究中中点结构、旋转结构、平行结构这三种特殊结构的处理思路。

一、单选题(共6道,每道16分)1.如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC的中点F,连接AF,DF.为了证明AF⊥DF,AF=DF,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.现将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明AF⊥DF,AF=DF,我们需要作的辅助线是( )A.连接ADB.过点C作CG⊥DF,交DF的延长线于点GC.延长DF交AC的延长于点G,连接ADD.延长DF到G,使DF=FG,连接CG,AD,AG答案:D解题思路:在图1中,给出的辅助线达到的一个效果就是保证F是等腰直角三角形ADG斜边的中点,满足DF=FG.若在图2中达到同样的效果,需要延长DF到G,使DF=FG,这样再连接AD,AG之后才能保证F是等腰直角三角形ADG斜边的中点.试题难度:三颗星知识点:中考数学几何中的类比探究2.(上接第1题)在试题1图2的证明中,说明△ADG是等腰直角三角形之前,证明AD=AG 需要直接使用到某对三角形全等,则判定这对三角形全等的条件是( )A.AASB.ASAC.SSSD.SAS答案:D解题思路:要证明AD=AG,我们需要证明△ABD≌△ACG.根据上一题的分析,如图,延长DF到G,使DF=FG,连接CG,AD,AG,容易证明△DEF≌△GCF,∴CG=ED=BD,∠DEF=∠GCF,∴DE∥CG,∴∠GCD=∠BDE=90°,∴∠GCA=∠DBA=135°.又∵AC=AB,∴△ABD≌△ACG(SAS).(为了证明AF⊥DF,AF=DF,接下来需要根据得出的条件,说明∠DAG=90°,进而说明AF是等腰直角三角形ADG斜边上的中线)试题难度:三颗星知识点:中考数学几何中的类比探究3.如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF.利用旋转的思想很容易证明DE+BF=EF;如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且.则DE,BF,EF之间的数量关系为( )A. B.C.DE+2BF=EFD.DE+BF=EF答案:D解题思路:在图1中,旋转思想考虑了两个方面,一个是AB=AD,能够实现旋转,一个是,能够将角度放在一起,所以图1中的证明是将△DAE旋转,使得AD 与AB重合,这是一种思想,作辅助线的时候是延长CB到点G,使得BG=DE,最后证明GF=EF.图2中有同样的两个结构:AB=AD,,所以照搬分析图1的思路来研究数量关系.如图,延长CB到点G,使得BG=DE,连接AG.易证△ADE≌△ABG,∴AE=AG,BG=DE,∠DAE=∠BAG,∴∠DAE+∠BAF=∠BAG+∠BAF=∠GAF.∵,∴∠GAF=∠EAF.又∵AF=AF,∴△GAF≌△EAF,∴GF=EF,∴EF=GB+BF=DE+BF,即DE,BF,EF满足的数量关系是DE+BF=EF.试题难度:三颗星知识点:类比探究问题4.(上接第3题)如图3,在四边形ABCD中,AB=AD,E,F分别为DC,BC边上的点,且满足,当∠ABC与∠ADC满足( )时,可使得DE+BF=EF.A.∠ABC=∠ADCB.∠ABC+∠ADC=180°C.∠ABC=2∠ADC-180°D.∠ABC+2∠ADC=270°答案:B解题思路:试题3中图1和图2的证明,都是利用旋转的思想来证明DE+BF=EF,从作辅助线开始到结束,整个分析有以下几点:延长CB到点G,使得BG=DE,证明△ABG≌△ADE(SAS),导出∠GAF=∠EAF,进而证明△GAF≌△EAF(SAS),之后导出线段关系.若在图3中用此方法证明,首先延长CB到点G,使得BG=DE,要证明△ABG和△ADE全等,需要保证∠ABG=∠ADE,也就是需要∠ABC+∠ADC=180°,所以需要添加的条件是∠ABC+∠ADC=180°.添加条件之后的证明如下:如图,延长CB到点G,使得BG=DE,连接AG.∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,∴∠ABG=∠ADE.又∵AB=AD,BG=DE,∴△ADE≌△ABG,∴AE=AG,BG=DE,∠DAE=∠BAG,∴∠DAE+∠BAF=∠BAG+∠BAF=∠GAF.∵,∴∠GAF=∠EAF.又∵AF=AF,∴GF=EF,∴EF=GB+BF=DE+BF.试题难度:三颗星知识点:类比探究问题5.如图,D是△ABC的边BC上一点,过点D的一条直线交AC于点F,交BA的延长线于点E.若BD=2CD,CF=mAF,则的值是( )A. B.C. D.答案:B解题思路:如图,过点D作DG∥AC,交AB于点G.设CD=a,BD=2a,AF=b,CF=mb.∵△BDG∽△BCA,∴∴,BG=2AG.设AG=c,BG=2c,∴,即∴∴试题难度:三颗星知识点:中考数学几何中的类比探究6.如图,D是△ABC的边BC上一点,过点D的一条直线交AC的延长线于点F,交AB于点E.若BD=aCD,CF=bAF,则的值是( )A. B.C. D.答案:D解题思路:如图,过点D作DG∥AC,交AB于点G.设CD=m,BD=am,AF=n,CF=bn.∵△BDG∽△BCA,∴∴,BG=aAG.设AG=c,BG=ac,∵△EAF∽△EGD,∴,即∴∴.试题难度:三颗星知识点:中考数学几何中的类比探究。

最新-初中数学三角形全等之类比探究综合测试卷 精品

最新-初中数学三角形全等之类比探究综合测试卷 精品

初中数学三角形全等之类比探究综合测试卷一、单选题(共8道,每道11分)1.已知:如图1,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B、C在AE的异侧,BD⊥AE于点D,CF⊥AE于点F.(1)试证明BD=DF+CF.解题思路:(1)由∠BAC=90°,BD⊥AE,CF⊥AE,得到∠ADB=∠AFC=90°,所以∠BAD+∠1=90°,∠BAD+∠FAC=90°,得到_____________理由是______________________.又因为AB=AC,∠BDA=∠AFC=90°,因此根据全等三角形判定定理___________,可以得到___________,由全等的性质得到CE=AF,BE=CF,最后得到BD=AF=AD+DF=CF+DF. ①∠BAD=∠ACF;②∠FAC=∠1;③同角的余角相等;④同角的补角相等;⑤△ADB≌△AFC;⑥△ADB≌△CFA;⑦AAS;⑧ASA; 以上横线处,依次所填正确的是( )A.①③⑧⑤B.②④⑧⑥C.②③⑦⑥D.①③⑦⑥2.已知:如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B、C在AE的异侧,BD⊥AE于点D,CF⊥AE于点F.(2)若直线AE绕A点旋转到如图2的位置时(BD<CF),其余条件不变,则BD与DF、CF的数量关系如何?请给予证明.<cf),其余条件不变,则bd与df、cf的数量关系如何?请给予证明.解题思路:(2)类比第(1)问,猜测DF=BD+CF. ∠BAC=90°,BD⊥AE,CF⊥AE,得到∠ADB=∠AFC=90°,所以∠2+∠1=90°,∠2+∠3=90°,得到_____________理由是______________________. 又因为AB=AC,∠BDA=∠AFC=90°,因此根据全等三角形判定定理___________,可以得到___________,由全等的性质得到CE=AF,BE=CF,最后得到DF=DA+AF=CF+BD. ①∠3=∠1;②∠1=∠4;③同角的余角相等;④同角的补角相等;⑤△ADB≌△AFC;⑥△ADB≌△CFA;⑦AAS;⑧ASA; 以上横线处,依次所填正确的是( )A.①③⑧⑤B.②④⑧⑥C.②③⑦⑥D.①③⑦⑥3.已知:如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B、C在AE的异侧,BD⊥AE于点D,CF⊥AE于点F.(3)若直线AE绕A点旋转到如图3的位置时(BD>CF),其余条件不变,则BD与DF、CF的数量关系是( )A.BD=DF+CFB.DF=BD+CFC.DF>BD+CFD.DF<BD+CF4.已知:如图,在Rt△ABC中,AB=BC,∠ABC=90°.一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB、BC或其延长线于点E、F,图1、图2是旋转三角板所得图形的两种情况.(1)若点E和点F分别在边AB和BC上,如图1,求证:OE=OF解题思路:(1)连接OB,如下图,根据AB=BC,∠ABC=90°,可以得到∠C=45°,根据点O是AC的中点,得到BO⊥AC,BO平分∠ABC,∠ABO=45°=∠C,进而得到△BOC是等腰直角三角形,所以OB=OC,又因为∠EOF=90°,所以∠EOF=∠BOC=90°,根据___________,可以得到∠BOE=∠COF,根据全等三角形判定定理___________,可以得到___________,根据全等三角形的性质可以得到OE=OF.①同角的补角相等,②同角的余角相等,③△AOE≌△COF,④△BOE≌△COF,⑤AAS,⑥ASA以上横线处,依次所填正确的是( )A.①⑥④B.②⑥④C.②⑤④D.②③⑤5.已知:如图,在Rt△ABC中,AB=BC,∠ABC=90°.一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB、BC或其延长线于点E、F,图1、图2是旋转三角板所得图形的两种情况.(2)若点E和点F分别在AB和BC边的延长线上时,如图2,OE=OF还成立吗?若成立,请给出证明,若不成立,请说明理由.解题思路:(2)类比(1)的思路,添加的辅助线是___________,因为AB=BC,∠ABC=90°,所以△ABC是一个等腰直角三角形;根据点O是AC的中点,得到BO⊥AC,进而得到△BOC是等腰直角三角形,所以OB=OC,∠ACB=∠CBO=45°,又因为∠EOF=90°,根据___________,可以得到___________,又因为∠OBE=∠OCF=135°,根据全等三角形判定定理___________,可以得到___________,根据全等三角形的性质可以得到OE=OF. ①连接OB,②连接OB,使OB⊥AC,③∠BOE=∠FOC,④∠AOE=∠FCO,⑤同角的补角相等,⑥同角的余角相等,⑦△AOE≌△COF,⑧△BOE≌△COF,⑨AAS,⑩ASA, 以上横线处,依次所填正确的是( )A.②⑥③⑩⑧B.②⑤④⑩⑦C.①⑥④⑧⑨D.①⑥③⑩⑧6.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点.(1)探究线段MD,MF的位置关系,并证明.解题思路:(1)小明猜测MD⊥MF,看到图1中M是AE的中点,并且AD∥EF,考虑延长DM交EF 于点H,如下图,先利用全等三角形的判定定理___________,证明___________,由全等的性质可以得到___________,所以CD=EH,进而可以得到FD=FH,在等腰△DFH中,由等腰三角形三线合一,得到___________,从而证明结论.以上横线处,依次所填正确的是( )①AAS;②ASA;③SAS;④△ADM≌△EHM;⑤△FDM≌△FHM;⑥DM=HM,AD=HE;⑦FD=FH;⑧MF⊥DH;⑨FM平分∠DFH.A.①④⑥⑨B.①⑤⑦⑨C.②④⑥⑧D.②⑤⑦⑧7.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点.(2)若将图1中的正方形CGEF绕点C顺时针旋转,使D,C,G三点在一条直线上,如图2,其他条件不变,则(1)中得到的结论(MD⊥MF)是否发生变化?写出你的猜想并加以证明.解题思路:(2)小明类比第(1)问,看到图2中M是AE的中点,并且AD∥GE,考虑延长DM交GE 于点H,连接FD、FH.如下图,先证明___________,由全等的性质可以得到___________,进而可以得到DC=HE,由题目中的已知条件由∠DCF=∠FEH=90°,FC=FE,又可以利用判定定理___________证得___________,得到FD=FH,在等腰△DFH中,由等腰三角形三线合一,得到___________,从而证明结论.以上横线处,依次所填正确的是( )①△ADM≌△EHM;②△FDC≌△FHE;③DM=HM,AD=HE;④FD=FH;⑤SSA;⑥ASA;⑦SAS;⑧MF⊥DH;⑨FM平分∠DFH.A.①③⑤②⑨B.①③⑦②⑧C.②④⑦①⑨D.②③⑤①⑧8.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点.(3)将图1中的正方形CGEF绕点C顺时针旋转,使正方形CGEF的对角线CE恰好与正方形ABCD 的边BC在同一条直线上,如图3,其他条件不变,则(1)中得到的结论(MD⊥MF)是否发生变化?写出你的猜想并加以证明.解题思路:(2)小明类比前两问,看到图3中M是AE的中点,并且AD∥BE,考虑延长DM交BE 于点H,连接FD、FH,如下图,先证明___________,由全等的性质可以得到___________.因为DC=AD,所以DC=HE,结合题目中的条件FC=FE,∠DCF=∠FEH==45°.又可以利用判定定理___________证得___________,得到FD=FH,在等腰△DFH中,由等腰三角形三线合一,得到MF⊥DH,从而证明结论.以上横线处,依次所填正确的是( )①△ADM≌△EHM;②△DCF≌△HEF;③DM=HM,AD=HE;④FD=FH;⑤SSA;⑥ASA;⑦SAS.A.①③⑤②B.②③⑤①C.②④⑦①D.①③⑦②。

九年级数学类比探究之三大类型专题练习(含答案)

九年级数学类比探究之三大类型专题练习(含答案)

九年级数学类比探究之三大类型专题练习试卷简介:全卷共1道题,为类比探究题,满分100分。

本题选自中考真题,难度中等偏上,主要用到等腰直角三角形和矩形的一些性质,全等三角形的性质和判定以及相似三角形的性质和判定,掌握了这些基本知识,并会迁移应用,题目做起来就比较容易。

学习建议:本套试卷的一道题目选自中考真题,具有代表性和普适性,同学们只要掌握了一些图形的基本特征,以及三角形的全等和相似的知识,理解类比探究题的思想,熟悉类比探究题的解题套路,做起这道题来就非常容易了。

一、证明题(共1道,每道100分)1.(1)情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是_____,∠CAC′=______°.(2)问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=k AE,AC=k AF,试探究HE与HF之间的数量关系,并说明理由.答案:(1)AD,90;(2)FQ=EP;(3)HE=HF解题思路::①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°-∠C′AD-∠CAB=90°;故答案为:AD,90.②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k&#8226;AE,AC=k&#8226;AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH.∴HE=HF.易错点:对相关知识不会灵活运用,不会根据(1)中信息进行类比迁移试题难度:四颗星知识点:矩形的性质。

专题10类比拓展探究题-2022年中考数学母题题源解密(原卷版)

专题10类比拓展探究题-2022年中考数学母题题源解密(原卷版)

专题10 类比、拓展探究题考向1 图形旋转引起的探究【母题来源】2021年中考日照卷【母题题文】问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①;②直线AE与DF所夹锐角的度数为30°.(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为.【试题解析】解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD,如图2,设AB与DF交于点O,AE与DF交于点H,∵△BEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴△FBD∽△EBA,∴,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,故答案为:,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将△BEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,又∵,∴△ABE∽△DBF,∴,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE,∵∠DEA=30°,∴DG DE,由(2)可得:,∴,∴AE,∴△ADE的面积AE×DG;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:△ADE的面积AE×DG;故答案为:或.【命题意图】等腰三角形与直角三角形;矩形菱形正方形;平移、旋转与对称;图形的相似;推理能力。

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦一参考答案

中招考试几何类比探究题集锦(附参考答案)参考答案与试题解析一.解答题(共11小题)1.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α∴∠CAE+∠CAF=α∵∠BAC=2∠DAE=2α.∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,第1页(共33页)第2页(共33页)∴△ABD ≌△ACF (SAS ),(2)由(1)知,△ABD ≌△ACF (SAS ),∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB +∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,∴DE 2=BD 2+CE 2,(3)DE 2=BD 2+CE 2;理由:如图,∵∠BAC=2∠DAE=2α.∴∠DAE=α,∵点D 关于直线AE 的对称点为F ,∴EF=DE ,AF=AD ,∠DAE=∠EAF=α∴∠CAF=∠EAF +∠CAE=α+∠CAE∴∠BAD=∠BAC ﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE ﹣∠CAE )=2α﹣(α﹣∠CAE)=α+∠CAE∴∠BAD=∠CAF,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等第3页(共33页)边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.【解答】解:(1)DE=BD+CE.理由如下:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,第4页(共33页)∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)DF=EF.理由如下:由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,第5页(共33页)∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC 上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.第6页(共33页)【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,第7页(共33页)∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.第8页(共33页)4.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.【解答】证明:第一种情况:点E是线段BC上的任意一点,可作三种辅助线:方法一:如图1,在AB上截取AG,使AG=EC,连接EG,第9页(共33页)∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°.∵AG=EC,∴BG=BE,∴△BEG是等边三角形,∠BGE=60°,∴∠AGE=120°.∵FC是外角的平分线,∠ECF=120°=∠AGE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠GAE=60°+∠GAE.∵∠AEC=∠AEF+∠FEC=60°+∠FEC,∴∠GAE=∠FEC.在△AGE和△ECF中,∴△AGE≌△ECF(ASA),∴AE=EF;方法二:在CA上截取CG=CE,连结GE,证明类似方法一;方法三:延长FC到G,使CG=CE,连结EG,易证△CEG是等边三角形,第10页(共33页)∴CE=EG,∠G=∠ACB=60°,∠CEG=∠AEF=60°,∴∠CEG+∠CEF=∠AEF+∠CEF,即∠GEF=∠AEC,∴△GEF≌△CEA,∴AE=EF.第二种情况:点E是线段BC延长线上的任意一点如图2,可作三种辅助线:①在CF上截取CG=CE,连接GE②延长AC到G,使CG=CE,连结EG;③或延长BA到G,使BG=BE,连结EG.第②种添加辅助线的方法证明如下:证明:延长AC到G,使CG=CE,连结EG,易证△CEG为等边三角形,∴∠G=∠ECF=60°,EG=CE,又∠AEG=∠CEG+∠AEC=60°+∠AEC,∠CEF=∠AEF+∠AEC=60°+∠AEC,第11页(共33页)∴∠AEG=∠CEF,∴△AEG≌△FEC,∴AE=EF.第三种情况:点E是线段BC反向延长线上的任意一点如图3,可作三种辅助线:①延长AB到G,使BG=BE,连结EG;②延长CF到G,使CG=CE,连结EG;③在CE上截取CG=CF,连结GF现就第①种添加辅助线的方法证明如下:证明:延长AB到G,使BG=BE,连结EG,易证△BEG为等边三角形,∴∠G=∠ECF=60°,第12页(共33页)∵∠AEB+∠BAE=∠ABC=60°,∠AEB+∠CEF=∠AEF=60°,∴∠BAE=∠CEF,∵AB=BC,BG=BE,∴AB+BG=BC+BE,即AG=CE,∴△AEG≌△EFC,∴AE=EF.拓展应用:如图4:作CH⊥AE于H点,∴∠AHC=90°.由数学思考得AE=EF,又∵∠AEF=60°,∴△AEF是等边三角形,∴△ABC∽△AEF.第13页(共33页)∵CE=BC=AC,△ABC是等边三角形,∴∠CAH=30°,AH=EH.∴CH=AC,AH=AC,AE=AC,∴.∴==.5.问题情境:在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)操作发现:当点O为AC中点时:①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;第14页(共33页)(2)类比延伸:当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若=,请直接写出=.【解答】解:(1)①猜想:AE2+CF2=EF2,连接OB,如图1,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB+∠BOF=∠FOC+∠BOF.∴∠EOB=∠FOC,在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;故答案为:AE2+CF2=EF2;第15页(共33页)②成立.证明:连结OB.如图2,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC.在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;(2)=,如图3,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,第16页(共33页)∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴=,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴=,∵=,∴=,故答案为.第17页(共33页)第18页(共33页)6.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明) 提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长.解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD的长为 .【解答】(2)解:如图②中,AB与CF交于点O.由(1)可知:△BCD≌△BAE,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE==2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣EF=2﹣1.(3)解:在RT△ABC,RT△EBD中,∵∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,∴AB=BC,BE=BD,∴==,∵∠ABC=∠EBD=90°,∴∠ABE=∠DBC,∴△ABE∽△CBD,∴==,第19页(共33页)第20页(共33页)在RT △AEF 中,∵∠AFE=90°,∠EAF=45°,EF=2,∴AF=EF=2,AE=2,∴=,∴CD=.故答案为.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,请猜想(1)中S1与S2的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请求相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,第21页(共33页)∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2=×2×2=2;故答案为:S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,第22页(共33页)∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,第23页(共33页)∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×6÷cos30°=3÷=2,∴BF1=2,BF2=BF1+F1F2=2+2=4,故BF的长为2或4.8.问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN.当时,求的值.类比归纳:第24页(共33页)在图(1)中,若,则的值等于;若,则的值等于;若(n 为整数),则的值等于.(用含n的式子表示)联系拓广:如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN,设,则的值等于.(用含m,n的式子表示)【解答】解:(1)方法一:如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.第25页(共33页)设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2﹣x)2+12,解得x=,即BN=.在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,∴y2+22=(2﹣y)2+12,解得y=,即AM=(6分)∴.方法二:同方法一,BN=.如图(1﹣2),过点N做NG∥CD,交AD于点G,连接BE.∵AD∥BC,∴四边形GDCN是平行四边形.∴NG=CD=BC.同理,四边形ABNG也是平行四边形.∴AG=BN=∵MN⊥BE,∴∠EBC+∠BNM=90度.∵NG⊥BC,∴∠MNG+∠BNM=90°,第26页(共33页)∴∠EBC=∠MNG.在△BCE与△NGM中,∴△BCE≌△NGM,EC=MG.∵AM=AG﹣MG,AM=﹣1=.∴.(2)如图1,当四边形ABCD为正方形时,连接BE,=,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n﹣x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=﹣1=则:==.故当=,则的值等于;若=,则的值等于;第27页(共33页)(3)若四边形ABCD为矩形,连接BE,=,不妨令CD=n,则CE=1;又==,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故=,=,HN=,故AM=BH=BN﹣HN=,故==.故答案为:;;;.第28页(共33页)第29页(共33页)9.阅读理解:如图1,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,点P 在BC 边上,当∠APD=90°时,易证△ABP ∽△PCD ,从而得到BP•PC=AB•CD ,解答下列问题.(1)模型探究:如图2,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD 时,结论BP•PC=AB•CD 仍成立吗?试说明理由;(2)拓展应用:如图3,M 为AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=45°且DM 交AC 于F ,ME 交BC 于G .AB=,AF=3,求FG 的长.【解答】解:(1)∵∠APC=∠APD +∠CPD ,∠APC=∠BAP +∠B (三角形外角定理),∠B=∠APD (已知),∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD∴=,∴BP•PC=AB•CD;(2)∵∠AFM=∠DME+∠E(三角形外角定理),∠DME=∠A(已知),∴∠AFM=∠A+∠E(等量代换),又∠BMG=∠A+∠E(三角形外角定理),∴∠AFM=∠BMG.∵∠A=∠B,∴△AMF∽△BGM.当∠A=∠B=45°时,∠ACB=180°﹣∠A﹣∠B=90°,即AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=,AC=BC=4.又∵△AMF∽△BGM,∴,∴BG===,又∵,CF=4﹣3=1,∴.第30页(共33页)10.基本模型如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,(1)模型拓展如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?(2)模型应用①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?【解答】解:(1)成立,∵∠A=180°﹣(∠B+∠APB),第31页(共33页)∠CPD=180°﹣(∠1+∠APB),∠B=∠1,∴∠A=∠CPD,∵∠B=∠C,∴△ABP∽△PCD;(2)①∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠B=∠APQ,∴∠B=∠APQ=∠C,由(1)知,△ABP∽△PCD,∴=,∴=,∴CQ=;②设BP=x,CQ=y.∵∠B=∠APQ=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,第32页(共33页)∴当x=时,y=,最大即当P是BC的中点时,CQ最长,最长为.第33页(共33页)。

类比探究综合测试(北师版)(含答案)

类比探究综合测试(北师版)(含答案)

类比探究综合测试(北师版)一、单选题(共5道,每道20分)1.七年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:如图1,在等边三角形ABC中,在AB,AC边上分别取点M,N,使BM=AN,连接BN,CM交于点O,求∠NOC的度数.下面给出了解题的路线图,如图1-1:①△NAB≌△MBC(SAS);②△NAB≌△AMC(SSA);③△AMC≌△NCB(SAS);④∠2=∠1;⑤BN=CM;⑥∠2=∠1,BN=CM.以上横线处,依次所填正确的是( )A.②⑤B.③⑥C.②⑥D.①④答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定和性质2.(上接第1题)如图2,在正方形ABCD中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,DM交于点O,则∠DON的度数和解题思路正确的是( )A.∠DON=90°,先证明△BNA≌△AMD,再进行转角B.∠DON=90°,先证明△BNA≌△ADO,再进行转角C.∠DON=60°,先证明△BNA≌△ADO,再进行转角D.∠DON=60°,先证明△BNA≌△AMD,再进行转角答案:A解题思路:试题难度:三颗星知识点:全等三角形的判定和性质3.(上接第1,2题)如图3,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EON=( )A.72°B.90°C.108°D.120°答案:C解题思路:试题难度:三颗星知识点:全等三角形的判定和性质4.如图1,直线AM∥BN,∠MAB与∠NBA的平分线交于点C,过点C作一条直线与两条直线MA,NB分别相交于点D,E.如图1所示,当直线与直线MA垂直时,求证:AB=AD+BE.下面给出了证明的路线图,如图1-1:①△ADC≌△FEC;②△ADC≌△FBC;③AD=BF;④AD=EF;⑤∠1=∠3.以上横线处,依次所填正确的是( )A.③⑥B.①④C.②⑥D.②⑤答案:B解题思路:试题难度:三颗星知识点:全等三角形的判定和性质5.(上接第4题)如图2所示,当直线与直线MA不垂直,且交点D,E在AB的异侧时,则线段AD,BE,AB之间的数量关系和证明思路正确的是( )A.AB=AD+BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBCB.AB=AD-BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBCC.AB=AD+BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FECD.AB=AD-BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FEC答案:D解题思路:试题难度:三颗星知识点:全等三角形的判定和性质。

中考数学类比探究型几何综合题专题训练(含答案与解析)

中考数学类比探究型几何综合题专题训练(含答案与解析)

中考数学类比探究型几何综合题专题训练【类型1】通过位置变化(图形变换)进行类比探究〖例1〗已知:如图,等边△AOB的边长为4,点C为OA中点.(1)如图1,将OC绕点O顺时针旋转,使点C落到OB边的点D处,设旋转角为α(0°<α≤360°).则此时α=;此时△COD是三角形(填特殊三角形的名称).(2)如图2,固定等边△AOB不动,将(1)中得到的△OCD绕点O逆时针旋转,连接AC,BD,设旋转角为β(0°<β≤360°).①求证:AC=BD;②当旋转角β为何值时,OC∥AB,并说明理由;③当A、C、D三点共线时,直接写出线段BD的长.〖例2〗现有与菱形有关的三幅图,如图:(1)(感知)如图①,AC是菱形ABCD的对角线,∠B=60°,E、F分别是边BC、CD上的中点,连结AE、EF、AF.若AC=2,则CE+CF的长为.(2)(探究)如图②,在菱形ABCD中,∠B=60°.E是边BC上的点,连结AE,作∠EAF=60°,边AF交边CD于点F,连结EF.若BC=2,求CE+CF的长.(3)(应用)在菱形ABCD中,∠B=60°.E是边BC延长线上的点,连结AE,作∠EAF=60°,边AF交边CD延长线于点F,连结EF.若BC=2,EF⊥BC时,借助图③求△AEF的周长.〖尝试练习〗1.如图1,等边△ABC与等边△BDE的顶点B重合,D、E分别在AB、BC上,AB=2√2,BD=2.现将等边△BDE从图1位置开始绕点B顺时针旋转,如图2,直线AD、CE相交于点P.(1)在等边△BDE旋转的过程中,试判断线段AD与CE的数量关系,并说明理由;(2)在等边△BDE顺时针旋转180°的过程中,当点B到直线AD的距离最大时,求PC的长;(3)在等边△BDE旋转一周的过程中,当A、D、E三点共线时,求CE的长.2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)探究猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC、CD、CF之间的数量关系为:;(2)深入思考如图2,当点D在线段CB的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,正方形ADEF对角线交于点O.若已知AB=2√2,CD =14BC,请求出OC的长.3.如图1,正方形ABCD与正方形AEFG有公共的顶点A,且正方形AEFG的边AE,AG分别在正方形ABCD的边AB,AD上,显然BE=DG,BE⊥DG.(1)将图1的正方形AEFG绕点A转动一定的角度到图2的位置.求证:①BE=DG;②BE⊥DG;(2)如图3,若点D,G,E在同一条直线上,且正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,求BE的长.【类型2】通过形状变化进行类比探究〖例3〗如图1,在△ABC中,AB=AC,∠BAC=α.D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转α,得到AE,连接DE,CE.(1)求证:CE=BD;(2)若α=60°,其他条件不变,如图2.请猜测线段AC,CD,CE之间的数量关系,并说明理由;(3)若α=90°,其他条件不变,如图3,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.〖例4〗如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PC =PE,PF交CD于点F.(1)求证:∠PCD=∠PED;(2)连接EC,求证:EC=√2AP;(3)如图2,把正方形ABCD改成菱形ABCD,其他条件不变,当∠DAB=60°时,请直接写出线段EC和AP的数量关系.〖尝试练习〗4.已知菱形ABCD和菱形DEFG有公共的顶点D,C点在DE上,且∠ADC=∠EDG,连接AE,CG,如图1.(1)试猜想AE与CG有怎样的数量关系(直接写出关系,不用证明);(2)将菱形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)在(2)的条件下,如果∠ADC=∠EDG=90°,如图3,你认为AE和CG是否垂直?若垂直,请给出证明;若不垂直,请说明理由.5.已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=√3,BC=√6,求△OAC的面积;(3)如果∠B=30°,AB=2√3,当△AED是直角三角形时,求BC的长.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF 为邻边作平行四边形ECFG.(1)求证:四边形ECFG是菱形;(2)连结BD、CG,若∠ABC=120°,则△BDG是等边三角形吗?为什么?(3)若∠ABC=90°,AB=10,AD=24,M是EF的中点,求DM的长.【自主反馈】7.如图1,△ABC是等边三角形,点D,E分别是BC,AB上的点,且BD=AE,AD与CE交于点F.(1)求∠DFC的度数;(2)将CE绕着点C逆时针旋转120°,得到CP,连接AP,交BC于点Q.①补全图形(图2中完成);②用等式表示线段BE与CQ的数量关系,并证明.8.已知△ABC是等腰三角形.(1)如图1,若△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,求证:△ABD ≌△ACE;(2)如图2,若△ABC为等边三角形,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②试探究线段AE、CE、BD之间的数量关系,并证明.9.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:DF=BE;(3)如图3,点B、C的坐标分别是(0,0),(0,2),点Q是线段AC上的一个动点,点M 是线段AO上的一个动点,是否存在这样的点Q、M使得△CQM为等腰三角形且△AQM为直角三角形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.10.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图②,B'E与AC交于点F,DB'∥BC.①求证:四边形BDB'E为菱形;②连接B'C,则△B'FC的形状为;(3)如图③,则△CEF的周长为.11.已知正方形ABCD,以CE为边在正方形ABCD外部作正方形CEFG,连AF,H是AF的中点,连接BH,HE.(1)如图1所示,点E在边CB上时,则BH,HE的关系为;(2)如图2所示,点E在BC延长线上,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请给出新的结论并证明.(3)如图3,点B,E,F在一条直线上,若AB=13,CE=5,直接写出BH的长.12.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.13.我们知道,平行四边形的对边平行且相等,利用这一性质,可以为证明线段之间的位置关系和数量关系提供帮助.重温定理,识别图形(1)如图①,我们在探究三角形中位线DE和第三边BC的关系时,所作的辅助线为“延长DE到点F,使EF=DE,连接CF”,此时DE与DF在同一直线上且DE=12DF,又可证图中的四边形为平行四边形,可得BC与DF的关系是,于是推导出了“DE∥BC,DE=12BC”.寻找图形,完成证明(2)如图②,四边形ABCD和四边形AEFG都是正方形,△BEH是等腰直角三角形,∠EBH=90°,连接CF、CH.求证CF=√2BE.构造图形,解决问题(3)如图③,四边形ABCD和四边形AEFG都是菱形,∠ABC=∠AEF=120°,连接BE、CF.直接写出CF与BE的数量关系.类比探究型几何综合题专题训练(不用相似)答案与解析〖例1〗解:(1)如图1,∵△AOB是等边三角形,∴AO=BO=AB,∠AOB=60°,∵将OC绕点O顺时针旋转,使点C落到OB边的点D处,∴OC=OD,∠COD=∠AOB=60°=α,∴△COD是等边三角形,答案为:60°,等边;(2)①∵△COD是等边三角形,∴OC=OD,∠COD=∠AOB=60°,∴∠AOC=∠BOD,又∵AO=BO,∴△AOC≌△BOD(SAS),∴AC=BD;②如图2,当点C在点O的上方时,若OC∥AB,∴∠AOC=∠OAB=60°=β,如图2﹣1,当点C在点O的下方时,若OC∥AB,∴∠ABO=∠BOC=60°,∴β=360°﹣60°﹣60=240°,综上所述:β=60°或240°;③如图3,当点D在线段AC上时,过点O作OE⊥AC于E,∵等边△AOB的边长为4,点C为OA 中点,∴AO=AB=OB=4,OC=OD=CD=2,∵∠AOB=∠COD=60°,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∵OE⊥CD,OC=OD,∴CE=DE=1,∴OE=√OC2−CE2=√3,∴AE=√OA2−OE2=√13,∴AC=AE+CE=1+√13=BD;如图4,当点C在线段AD上时,过点O作OF⊥AD于F,同理可求DF=CF=1,AF=√13,∴AC=BD=√13﹣1,综上所述:BD=√13+1或√13﹣1.〖例2〗解:(1)感知:∵四边形ABCD是菱形,∴BC=CD=AB=2,∵E,F分别是边BC,CD的中点,∴CE=12BC,CF=12CD=1,∴CE+CF=2.故答案为:2.(2)探究:如图,连结AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.∵∠EAF=60°,∴∠BAC﹣∠CAE=∠EAF﹣∠CAE.∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA).∴BE=CF.∴CE+CF=BC=2.(3)应用:如图所示:∵四边形ABCD是菱形,∴AB=BC,AB∥CD.∴∠B+∠BCD=180°.∵∠B=60°,∴△ABC是等边三角形,∠BCD=120°.∴∠BAC=∠ACB=60°,AB=AC.∴∠CAD=∠B=60°.∵∠EAF=60°,∴∠CAD﹣∠DAE=∠EAF ﹣∠DAE.∴∠CAE=∠DAF.∵∠ACE=∠ADF,AC=AD∴△ACE≌△ADF(ASA).∴CE=DF,AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∵EF⊥BC,∠ECF=60°,∴CF=2CE,∵CD=BC=2,∴CE=2,∴EF=√CF2−CE2=2√3,∴△AEF的周长为6√3.〖尝试练习〗1.解:(1)AD=CE,理由:∵△ABC与△BDE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE =60°,∴∠ABD =∠CBE , ∴△ABD ≌△CBE (SAS ),∴AD =CE ;(2)如图2,过点B 作BH ⊥AD 于H ,在Rt △BHD 中,BD >BH ,∴当点D ,H 重合时,BD =BH ,∴BH ≤BD ,∴当BD ⊥AD 时,点B 到直线AD 的距离最大,∴∠EDP =90°﹣∠BDE =30°,同(1)的方法得,△ABD ≌△CBE (SAS ),∴∠BEC =∠BDA =90°,EC =AD ,在Rt △ABD 中,BD =2,AB =2√2, 根据勾股定理得,AD =√AB 2−BD 2=2, ∴CE =2,∵∠BEC =90°,∠BED =60°, ∴∠DEP =90°﹣60°=30°=∠EDP , ∴DP =EP ,如图2﹣1,过点P 作PQ ⊥DE 于Q , ∴EQ =12DE =1,在Rt △EQP 中,∠PEQ =30°, ∴EP =EQ cos∠DEP =2√33,∴PC =2−2√33; (3)①当点D 在AE 上时,如图3,∴∠ADB =180°﹣∠BDE =120°,∴∠BDE =60°, 过点B 作BF ⊥AE 于F ,在Rt △BDF 中,∠DBF =30°,BD =2, ∴DF =1,BF =√3,在Rt △ABF 中,根据勾股定理得,AF =√AB 2−BF 2=√5,AD =AF ﹣DF =√5﹣1,∴CE =AD =√5﹣1; ②当点D 在AE 的延长线上时,如图4,同①的方法得,AF =√5,DF =1,∴AD =AF +DF =√5+1,∴CE =AD =√5+1, 即满足条件的CE 的长为√5+1和√5﹣1. 2.解:(1)①正方形ADEF 中,AD =AF , ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 又∵AB=AC ,∴△DAB ≌△FAC (SAS ),∴∠ABC =∠ACF ,∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ACB +∠ACF ═45°+45°=90°, 即BC ⊥CF ;②△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD , ∴BC =CF +CD ;故答案为:BC =CF +CD ;(2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC .理由如下:∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,又∵AB=AC , ∴△DAB ≌△FAC (SAS ),∴∠ABD =∠ACF , ∵∠BAC =90°,AB =AC , ∴∠ACB =∠ABC =45°.∴∠ABD =180°﹣45°=135°,∴∠BCF =∠ACF ﹣∠ACB =135°﹣45°=90°,∴CF ⊥BC . ∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .(3)过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N , ∵∠BAC =90°,AB =AC =2√2, ∴BC =4,∴CD =14BC =1,∴BD =5, 由(2)同理可证得△DAB ≌△FAC ,∴BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴OD =OF ,∵∠DCF =90°, ∴DF =√CD 2+CF 2=√26,∴OC =√262.3.证明:(1)如图2,延长DG交BE于H,∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,AG=AE,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE(SAS),∴BE=DG,∠ADG=∠ABE,∵∠C+∠CBA+∠ABE+∠BHD+∠CDH=360°,∴90°+90°+∠ADG+∠CDH+∠BHD=360°,∴∠BHD=90°,∴DG⊥BE;(2)如图3,连接BD,∵正方形ABCD的边长是4√2,正方形AEFG的边长为3√2,∴BD=√2AD=8,GE=√2AE=6,∵BD2=DE2+BE2,∴64=(6+BE)2+BE2,∴BE=√23﹣3.〖例3〗证明:(1)∵将线段AD绕点A逆时针旋转α,∴AD=AE,∠DAE=α,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴BD=CE;(2)AC=CD+CE,理由如下:∵AB=AC,∠BAC=60°∴△ABC是等边三角形,∴AC=BC,由(1)可知:BD=CE,∴BC=BD+CD=CE+CD,∴AC=CD+CE;(3)∠ACE=45°,BD2+CD2=2AD2,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵△BAD≌△CAE∴∠ACE=∠ABC=45°,∴∠BCE=∠ACE+∠ACB=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2,∴BD2+CD2=2AD2.〖例4〗(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP=45°,又∵PD=PD,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,AP=CP,∵PC=PE,∴AP=PE,∴∠PAD=∠PED,∴∠PCD=∠PED;(2)证明:∵四边形ABCD是正方形,∴∠ADC=∠EDF=90°,由(1)知,∠PCD=∠PED,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠CFP﹣∠PCD=180°﹣∠EFD﹣∠PED,即∠CPF=∠EDF=90°,∵PC=PE,∴△CPE是等腰直角三角形,∴EC=√2CP,由(1)知,AP=CP,∴EC=√2AP;(3)解:AP=CE;理由如下:∵四边形ABCD是菱形,∠DAB=60°,∴AB=BC,∠ABP=∠CBP =60°,∠BAD=∠BCD,∠EDC=∠DAB=60°,又∵PB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PC=PE,∴PA=PE,∴∠DAP=∠AEP,∴∠DCP=∠AEP,∵∠CFP=∠EFD,∴180°﹣∠CFP﹣∠PCF=180°﹣∠EFD﹣∠AEP,即∠CPF=∠EDF=60°,∴△EPC是等边三角形,∴PC=EC,∴EC=AP,〖尝试练习〗4.解:(1)AE=CG,理由如下:∵四边形ABCD和四边形DEFG都是菱形,∴DA=DC,DE=DG,又∵∠ADE=∠CDG,∴△DAE≌△DCG(SAS),∴AE=CG;(2)成立,理由如下:∵∠ADC=∠EDG,∴∠ADC﹣∠EDC=∠EDG﹣∠EDC,即∠ADE=∠CDG,又∵DA=DC,DE=DG,∴△DAE≌△DCG(SAS),∴AE=CG;(3)AE ⊥CG ,理由如下:延长线段AE 、GC 交于点H ,∵AD ∥BC ,∴∠CEH =∠DAE , 由(2)可知,△DAE ≌△DCG ,∴∠DAE =∠DCG ,∴∠CEH =∠DCG ,∵四边形ABCD 是菱形,∠ADC =90°, ∴四边形ABCD 是正方形,∴∠BCD =90°,∴∠ECH +∠DCG =90°,∴∠ECH +∠CEH =90°,∴∠CHE =90°,∴AE ⊥CG . 5.(1)证明:由折叠的性质得:△ABC ≌△△ AEC ,∴∠ACB =∠ACE ,BC =EC ,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .∴EC =AD ,∠ACB =∠CAD ,∴∠ACE =∠CAD ,∴OA =OC ,∴OD =OE ,∴∠ODE =∠OED ,∵∠AOC =∠DOE ,∴∠CAD =∠ACE =∠OED =∠ODE ,∴AC ∥DE ;(2)解:∵平行四边形ABCD 中,∠B =90°,∴四边形ABCD 是矩形,∴∠CDO =90°,CD =AB =√3,AD =BC =√6,由(1)得:OA =OC ,设OA =OC =x ,则OD =√6﹣x ,在Rt △OCD 中,由勾股定理得:(√3)2+(√6﹣x )2=x 2,解得:x =3√64,∴OA =3√64,∴△OAC 的面积=12OA ×CD =12×3√64×√3=9√28;(3)解:分两种情况:①如图3,当∠EAD =90°时,延长EA 交BC 于G ,∵AD =BC ,BC =EC ,∴AD =EC , ∵AD ∥BC ,∠EAD =90°,∴∠EGC =90°, ∵∠B =30°,AB =2√3,∴∠AEC =30°, ∴GC =12EC =12BC ,∴G 是BC 的中点, 在Rt △ABG中,BG =√32AB =3,∴BC =2BG =6;②如图4,当∠AED =90°时∵AD =BC ,BC =EC ,∴AD =EC ,由折叠的性质得:AE =AB ,∴AE =CD ,又∵AC=AC ,∴△ACE ≌△CAD (SSS ), ∴∠ECA =∠DAC ,∴OA =OC ,∴OE =OD , ∴∠OED =∠ODE ,∴∠AED =∠CDE , ∵∠AED =90°,∴∠CDE =90°,∴AE ∥CD , 又∵AB ∥CD ,∴B ,A ,E 在同一直线上, ∴∠BAC =∠EAC =90°, ∵Rt △ABC 中,∠B =30°,AB =2√3, ∴AC =√33AB =2,BC =2AC =4;综上所述,当△AED 是直角三角形时,BC 的长为4或6.6.证明:(1)∵AF 平分∠BAD ,∴∠BAF =∠DAF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠CFE ,∴∠CEF =∠CFE ,∴CE =CF , 又∵四边形ECFG 是平行四边形, ∴四边形ECFG 为菱形;(2)△BDG 是等边三角形,理由如下:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB =DC ,AD ∥BC ,∵∠ABC =120°,∴∠BCD =60°,∠BCF =120°,由(1)知,四边形CEGF 是菱形,∴CE =GE ,∠BCG =12∠BCF =60°, ∴CG =GE =CE ,∠DCG =120°,∵EG ∥DF , ∴∠BEG =120°=∠DCG ,∵AE 是∠BAD 的平分线,∴∠DAE =∠BAE ,∵AD ∥BC , ∴∠DAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴BE =CD ,∴△BEG ≌△DCG (SAS ),∴BG =DG ,∠BGE =∠DGC ,∴∠BGD =∠CGE ,∵CG =GE =CE ,∴△CEG 是等边三角形, ∴∠CGE =60°,∴∠BGD =60°,∵BG =DG , ∴△BDG 是等边三角形;(3)如图2中,连接BM ,MC ,∵∠ABC =90°,四边形ABCD 是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=10,AD=24,∴BD=√AB2+AD2=26,∴DM=√22BD=13√2.【自主反馈】7.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠B=∠ACB=60°,又∵BD=AE,∴△ABD≌△CAE(SAS),∴∠BAD=∠ACE,∵∠BAD+∠DAC=60°,∴∠DFC=∠ACE+∠DAC=60°;(2)①根据题意补全图形如图2所示:②线段BE与CQ的数量关系为:CQ=12BE;理由如下:∵CE绕着点C逆时针旋转120°,得到CP,∴CE=CP,∠ECP=120°,∵∠DFC=60°,∴AD∥CP,∴∠ADC=∠DCP,∵△ABD≌△CAE,∴CE=AD,∴AD=CP,∴△ADQ≌△PCQ(AAS),∴CQ=DQ=12CD,∵AB=BC,BD=AE,∴BE=CD,∴CQ=12BE.8.解:(1)∵△ABC,△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS);(2)①∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,由旋转知,AC=AD,∠CAD=90°,∴AB=AD,∠BAD=∠BAC+∠CAD=150°,∴∠D=12(180°﹣∠BAD)=15°,∵AE是∠BAC的平分线,∴∠CAE=12∠BAC=30°,∴∠DAE=∠CAD+∠CAE=120°,∴∠AED=180°﹣∠D﹣∠DAE=45°;②BD=2CE+√2AE;证明:如图,∵△ABC是等边三角形,∴AB=AC,∵AE是∠BAC的角平分线,∴∠BAE=∠CAE,∵AE=AE,∴△BAE≌△CAE(SAS),∴BE=CE,过点A作AF⊥AE交DE于F,∴∠EAF=90°,由旋转知,∠CAD=90°,∴∠CAE=∠DAF,由①知,∠AED=45°,∴∠AFE=45°=∠AEF,∴AE=AF,∴EF=√2AE,∵AC=AD,∴△ACE≌△ADF(SAS),∴DF=CE,∴BD=BE+EF+DF=CE+√2AE+CE =2CE+√2AE.9.解:(1)∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=AD,∠EAD=∠BAC=30°,∴∠ACD=∠ADC=12(180°﹣30°)=75°,∵∠EDA=∠ACB=60°,∴∠CDE=∠ADC﹣∠EDA=15°;(2)连接BF,∵点F是边AC中点,∴BF=AF=12AC,∵∠BAC=30°,∴BC=12AC,∴∠FBA=∠BAC=30°,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,CB =DE ,∠DEA =∠ABC =90°, ∴DE =BF ,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°, ∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形,∴DF =BE ; (3)∵点B 、C 的坐标分别是(0,0),(0,2), ∴BC =2,∵∠ABC =90°,∠BAC =30°, ∴AC =4,AB =2√3,若∠QMA =90°,CQ =MQ 时,如图3,设CQ =QM =x ,∠CAB =30°,∴AQ =2x ,AM =√3x , ∴AC =x +2x =3x =4,∴x =43,∴AM =43√3,∴BM =AB ﹣AM =2√3﹣4√33=2√33,∴点M (2√33,0);若∠AQM =90°,CQ =QM 时,如图4, 设CQ =QM =x ,∠CAB =30°, ∴AQ =√3x ,AM =2x , ∴AC =x +√3x =4,∴x =2√3﹣2,∴AM =4√3﹣4, ∴BM =2√3﹣(4√3﹣4)=4﹣2√3, ∴点M (4﹣2√3,0);综上所述:M (2√33,0)或(4﹣2√3,0).10.(1)解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴CD =12AB =5(2)①证明:由折叠的性质得:B 'D =BD ,B 'E =BE ,∠B 'DE =∠BDE ,∵DB '∥BC ,∴∠B 'DE =∠BED ,∴∠BDE =∠BED ,∴BD =BE ,∴B 'D =BE ,∴四边形BDB 'E 是平行四边形,又∵B 'D =BD ,∴四边形BDB 'E 为菱形;②解:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,∴CD =12AB =BD , 由折叠的性质得:B 'D =BD ,∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∵∠ACB =90°,∴AC ⊥BC ,∵DB '∥BC ,∴DB '⊥AC ,∴∠ACB '=90°﹣∠DB 'C ,由①得:四边形BDB 'E 为菱形, ∴AB ∥B 'E ,∵CD ⊥AB ,∴CD ⊥B 'E , ∴∠EB 'C =90°﹣∠DCB ',∴∠ACB '=∠EB 'C , ∴FB '=FC ,即△B 'FC 为等腰三角形;(3)解:连接B 'C ,如图③所示:∵△ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,∴BC =√22AB =5√2,∠B =45°,CD =12AB =BD ,∠ACD =12∠ACB =45°,由折叠的性质得:B 'D =BD ,∠B '=∠B =45°, ∴CD =B 'D ,∴∠DCB '=∠DB 'C ,∴∠FCB '=∠FB 'C ,∴CF =B 'F ,∴△CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =5√2; 11.解:(1)BH ⊥HE ,BH =HE ;理由如下: 延长EH 交AB 于M ,如图1所示: ∵四边形ABCD 和四边形CEFG 是正方形,∴AB ∥CD ∥EF ,AB =BC ,CE =FE ,∠ABC =90°,∴∠AMH =∠FEH ,∵H 是AF 的中点,∴AH =FH ,∴△AMH ≌△FEH (AAS ), ∴AM =FE =CE ,MH =EH ,∴BM =BE ,∵∠ABC=90°,∴BH⊥HE,BH=12ME=HE;(2)结论仍然成立.BH⊥HE,BH=HE.理由如下:延长EH交BA的延长线于点M,如图2所示:∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ABE=∠BEF=90°,AB=BC,AB∥CD∥EF,CE=FE,∴∠HAM=∠HFE,∴△AHM≌△FHE(ASA),∴HM=HE,AM=EF=CE,∴BM=BE,∵∠ABE=90°,∴BH⊥EH,BH=12EM=EH;(3)延长EH到M,使得MH=EH,连接AH、BH,如图3所示:同(2)得:△AMH≌△FEH(SAS),∴AM=FE=CE,∠MAH=∠EFH,∴AM∥BF,∴∠BAM+∠ABE=180°,∴∠BAM+∠CBE=90°,∵∠BCE+∠CBE=90°∴∠BAM=∠BCE,∴△ABM≌△CBE(SAS),∴BM=BE,∠ABM=∠CBE,∴∠MBE=∠ABC=90°,∵MH=EH,∴BH⊥EH,BH=12EM=MH =EH,在Rt△CBE中,BE=√CB2−CE2=12,∵BH=EH,BH⊥EH,∴BH=√22BE=6√2.12.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=94.∴GC=94;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.13.解:(1)∵AE=CE,DE=EF,∠AED=∠CEF,∴△AED≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴BD∥CF,∵AD=BD,∴BD=CF,∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC,(2)证明:∵四边形ABCD是正方形∴AB=BC,∠ABC=90°,即∠ABE+∠CBE=90°∵△BEH是等腰直角三角形,∴EH=2BE=2BH,∠BEH=∠BHE=45°,∠EBH=90°,即∠CBH+∠CBE=90°∴∠ABE=∠CBH,∴△ABE≌△CBH(SAS),∴AE=CH,∠AEB=∠CHB,∴∠CHE=∠CHB﹣∠BHE=∠CHB﹣45°=∠AEB﹣45°,∵四边形AEFG是正方形,∴AE=EF,∠AEF=90°,∴EF=HC,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=225°﹣∠AEB,∴∠CHE+∠FEH=∠AEB﹣45°+225°﹣∠AEB=180°,∴EF∥HC且EF=HC,∴四边形EFCH是平行四边形,∴CF=EH=√2BE;(3)CF=√3BE,如图,过点B作BH,使∠EBH=120°,且BH=BE,连接EH、CH,则∠BHE=∠BEH=30°,∵∠ABC=∠EBH=120°,∴∠ABE=∠CBH,∵AB=BC,BE=BH,∴△AEB≌△CHB(SAS),∴CH=AE=EF,∠CHB=∠AEB,∵∠CHE=∠CHB﹣∠BHE=∠AEB﹣30°,∠FEH=360°﹣∠AEF﹣∠AEB﹣∠BEH=210°﹣∠AEB,∴∠CHE+∠FEH=180°,∴CH∥EF且CH=EF,∴四边形EFCH是平行四边形,∴CF=EH,过B作BN⊥EH于N,在△EBH中,∠EBH=120°,BH=BE,∴∠BEN=30°,EH=2EN,BE,∴EN=√32∴EH=√3BE,∴CF=EH=√3BE.。

四边形之类比探究综合检测(探究不变特征)(含答案)

四边形之类比探究综合检测(探究不变特征)(含答案)

四边形之类比探究综合检测(探究不变特征)
一、单选题(共5道,每道20分)
1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE,FE,则线段CE与EF之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
2.(上接第1题)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB 的边
AC在同一条直线上(如图2),连接BD,取BD的中点F,则线段CE与FE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
3.(上接第1,2题)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接
BD,取BD的中点F,则线段CE与FE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究
4.如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,则线段AF,BF,CE之间的数量关系为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:类比探究
5.(上接第4题)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,则线段AF,BF,CE之间的数量关系为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:类比探究。

三角形全等之类比探究(综合测试)(北师版)(含答案)

三角形全等之类比探究(综合测试)(北师版)(含答案)

学生做题前请先回答以下问题问题1:解决类比探究问题的一般方法:(1)根据题干条件,结合____________先解决第一问;(2)用解决_______的方法类比解决下一问,整体框架照搬.问题2:整体框架照搬包括____________,____________,____________.问题3:“三角形全等”的辅助线:见中线,要________,________之后___________.问题4:等腰三角形的两个底角________,简称______________;如果一个三角形有两个角相等,那么它们所对的边也______,简称____________.问题5:当见到线段的______________考虑截长补短,构造全等或等腰转移____、转移____,然后和_________重新组合解决问题.问题6:当见到线段的______________考虑截长补短,截长补短的作用是把_________________________转化成_____________________.答:相等,等边对等角;相等,等角对等边.问题5:当见到线段的考虑截长补短,构造全等或等腰转移、转移,然后和重新组合解决问题.答:和差倍分,边,角,已知条件.问题6:当见到线段的考虑截长补短,截长补短的作用是把转化成.答:和差倍分,多条线段间的数量关系,两条线段间的等量关系.三角形全等之类比探究(综合测试)(北师版)一、单选题(共5道,每道20分)1.七年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:如图1,在等边三角形ABC中,AB=BC,∠BAC=∠ABC=60°,在AB,AC边上分别取点M,N,使BM=AN,连接BN,CM交于点O,求∠NOC的度数.下面给出了解题的路线图,如图:请你仔细观察下列序号所代表的内容:①△NAB≌△MBC(SAS);②△NAB≌△AMC(SSA);③∠2=∠1;④BN=CM.以上横线处,依次所填最恰当的是( )A.②④B.②③C.①③D.①④答案:C解题思路:试题难度:三颗星知识点:三角形全等之类比探究2.(上接第1题)如图2,在正方形ABCD中,AB=AD,∠BAD=∠ABC=90°,在AB,BC边上分别取点M,N,使AM=BN,连接AN,DM交于点O,求∠DON的度数.则∠DON度数和做题的思路均正确的是( )A.∠DON=90°,先证明△BNA≌△AMD,再进行转角B.∠DON=90°,先证明△BNA≌△AOD,再进行转角C.∠DON=60°,先证明△BNA≌△ADO,再进行转角D.∠DON=60°,先证明△BNA≌△AMD,再进行转角答案:A解题思路:类比试题1的思路,本题的路线图为:故选A.试题难度:三颗星知识点:三角形全等之类比探究3.(上接第1,2题)如图3,在正五边形ABCDE中,AB=AE,∠BAE=∠ABC=108°,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EON=( )A.72°B.90°C.108°D.120°答案:C解题思路:类比第1,2题的思路,本题的路线图为:故选C.试题难度:三颗星知识点:三角形全等之类比探究4.如图1,直线AM∥BN,∠MAB与∠NBA的平分线交于点C,过点C作一条直线与两条直线MA,NB分别相交于点D,E.(1)如图1所示,当直线与直线MA垂直时,求证:AB=AD+BE.下面给出了证明的路线图,如图:请你仔细观察下列序号所代表的内容:①∠CEB=90°,∠1=∠3;②AB=BF;③AC=CF;④AB=BF,AD=EF;⑤△ACB≌△FCB(SAS);⑥△ADC≌△FEC(ASA).以上横线处,依次所填最恰当的是( )A.②③⑥B.①④⑤C.②③⑤D.①④⑥答案:A解题思路:试题难度:三颗星知识点:三角形全等之类比探究5.(上接第4题)(2)如图2所示,当直线与直线MA不垂直,且交点D,E在AB的异侧时,则线段AD,BE,AB之间的数量关系和证明思路正确的是( )A.AB=AD-BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FECB.AB=AD-BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBCC.AB=AD+BE,延长AC交BN于点F,证明AB=BF,△ADC≌△FECD.AB=AD+BE,延长AC交BN于点F,使CF=AC,证明AB=BF,△ADC≌△FBC答案:A解题思路:试题难度:三颗星知识点:三角形全等之类比探究。

类比探究专项训练(二)(含答案) (2)

类比探究专项训练(二)(含答案) (2)

学生做题前请先回答以下问题问题1:想一想河南中考数学第22题常考类型有哪些?问题2:想一想河南中考数学第22题答题标准动作有哪些?问题3:想一想河南中考数学第22题作答的注意事项有哪些?类比探究专项训练(二)一、单选题(共5道,每道20分)1.在四边形ABCD中,对角线AC,BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(),连接AC1,BD1,AC1与BD1相交于点P.(1)如图1,若四边形ABCD是正方形,求证:△AOC1≌△BOD1.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,AC1=kBD1,试判断AC1与BD1的位置关系,求出k的值,并说明理由.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,AC1=kBD1,连接DD1.请直接写出k的值及的值.(建议学生打印做题,并在做完之后对比解题思路中的示范照片)1.(2)中AC1与BD1的位置关系为_________,k的值为_______.( )A.AC1⊥BD1,B.AC1⊥BD1,C.AC1与BD1不垂直,D.AC1与BD1不垂直,答案:A解题思路:见第2题中解析试题难度:三颗星知识点:中考数学几何中的类比探究2.2.(上接第1题)(3)中k的值为_______,的值为_________.( )A.,25B.2,200C.2,400D.,50答案:A解题思路:试题难度:三颗星知识点:中考数学几何中的类比探究3.如图1,D是△ABC的边BC上一点,过点D的一条直线交AC于点F,交BA的延长线于点E.(1)若BD=CD,CF=2AF,请直接写出的值.(2)如图2,若BD=CD,CF=mAF,求的值.(用含m的代数式表示)(3)如图3,将原题改为“过点D的一条直线交AC的延长线于点F,交AB于点E”,若BD=nCD,CF=mAF,求的值.(用含m,n的代数式表示)(建议学生打印做题,并在做完之后对比解题思路中的示范照片)1.(1)中的值为( )A.2B.C. D.答案:B解题思路:见第5题中解析试题难度:三颗星知识点:类比探究问题4.2.(上接第3题)(2)中的值为( )A. B.C. D.答案:D解题思路:见第5题中解析试题难度:三颗星知识点:类比探究问题5.3.(上接第3,4题)(3)中的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:类比探究问题。

中考数学动态几何、类比探究专项训练及答案A4版(12套全)

中考数学动态几何、类比探究专项训练及答案A4版(12套全)

专项训练(一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A ,点D 重合),将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP ,BH . (1)求证:∠APB =∠BPH .(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论.(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.(备用图)A EBPDH GFCCFGH DPBEA备用图专项训练(二)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)数学课上,魏老师出示图1和下面框中条件:图1 图2(1)①当点C 与点F 重合时,如图2所示,可得AMDM的值为___________; ②在平移过程中,AMDM的值为___________(用含x 的代数式表示). (2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算AMDM的值. (3)将图1中的三角板ABC 绕点C 逆时针旋转m 度,090m ≤,原题中的其他条件保持不变,如图4所示,请计算AMDM的值(用含x 的代数式表示).图3 图4如图1,两块等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF =90°,AB =1,DE =2.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C ,E 两点间的距离为x .专项训练(三)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点.连接AC ,BD 交于点P .(1)如图1,当OA =OB ,且D 为OA 中点时,求APPC的值; (2)如图2,当OA =OB ,且14AD OA 时,求tan ∠BPC 的值; (3)如图3,当AD :OA :OB =1:n:tan ∠BPC 的值.A OCBDPA BPCDO O DCPBA图1 图2 图3专项训练(四)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日22.(10分)如图,在矩形ABCD中,点M是AD的中点,AD=CD=,直角∠PME绕点M进行旋转,其两边分别和BC,CD交于点P和点E,连接PE交MC于点Q.(1)判断线段MP,ME的数量关系,并进行证明;(2)当动点P,E分别在线段BC和CD上运动时,设PC=x,MQ=y,求y 与x的函数关系式;(3)在(2)中,当y取最小值时,判断PE与BM的位置关系,并说明理由.PQE M DCB A专项训练(五)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)如图,在平行四边形ABCD 中,AB =5,BC =10,F 为AD 的中点,CE ⊥AB 于E ,设∠ABC =α(60°≤α<90°). (1)当α=60°时,求CE 的长. (2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD =k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由.②连接CF ,当CE 2 CF 2取最大值时,求tan ∠DCF 的值.FDCBEA专项训练(六)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在线段AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F .(1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.mnAF CB Emn A F E CBB CEF A图1 图2 图3专项训练(七)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)如图1,在等腰Rt △ABC 和等腰Rt △CDE (CD >BC )中,点C ,B ,D 在同一直线上,点M 是AE 的中点.(1)探究线段MD ,MB 的位置及数量关系,并证明.(2)将图1中的△CDE 绕点C 顺时针旋转45°,使△CDE 的斜边CE 恰好与△ABC 的边BC 垂直,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若将图2中的△ABC 绕点C 逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.EMDC BA图1EM DBA图2ABCDM图3专项训练(八)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90°,且EF 交正方形外角∠DCG 的平分线CF 于点F . (1)求证:AE =EF .(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上除B ,C 外的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由.(3)如图3,点E 是BC 延长线上除C 点外的任意一点,其他条件不变,结论“AE =EF ”仍然成立吗?如果成立,写出证明过程;如果不成立,请说明理由.GAB C DFE图1E FDC B AG图2FDBAG图3专项训练(九)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日22.(10分)问题背景(1)如图1,△ABC中,DE∥BC,分别交AB,AC于D,E两点,过点E 作EF∥AB,交BC于点F.请按图示数据填空:四边形DBFE的面积S=_________,△EFC的面积S1=_________,△ADE 的面积S2=__________.专项训练(十)做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日22. (10分)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点,点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.P D BA专项训练(十一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日22.(10分)如图,在Rt△ABC中,∠C=90°,AB=25cm,AC=20cm.点P从点A出发,沿AB的方向匀速运动,速度为5cm/s;同时点M从点C出发,沿CA的方向匀速运动,速度为4cm/s.过点M作MN∥AB,交BC于点N.设运动的时间为t秒(0<t<5).(1)用含t的代数式表示线段MN的长.(2)连接PN,是否存在某一时刻t,使得四边形AMNP为菱形?若存在,求出此时t的值;若不存在,请说明理由.(3)连接PM,PN,是否存在某一时刻t,使得点P在线段MN的垂直平分线上?若存在,求出此时t的值;若不存在,请说明理由.AC (备用图)(ABC专项训练(十二)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日参考答案22.(1)证明略;(2)△PDH 的周长不发生变化,证明略; (3)21282S x x =-+,当x =2时,S 存在最小值,最小值为6.中考数学动态几何、类比探究专项训练(二)参考答案22.(1)①1;②2x; (2)1AMDM =; (3)2AM x DM =.中考数学动态几何、类比探究专项训练(三)参考答案22.(1)APPC=2; (2)tan ∠BPC 12=;(3)tan ∠BPC =.中考数学动态几何、类比探究专项训练(四)参考答案22.(1)MP =ME ,证明略;(2)2144y x =+;(3)当y 取最小值时,PE ∥BM ,理由略.参考答案22.(1)CE=..(2)①存在,k=3;②tan∠DCF3中考数学动态几何、类比探究专项训练(六)参考答案22.(1)EF=EB,证明略;(2)不成立,此时EB=kEF;(3)EF=EB,证明略.中考数学动态几何、类比探究专项训练(七)参考答案22.(1)MD⊥MB,MD=MB,证明略;(2)不发生变化,证明略;(3)不发生变化,证明略.中考数学动态几何、类比探究专项训练(八)参考答案22.(1)证明略;(2)结论仍成立,证明略;(3)结论仍成立,证明略.中考数学动态几何、类比探究专项训练(九)参考答案22.(1)6,9,1;(2)证明略;(3)18.参考答案22.(1)1813t=;(2)①PQ154=厘米;②不存在,理由略.中考数学动态几何、类比探究专项训练(十一)参考答案22.(1)MN=5t;(2)存在,209t=;(3)存在,16057t=.中考数学动态几何、类比探究专项训练(十二)参考答案22.(1)BC=10;(2)5017t=;(3)102560 3817或或.。

七年级数学三角形全等之类比探究(二)(北师版)(专题)(含答案)

七年级数学三角形全等之类比探究(二)(北师版)(专题)(含答案)

三角形全等之类比探究(二)(北师版)(专题)一、单选题(共5道,每道20分)1.已知△ABC中,AB=AC,点D为直线BC上一动点(不与点B,C重合),以AD为边作△ADF (A,D,F按顺时针排列),使AD=AF,且∠BAC=∠DAF,连接CF.(1)如图,当点D在边BC上时,求证:BC=CF+CD.先在图上走通思路后再填写空格内容:(1)由∠BAC=∠DAF,得∠BAD=∠CAF;又因为AB=AC,AD=AF,因此根据三角形全等的判定___________,可得___________,由全等的性质得______________________,所以BC=BD+CD=CF+CD.请你仔细观察下列序号所代表的内容:①ASA;②SAS;③SSA;④△ADB≌△AFC;⑤△AFC≌△BAD;⑥△ADB≌△FCD;⑦BD=CF;⑧BD=CF,BC=AC.以上空缺处依次所填最恰当的是( )A.③⑤⑦B.②④⑦C.③⑤⑧D.①⑥⑧答案:B解题思路:要证BC=CF+CD,已知BC=BD+CD,只需要证明CF=BD即可,可以把它们放在两个三角形中证全等.如图,可把本题思路整理成路线图,如图具体过程如下:∵∠BAC=∠DAF∴∠2+∠3=∠1+∠2∴∠3=∠1在△ADB和△AFC中∴△ADB≌△AFC(SAS)∴BD=CF∵BC=BD+CD∴BC=CF+CD因此空缺处依次所填最恰当的是②④⑦.故选B.试题难度:三颗星知识点:三角形全等之类比探究2.(上接第1题)(2)如图,当点D在边BC的延长线上时,其他条件不变,则BC,CF,CD 之间的数量关系和证明思路分别是( )A.BC=CF+CD;思路是利用SAS证明△ADB≌△AFCB.BC=CF+CD;思路是利用SSS证明△FDC≌△ACDC.BC=CF-CD;思路是利用SSS证明△FDC≌△ACDD.BC=CF-CD;思路是利用SAS证明△ADB≌△AFC答案:D解题思路:类比第1题中的路线图,把三角形全等的证明照搬到(2)中,证得△ADB≌△AFC(SAS),根据全等的性质,得到对应边的关系BD=CF,进而推导出BC,CF,CD这三条线段之间的数量关系为BC=CF-CD.如图,∵∠1=∠3∴∠1+∠2=∠2+∠3即∠BAD=∠CAF在△ADB和△AFC中∴△ADB≌△AFC(SAS)∴BD=CF∵BC=BD-CD∴BC=CF-CD故选D.试题难度:三颗星知识点:三角形全等之类比探究3.(上接第1,2题)(3)如图,当点D在边CB的延长线上时,其他条件不变,则BC,CF,CD之间的数量关系和证明思路分别是( )A.BC=CF+CD;思路是利用SAS证明△ADB≌△AFCB.BC=CD-CF;思路是利用SAS证明△ADB≌△AFCC.BC=CD-CF;思路是利用SSS证明△FDC≌△ACDD.BC=CF+CD;思路是利用SSS证明△FDC≌△ACD答案:B解题思路:如图,类比第1题中的路线图,把三角形全等的证明照搬到(3)中,证得△ADB≌△AFC(SAS),根据全等的性质,得到对应边的关系BD=CF,进而推导出BC,CF,CD这三条线段之间的数量关系为BC=CD-BD=CD-CF.故选B.试题难度:三颗星知识点:三角形全等之类比探究4.在四边形ABCD中,BA=BC,.(1)如图1,当点M,N分别在AD,CD上时,若∠BAD+∠BCD=180°,求证:MN=AM+CN.先在图上走通思路后再填写空格内容:(1)如图,延长NC到E,使CE=AM,连接BE.由∠BAD+∠BCD=180°,∠BCE+∠BCD=180°,利用同角的补角相等,得∠BAD=∠BCE;因为BA=BC,AM=CE,因此根据三角形全等的判定___________,可以得到△BAM≌△BCE,由全等的性质得到______________________;又因为,可得_____________,因此根据三角形全等的判定SAS,可以得到___________,由全等的性质得MN=EN;所以MN=EN=CE+CN=AM+CN.请你仔细观察下列序号所代表的内容:①ASA;②SAS;③SSA;④AM=CE,BM=BE;⑤∠1=∠2,BM=BE;⑥∠1=∠2;⑦∠MBN=∠EBN;⑧△MBN≌△EBN;⑨△BAM≌△MDN.以上空缺处依次所填最恰当的是( )A.③⑤⑦⑨B.①④⑥⑧C.②⑤⑥⑨D.②⑤⑦⑧答案:D解题思路:要证MN=AM+CN,这是几条线段间的数量关系,考虑利用截长补短转化成两条线段间的等量关系,在这里使用补短法.如图,延长NC到E,使CE=AM,连接BE.∵∠BAD+∠BCD=180°,∠BCE+∠BCD=180°∴∠BAD=∠BCE在△BAM和△BCE中∴△BAM≌△BCE(SAS)∴∠1=∠2,BM=BE∵∠MBN=∠ABC∴∠1+∠3=∠MBN∴∠2+∠3=∠MBN即∠MBN=∠EBN在△MBN和△EBN中∴△MBN≌△EBN(SAS)∴MN=EN=CE+CN=AM+CN故选D.试题难度:三颗星知识点:三角形全等之类比探究5.(上接第1题)(2)如图2,当点M,N分别在DA,CD的延长线上时,若∠BAD与∠BCD 互补,求证:MN=CN-AM.如图,下面给出了证明的路线图:请你仔细观察下列序号所代表的内容:①△BAM≌△BCE(SAS);②△BMN≌△BEN(SAS);③∠1=∠2,BM=BE;④BM=BE,BA=BC;⑤∠1=∠2.以上横线处,依次所填最恰当的是( )A.①③②B.②④①C.②⑤①D.①④②答案:A解题思路:解:如图,类比前面的字母和思路,根据图中信息,在CN上截取CE,使CE=AM,连接BE,可以得到△BAM≌△BCE(SAS),进而得到∠1=∠2,BM=BE,结合条件进行角的转移,可以得到∠MBN=∠EBN,可证△BMN≌△BEN(SAS),进而推导出MN,AM,CN这三条线段之间的数量关系为MN=CN-AM.因此横线处依次所填最恰当的是①③②.故选A.试题难度:三颗星知识点:三角形全等之类比探究。

最新-初中数学相似之类比探究综合测试卷 精品

最新-初中数学相似之类比探究综合测试卷 精品

初中数学相似之类比探究综合测试卷
一、单选题(共3道,每道30分)
1.如图(1),正方形AEGH的顶点E,H在正方形ABCD的边上,则HD:GC:EB的结果是( )
A.2:3:2
B.1:1:1
C.2:6:3
D.
2.尝试探究:将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),请探究HD:GC:EB的值.
解题思路:首先,可证△ADH≌△ABE,则HD:EB=________;其次,连接AC、AG,则△AGC和△AEB 的关系是__________,则GC:EB=________;最后,HD:GC:EB=______________.
以上横线处,依次所填正确的是( )
①1:1;②;③全等;④相似;⑤3:2;⑥;⑦2:6:3;⑧;
A.①;④;⑥;⑧
B.①;③;⑤;⑧
C.②;④;⑥;⑧
D.②;③;⑥;⑦
3.类比延伸:把图(2)中的正方形都换成矩形,如图(3),且DA:AB=HA:AE=m:n,请探究HD:GC:EB的值.
解题思路:类比第2题,可证△ADH和△ABE的关系是________,则HD:EB=________;其次,连接AC,AG,则△ABC和△AEG的关系是__________,则△AGC和△AEB的关系是__________,则GC:EB=________;最后,HD:GC:EB=______________.
以上横线处,依次所填正确的是( )
①相似;②全
等;③m:n;④n:m;⑤;⑥;⑦;⑧
A.①;③;①;①;⑥;⑧
B.①;③;①;①;⑥;⑦
C.①;④;①;①;⑤;⑧
D.②;③;①;①;⑥;⑧。

中考数学专项练习类比探究综合测试(一)

中考数学专项练习类比探究综合测试(一)

学生做题前请先回答以下问题问题1:类比探究属于几何综合题,类比(__________,___________,___________)是解决此问题的主要方法,做好类比需要把握变化过程中的____________.若属于类比探究常见的结构类型,调用结构类比解决.若不属于常见结构类型①根据题干条件,结合___________________先解决第一问.②类比解决下一问.如果不能,分析条件变化,寻找______________.结合所求目标,依据_____________,大胆猜测、尝试、验证问题2:想一想类比探究问题常见的不变结构有哪些,处理方式是什么?类比探究综合测试(一)一、单选题(共4道,每道25分)1.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例.原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,且∠EAF=45°,连接EF,易证EF=BE+DF.(1)类比联想如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在边BC,CD上,且∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足等量关系_________时,仍有EF=BE+DF.( )A.∠B=∠DB.∠B+∠D=180°C.∠B-∠D=90°D.∠B=2∠D2.(上接第1题)(2)引申拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在BC边上,且∠DAE=45°,则BD,DE,EC之间的数量关系为( )A. B.C. D.3.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在BC边上,∠BAD=75°,∠CAD=30°,AD=2,BD=2CD,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为_____,AC的长为_____.( )A. B.C. D.4.(上接第3题)参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2DE,则BC的长为( )A.6B.C. D.。

类比探究综合测试(三)

类比探究综合测试(三)

类比探究综合测试(三)试卷简介:本套试卷针对河南中考数学22题常考的类比探究内容进行测试,思路上要求学生能够类比上一问思路,迁移解决下一问。

当不能解决时,需要辨识是否属于常见结构(中点,直角,平行,旋转)。

如果依旧不能解决问题,考虑找题目中不变特征。

最后是思路向过程的转化,过程的书写要有框架、分模块,结论突出。

一、单选题(共5道,每道20分)1.如图1,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,可以证明:①DC=BC;②AC=AB+AD.(1)如图2,把题干中的条件“∠ABC=∠ADC=90°”改为“∠ABC+∠ADC=180°”,其他条件不变,要证明题干中的两个结论成立,下列辅助线不合适的是( )A.B.C.D.2.(上接第1题)(2)如图3,若D在AM的反向延长线上,把题干中的条件“∠ABC=∠ADC=90°”改为“∠ABC=∠ADC”,其他条件不变,则下列选项中的证明思路和得到的结论有错误的是( )A.B.C.D./3.如图1,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD于点F,AG⊥CE于点G,连接FG.延长AF,AG,与直线BC分别相交于点M,N.则FG和AB,BC,AC之间的关系为( )A. B.C. D.4.(上接第3题)(2)如图2,若BD,CE分别是△ABC的内角平分线,其他条件不变.则FG和AB,BC,AC之间的关系为( )A. B.C. D.5.(上接第3,4题)(3)如图3,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变.则FG和AB,BC,AC之间的关系为( )A. B.C. D.。

八年级数学类比探究之探究(二)(北师版)(含答案)

八年级数学类比探究之探究(二)(北师版)(含答案)

类比探究之探究(二)(北师版)一、单选题(共6道,每道16分)1.已知CD是经过∠BCA的顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB,且∠BEC=∠CFA=∠α.(1)如图,若∠BCA=90°,∠α=90°,则EF,BE,AF这三条线段之间的数量关系为( )A.BE=AF+EFB.BE=2EFC.BE=AF-EFD.BE=AF+2EF答案:A解题思路:试题难度:三颗星知识点:类比探究2.(上接第1题)(2)如图,若,请你添加一个关于∠α与∠BCA的关系的条件,使结论EF=BE-AF成立,则添加的条件是( )A.∠α=∠BCAB.∠α=∠BCA+90°C.∠BCA+∠α=180°D.∠α=2∠BCA-90°答案:C解题思路:试题难度:三颗星知识点:类比探究3.(上接第1,2题)(3)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,则EF,BE,AF这三条线段之间的数量关系为( )A.BE=AF+EFB.BE=2EFC.BE=EF-AFD.EF=AF+2EF答案:C解题思路:试题难度:三颗星知识点:类比探究4.如图,AD为△ABC的中线,若AB=5,AC=3,则AD的取值范围为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:类比探究5.(上接第4题)如图,在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.若BE=2,CF=3,则EF的值可能为( )A.7B.6C.5D.4答案:D解题思路:试题难度:三颗星知识点:类比探究6.(上接第4,5题)如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D 为顶点作一个60°角,角的两边分别交AB,AC于E,F两点,连接EF,若BE=4,CF=2,则EF的值为( )A.7B.6C.5D.4答案:B解题思路:试题难度:三颗星知识点:类比探究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学类比探究综
合测试卷
初中数学类比探究综合测试卷
一、单选题(共6道,每道16分)
1.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B、C、G在同一直线上,点M是AE的中点.(1)线段MD、MF的位置关系和数量关系为()
小明观察到点M是AE的中点,想到了中点的五种常用思路,结合这道题的条件,
考虑先用(),延长DM交EF于点N,如图证
得:△ADM≌△ENM,然后得出DF=FN,接着用()得出MD⊥MF;用(),证明出MD=MF.从而解决了问题,其中思考的正确顺序应该为()①等腰三角形三线合一;②直角三角形斜边中线等于斜边一半;③中位线;④平行加中点,类倍长中线;⑤倍长中线
A.⑤①②
B.④③①
C.④②①
D.④①②
2.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B、C、G在同一直线上,点M是AE的中点.(2)将图1中的正方形CGEF绕点C顺时针旋转,使正方形
CGEF的对角线CE恰好与正方形ABCD的边BC在同一条直线上,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
小明观察到第2问其实是在第1问的基础上旋转了其中一个正方形得到了,认识到这是个类比探究的题目,所以类比第一问的做法来思考问题:首先观察到在图形旋转过程中,点M始终是AE的中点,依然考虑(),连接DF,FN后,如图,要证明DM⊥MF且DM=MF,只需证明DF=FN且DF⊥FN即可,小明先证明出
△ADM≌△ENM,然后充分利用题干中的条件,用()证明出△CDF≌△ENF,从而得到DF=FN,DF⊥FN,证明出结论
①倍长中线;②类倍长中线;③三线合一;④SAS;⑤AAS;⑥ASA;⑦HL以上括号填写的顺序为()
A.①⑤
B.②⑥
C.②④
D.③④
3.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B、C、G在同一直线上,点M是AE的中点.(3)若将图1中的正方形CGEF绕点C顺时针旋转任意角度,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.
小明同学类比第1、2问的思路,观察到第3问没有了平行关系,所以,首先做出AD的平行线,然后延长DM交AD的平行线于点N,连接DF,FN,如图所示.
同样是先证明出(),再证明(),其中CD=EN,CF=EF两组条件容易找到,其中第三组条件:找角相等,即:∠2=∠NEF 时,是先得到∠1=∠3,然后用“等角的余角相等”得出∠2=∠NEF,从而(),所以
DF=FN,DF⊥FN,然后得到DM⊥MF且DM=MF括号里所填内容分别是()
A.△ADM≌△ENM;△CDF≌△ENF;△CDF≌△ENF
B.△CDF≌△ENF;△ADM≌△ENM;△CDF≌△ENF
C.△ADM≌△ENM;△CDF≌△ENF;△ADM≌△ENM
D.△CDF≌△ENF;△ADM≌△ENM;△ADM≌△ENM
4.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),证明BM+DN=MN
小王觉得∠MAN=45°,而∠BAD=90°,那么(),两边的两个角的和是等于∠MAN 的,所以考虑把这两个角拼在一起,考虑用旋转来转移角度,具体操作为:延长CB 至点E,使得BE=DN,连接AE,如图:
这么一来构造出(),从而∠DAN=∠BAE,那么∠EAM=∠EAB+∠BAM=∠DAN+∠BAM=45°,AE=AN,这样还可以得到
DN+BM=BE+BM=EM,下面只需证明EM=MN即可,有()即可证明,从而得出BM+DN=MN.补充小王的思路,括号里填写顺序为
()①△EAM≌△NAM;②∠BAM+∠DAN=45°;③△ABE≌△AND;
A.②③①
B.①②③
C.③①②
D.②①③
5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(2)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
小王猜测线段BM,DN和MN之间的数量关系还为BM+DN=MN.理由如下:在
∠MAN绕点A旋转到BM≠DN时,∠MAN的度数仍为45°,类比第一问,考虑仍用旋转的思想来做,(),如图
先证明△ABE≌△AND,用的三角形判定方法为(),然后证明△EAM≌△NAM,用的三角形判定方法为(),从而得出
BM+DN=MN。

括号内所填内容分别是()
A.延长CB至点E,使得BE=DN,连接AE;ASS,SAS
B.延长CB至点E,使得
BE=DN,连接AE;AAS,SAS
C.延长CB至点E,使得BE=DN,连接AE;SAS,AAS
D.延长CB至点E,使得
BE=DN,连接AE;SAS,SAS
6.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(3)当∠MAN绕点A旋转到如图3的位置
时,线段线段BM,DN和MN之间的数量关系为()
A.BM+DN=MN
B.DN -BM =MN
C.DN - MN =2 BM
D.BM+DN=2MN。

相关文档
最新文档