常微分方程在数学建模中的应用
数学建模在常微分方程中的应用
数学建模在常微分方程中的应用数学建模是一项广泛应用于各领域的数学方法,而常微分方程恰好是数学建模中常见的一种手段。
常微分方程是描述自然界许多物理现象和生物现象的数学工具,如机械振动、电路理论、生物种群模型、人口增长模型等。
本文将深入探讨数学建模在常微分方程中的应用,为你带来一些启发和思考。
一、模型的建立建立数学模型的第一步是明确问题的背景和目标,确定所涉及的变量及其相互之间的关系。
在常微分方程中,模型通常可以写成如下形式:$$\frac{dy}{dx}=f(x,y)$$其中,$y$是待定函数,$x$是自变量,$f(x,y)$则是关于$y$和$x$的已知函数。
这个模型描述了函数$y$的变化速率与它所处的位置$x$和它自身的值$y$有关。
二、利用数学方法解常微分方程在将模型建立起来后,我们需要求出未知函数$y$的解,这就需要利用各种数学方法。
下面是几种解常微分方程的方法:1.分离变量法当常微分方程可以写成以下形式:我们就可以采用“分离变量”的方法,将未知函数$y$和独立变量$x$分别在两边隔离,然后进行积分即可解出方程的解。
2.变量代换法当常微分方程比较复杂,难以直接求解时,我们可以尝试将自变量$x$或者$y$进行代换,将方程转化为更容易解决的形式。
3.常数变易法当常微分方程无法直接求解,但是已知特定的边界条件时,我们可以采用常数变易法,通过对未知函数常数进行变异,消去特定边界条件,从而解出常微分方程的解。
常微分方程在各个领域中的应用广泛,下面列举了其中的一些实际问题:1.自由落体运动自由落体运动是物理学中的一个基本概念,可以通过常微分方程建立模型。
当物体从高空落下时,它所受的重力和阻力之间的平衡关系将导致其速度的变化。
可以用以下的常微分方程来描述这个过程:其中,$v$为物体的速度,$t$为时间,$g$为重力加速度,$k$为空气阻力系数。
2.生物种群模型生物种群模型通常涉及到生物种群数量的变化。
一个典型的生物种群模型可以写作以下的常微分方程组:其中,$S$表示易感者的数量,$I$表示感染者的数量,$R$表示恢复者的数量,$b$和$d$分别为出生率和自然死亡率,$e$表示感染率,$a$为发病率,$v$为治愈率,$c$和$d$为康复者的死亡率和自然死亡率。
常微分方程在数学建模中的应用4
的未来状态、研究它的控制手段时,通常要建立对 象的动态模型。建模时首先要根据建模目的和对问 题的具体分析做出简化假设,然后按照对象内在的 或可以类比的其它对象的规律列出微分方程,求出 方程的解并将结果应用于实际对象,就可以进行描 述、分析、预测或控制了。下面我们用例子加以说明。 (一)生物种群数量模型 种群的数目题目是当今世界上引起广泛关注 的一个题目,要预测将来种群的数目,最重要的影 响因素是当前的种群数目,以及往后一段时间内种 群的增长状况和处境因素。种群数目增加到一定程 度后,种群在有限的生存空间进行竞争,种群的增 长状况会随着种群数目的增加而削减,并且在有限 的生存空间,种群数目也不可能无穷增长,推测未 来时间里种群数目如何呢?
美国人口统计数据作比较,发现吻合得相当好,表 明Logistic模型合理地给出了受环境因素制约的 生物种群数鼍变化情况。 (二)腐败人数的预测模型 现如今,我们常常能看到一些政府官员因腐 败而落马的报道.随之牵连出大批的涉案分子。然 而,大量被牵连的腐败分子为逃避法律制裁,往往 是东躲西藏。在已牵连出的腐败分子人数基础上
中图分类号:0172文献标识码:A文章编号:1674—5078(2011)Ol-0042—03 DOI:lO.3969/j.issn.1674—5078.2011.01.012
一、引言 随着社会的发展,生物、医学、社会、经济……, 各学科、各行业都涌现出大量的实际课题,急待人 们去研究和解决。各部门工作人员要善于运用数学 知识及数学的思维方法来解决每天面临的大量实 际问题,从而取得经济效益和社会效益。但这些问 题,只用现成的数学知识就能解决的问题几乎是 没有的。你所能遇到的都是数学和其他东西混杂 在一起的问题,其中的数学奥妙不是明摆在那里 等着你去解决,而是暗藏在深处等着你去发现。换 句话说,要对复杂的问题进行分析,发现其中的关 系或规律,并且用数学语言描述出来,把这个实际 问题化成一个数学问题,这个问题就称为数学模
(完整版)常微分方程在数学建模中的应用.
微分方程应用1 引言常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用.2 数学模型简介通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助.建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节.3 常微分方程模型3.1 常微分方程的简介微分方程的发展有着渊远的历史.微分方程和微积分产生于同一时代,如苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时就对简单的微分方程用级数来求解.后来,瑞士数学家雅各布·贝努、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程理论.纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系.如牛顿研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.而这些都证明微分方程在改造自然和认识自然方面有着巨大的力量.微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式.在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质.常微分方程是解决实际问题的重要工具.3.2 常微分方程模型示例数学模型按照建立模型的数学方法可以分为初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型和规划论模型等.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测他的未来性态时,通常要建立对象的动态模型,即微分方程模型.建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来.下面我们由浅入深地介绍一些微分方程模型.例1 细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长为400,那么,前12h后总数是多少?解:第一句话说的是在任何瞬间都成立的事实;第二句话给出的是特定瞬间的信息.如果我们用)y表示总数,第一句话告诉我们(tky dtdy = 它的通解为kt y Ae =A 和k 这两个常数可以由问题中第二句话提供的信息计算出来,即,100)0(=y (3.1) 和 ,400)24(=y (3.2) 其中t 的单位为小时.(3.1)意味着.100)0(0===A Ae y(3.2)意味着.400100)24(24==k e y它给出 .24)4(ln =k 故 .100)(244ln t e t y =要我们求的是200100)12(4ln )2412(==e y 个细菌.例 2 将室内一支读数为 60的温度计放到室外.10min 后,温度计的读数为 70;又过了10min ,读数为 76.先不用计算,推测一下室外的温度.然后利用牛顿的冷却定律计算出正确的答案.牛顿的冷却定律或称加热定律是:将温度为T 的物体放进处于常温m 的介质中时,T 的变化速率正比于T 与周围介质的温度差.在这个数学模型中,假定介质足够大,从而,当放入一个较热或较冷的物体时,m 基本上不受影响.实验证明,这是一个相当好的近似.解 显然,对于这个题首先要做的是了解牛顿定律的含义,这已经做过了。
数学建模在常微分方程中的应用
数学建模在常微分方程中的应用
数学建模是指运用数学方法和技巧分析和解决实际问题的过程。
在数学建模中,常微分方程是一个重要的工具,它用于描述许多实际问题中的变化和发展。
下面将介绍常微分方程在数学建模中的应用。
常微分方程可以用来描述许多自然科学和工程科学中的变化和发展过程。
描述物理学中的运动、天文学中的行星运动和混合和反应过程等。
它们还可以用于解决实际问题,如人口增长、疾病传播、金融模型和生态系统动力学等。
常微分方程的一个重要应用领域是物理学。
在经典力学中,可以通过常微分方程来描述物体在外力作用下的运动。
牛顿第二定律可以用常微分方程的形式表示为:
m*d^2x/dt^2 = F(x,t)
其中m是物体的质量,dx/dt是物体的速度,F(x,t)是物体受到的外力。
这个方程可以用来研究物体的运动轨迹和速度随时间的变化。
常微分方程在工程科学中也有广泛的应用。
热传导方程可以用常微分方程的形式表示为:
d(theta)/dt = k*d^2(theta)/dx^2
其中theta是温度分布,t是时间,k是热传导系数,x是空间位置。
这个方程可以用来研究材料中的温度分布和传热过程。
在生物学和生态学中,常微分方程被用来描述生物种群的增长和相互作用。
Lotka-Volterra方程可以用常微分方程的形式表示为:
dN/dt = r*N - a*N*P
dP/dt = -b*P + c*N*P
其中N是捕食者的数量,P是猎物的数量,t是时间,r、a、b和c是常数。
这个方程可以用来研究捕食者和猎物种群之间的相互作用和稳定性。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用目录摘要 (1)1引言 (2)2 常微分方程的发展概况 (2)3 数学建模简介 (3)4 常微分方程和数学建模结合的特点 (3)5 常微分方程在数学建模中的应用 (3)5.1 建立微分方程的方法 (4)5.2市场价格模型 (5)5.3广告模型 (7)5.4人口预测模型 (9)5.5混合溶液的数学模型 (11)5.6振动模型 (13)5.7教育问题模型 (16)6 总结 (19)参考文献 (20)常微分方程在数学建模中的应用摘要常微分方程是在17世纪伴随着微积分而发展起来的一门具有重要应用价值的学科.它是研究连续量变化规律的重要工具,是众多实际问题与数学之间联系的重要桥梁.在历史上,牛顿正是通过求解常微分方程证实了地球绕太阳运动的轨道是椭圆;天文学家通过常微分方程的计算,预见了海王星的存在.随着工业化的进展,常微分方程在航海、航空工业生产以及自然科学的研究中发挥了重要作用.计算机和计算技术的发展,使微分方程的求解突破了经典方法的局限,迈向数值计算和图像模拟,这为微分方程的应用提供了更为广阔的天地和有效手段,也使得建立数学模型显得尤为重要.本文主要从市场价格模型、广告模型、人口预测模型、混合溶液的数学模型、教育问题模型来论述常微分方程在数学建模中的应用。
关键字:常微分方程;数学建模;市场价格模型;广告模型;人口预测模型;混合溶液的数学模型;教育问题模型1引言在初等数学中,方程有很多种,比如线性方程、指数方程、对数方程、三角方程等,然而并不能解决所有的实际问题。
要研究实际问题就要寻求满足某些条件的一个或几个未知数方程。
这类问题的基本思想和初等数学的解方程思想有着许多的相似之处,但是在方程的形式、求解的具体方法、求出解的性质等方面依然存在很多不同的地方,为了解决这类问题,从而产生了微分方程。
常微分方程是许多理工科专业需要开设的基础课程,常微分方程与微积分是同时产生的,一开始就成为人类认识世界和改造世界的有力工具,随着生产实践和科学技术的发展,该学科已经演变发展为数学学科理论中理论联系实际的一个重要分支。
常微分方程理论在数学建模中的简单应用
常微分方程理论在数学建模中的简单应用摘要:众所周知,自然界中一切物质都按照自身的规律在运动和演变,不同物质的运动规律总是在时间和空间中运动着的,虽然物质的运动形式千差万别,但我们总可以找到它们共性的一面,即具有共同的量的变化规律。
为了能够定性和定量的研究一些特定的运动和演变过程,就必须将物质运动和演变过程中相关的因素进行数学化。
这种数学化的过程就是数学建模的过程,即根据运动和演变规律找出不同变量之间互相制约、互相影响的关系式。
由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程。
微分方程描述的是物质运动的瞬时规律。
将常微分方程应用于数学建模是因为常微分方程理论是用数学方法解决实际问题的强有力的工具,是一门有着重要背景应用的学科,具有悠久的历史,系统理论日臻完善,而且继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题中。
关键词:常微分方程,常微分方程模型,稳定性,数学建模正:1数学建模简介对复杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模…。
与数学不同,构建数学模型的过程不仅要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。
所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。
对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。
但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。
同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。
2常微分方程和数学建模结合的特点通常在建立对象的动态模型时,应对不同的实际对象建立不同的并与之相适合的数学模型。
首先要具体的问题具体分析对建模的目的应该做出简化的假设,而后还要依照对可以类比的其它对象的规律或者其对象内在的微分方程进行解题并求出这一方程的解,这样才能将其结果反馈回实际的对象,然后再进行预测或控制,描述与分析。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。
它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。
举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。
这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。
这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。
因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。
常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。
它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。
此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。
尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。
例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。
在这些情况下,常微分方程可能不再适用。
因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用首先是物理方面。
在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。
例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。
这个方程可以用来描述物体的运动。
另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。
生物方面是另一个常见的应用领域。
生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。
而常微分方程可以很好地描述这些问题。
例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。
该模型使用了增长速率与细菌种群密度之间的关系。
通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。
此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。
经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。
例如,Solow增长模型是描述经济增长的常微分方程模型。
该模型考虑了资本积累和技术进步对经济增长的影响。
通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。
除了物理、生物和经济学,常微分方程还可以在其他领域中应用。
例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。
此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。
总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。
通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。
数学建模在常微分方程中的应用
数学建模在常微分方程中的应用数学建模是利用数学工具和方法对实际问题进行描述、分析和解决的过程。
在实际应用中,数学建模可以用来描述和分析各种自然现象和社会现象,其中常微分方程是数学建模中经常使用的工具之一。
常微分方程描述了变量之间的关系和变化规律,广泛应用于物理、经济、生态、生物等领域。
本文将着重介绍数学建模在常微分方程中的应用,以及其在各个领域中的重要意义。
一、常微分方程的基本概念在介绍数学建模在常微分方程中的应用之前,首先我们需要了解一些常微分方程的基本概念。
常微分方程是描述一个或多个未知函数的导数和自变量之间的关系的方程。
一阶常微分方程一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f(x, y) 表示y的导数关于 x 和 y 的函数。
解一阶常微分方程就是找到一个函数y(x),满足对应的微分方程。
常微分方程可以分为线性和非线性两类。
线性常微分方程一般形式为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,y是未知函数。
非线性常微分方程则是除线性方程以外的方程形式,它们通常更为复杂,很难找到通解。
二、数学建模在物理领域中的应用在物理领域,常微分方程的应用十分广泛。
从牛顿的运动定律到电磁场的描述,都可以通过常微分方程建模。
二阶常微分方程描述了谐振子的运动,可以用来研究弹簧振子的振动规律;而洛伦兹方程描述了流体力学中混沌系统的行为,对于天气预报和气候变化的研究产生了重要影响。
常微分方程还可以用来描述电路中的电流、电压变化,热传导和扩散过程等。
在这些问题中,常微分方程的建模和求解对于优化设计、性能分析和系统控制都具有重要意义。
生态学是研究生物与其环境相互作用的学科,常微分方程在生态学领域中也有重要的应用。
Lotka-Volterra方程是描述捕食者和食饵种群动态的模型,通过求解这些方程可以预测不同种群的数量随时间的变化规律,对生态系统的保护和管理有很大帮助。
常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中有广泛的应用,涉及到许多领域,如物理学、经济学、生物学、工程学等。
以下介绍其中一些应用:
1. 物理学模型:在物理学建模中,常微分方程可以用来描述射线的传播,弹性杆的变形,振动的周期等。
如著名的二阶线性微分方程 y''+by'+ky=0 可以用来描述简谐振动,而 y'+ky=0 可以用来描述自由阻尼振动。
2. 经济学模型:经济学中很多模型,如经济增长模型、消费模型、储蓄模型等都可以用常微分方程来描述。
经济模型一般包含多个变量,每个变量都可以用常微分方程来表示,构成一组微分方程组,从而得到系统的解析解。
3. 生物学模型:常微分方程也是生物学建模中最常用的工具之一。
生物学中很多现象如人口增长、病毒传播、生物物种的竞争和合作等都可以用常微分方程来描述。
4. 工程学模型:工程学中,常微分方程可以用来描述控制系统中的动态行为,例如控制电路、城市交通流、水力系统等。
综上所述,常微分方程的解法在数学建模中有广泛的应用,能够帮助科学家和工程师更好地预测和解决现实生活中的问题。
常微分方程在数学建模中的应用【开题报告】
件二: 个体获得免疫是永久的, 这意味着假若某个个体获得免疫, 他们将永远不会再感染. 这种模型适合于滤过性霉菌引起的流行病, 如麻疹、天花、腮腺炎等; 条件三: 易感人群的减少速度与易感人群和被感染者数量的乘积呈正比. 条件四: 恢复者的增长速度与被感染者的数量成正比. 后来在SIR模型考虑3类个体的基础上, 增加了1类个体: 已感染但处于潜伏期未发病者. 上述4类个体及描述其相互关系的常微分方程组构成新的传染病动力学模型: SEIR模型.近几年, 人们用数学方法来研究传染病的发病机理、动态过程和发展趋势, 已逐步成为一个活跃的研究领域. 在国外, 数学预测模型已经能够成功地应用于生物分子水平, 模拟体内病毒的复制及半衰期, 让我们更加全面地认识并了解了传染病的感染机制. 而我们的国内学者吴开琛等也成功的把该模型应用于非典型肺炎(SARS)的研究, 并在此基础上提出5分室模型, 即: SEIDR, 其中的D(death)为人群中感染发病者不治死亡的.本文是利用SIR模型来研究传染病问题的, 由于传染病流行过程的研究与其他学科有所不同, 不能通过在人群中实验的方式来获得数据, 所以有关传染病的数据、资料只能从已有的传染病流行的报告中获取, 这些数据往往不够全面, 难以根据这些数据来准确地确定参数, 只能大概估计其范围.这次论文主要是通过全面调查、收集相关的数据资料, 有效应用常微分方程和数学建模的相关知识, 并充分利用图书馆和互联网上的丰富的资源来建立SIR模型, 在对建立好的数学模型进行定量和定性的分析与探究的过程中, 观察和研究实际对象的固有特征和内在规律, 抓住问题的主要矛盾, 对当今社会中经常爆发的传染病建立常微分方程模型并利用常微分方程和数学建模的相关知识对它分别进行分析和研究, 探讨了它的传播规律以及影响它们流行的因素、预测可能发生的后果及如何抑制其流行或恶化. 这个模型的建立及探究说明了在反映客观现实世界运动过程的量与量之间的关系中, 大量存在了满足常微分方程关系式的模型, 需要我们通过求解常微分方程来了解未知函数的性质, 常微分方程是解决实际问题的重要工具. 所建立的模型, 在常微分方程的观点剖析下, 充分展现现代社会生活中常微分方程应用.二、研究的基本内容, 拟解决的主要问题研究的基本内容:利用常微分方程与数学建模的知识建立SIR模型解决的主要问题:1 对建好的SIR模型进行定量和定性的分析2 探讨传染病传播的规律以及影响它流行的因素3 预测可能发生的后果以及如何抑制其流行或恶化三、研究步骤、方法及措施研究步骤:查阅相关资料, 做好笔记;仔细阅读研究文献资料;在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;翻译英文资料;开题报告通过后, 撰写毕业论文;上交论文初稿;反复修改论文, 修改英文翻译, 撰写文献综述;论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料,参考相关内容.在老师指导下, 归四、参考文献[1]May RM et al, Nature [J]. Nature Publishing Group, 1979, 180: 455~461.[2]Langlais M et al, Math Comp Model [J].Elsevier Science, 2000, 31: 117~124.[3]陈文江, 吴开琛等. 运用数学模型探讨SARS聚集性传播的机制[J].中国热带医学,2004, 4(1): 221~228.[4]王高雄,周之铭等. 常微分方程[M]. 北京:高等教育出版社, 2006, 01: 131~135.[5] 丁慧,王亚男. 从实践教学中谈常微分方程的发展及其应用[J]. 科学时代, 2010,4(1): 121~123.[6] 赵静, 但琦等. 数学建模与数学实验[M]. 北京: 高等教育与出版社, 2008, 01:26~31.[7]查淑玲. 传染病的SIR模型[J]. 山西中医学院学报, 2003, 4(2): 52~58.[8] 黄其春. 亚健康的产生及解决对策[J]. 广西中医学院学报, 2002, 03: 32~38.[9] 王育学. 亚健康问题纵横谈[J]. 解放军健康, 2005, 01: 55~61.[10] 阳凌云,符云锦. 一阶线性微分方程组的解法新探[J]. 湖南工业大学学报, 2010,1(1): 68~72。
常微分方程在数学建模中的应用(免费版)
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。
数学建模在常微分方程中的应用
数学建模在常微分方程中的应用数学建模是将现实世界中的问题用数学语言表示和解决的过程,而在这一过程中,常微分方程则是数学建模中最常用的工具之一。
常微分方程描述了自变量与因变量及其导数之间的关系,而在实际应用中,常微分方程被广泛用于描述各种变化和动力学系统,如物理、生物、经济学等领域。
在本文中,我们将介绍一些常微分方程在数学建模中的应用,并讨论其重要性和意义。
常微分方程在生物学和生态学中扮演着至关重要的角色。
人口增长模型可以用常微分方程描述,这些模型不仅可以帮助我们预测未来的人口数量,还可以提供人口增长对资源利用和环境变化的影响。
常微分方程也被用于描述化学反应和自然界中的各种生物过程,比如鱼群的迁徙、细胞的增殖和死亡等。
通过数学建模和常微分方程分析,我们可以更好地理解这些生物和生态系统的行为规律,为保护生态环境和可持续发展提供科学依据。
常微分方程在物理学中也有着重要的应用。
牛顿第二定律描述了运动物体的运动规律,它可以通过常微分方程的形式表示为F=ma,其中F是作用在物体上的力,m是物体的质量,a是物体的加速度。
这个简单的方程描述了物体随时间的位置和速度的变化,为我们理解宇宙中的运动和力学系统提供了重要工具。
电路中的电流和电压、谐振子的运动等现象也可以通过常微分方程进行描述和分析,在工程和技术应用中有着广泛的应用价值。
常微分方程还在经济学和金融学中有着重要的应用。
经济增长模型、货币供应和通货膨胀等经济现象,都可以通过常微分方程进行建模和分析。
在金融领域,股票价格波动、利率变化和金融衍生品的定价等问题也可以通过常微分方程进行描述和预测。
这些模型不仅可以帮助我们理解经济和金融系统的运行机制,还可以提供决策者制定政策和管理风险的依据。
在实际的数学建模过程中,常微分方程不仅是描述现象和问题的工具,更重要的是它们可以通过解析或数值方法进行求解,从而得到对问题的深入理解和有效预测。
通过求解微分方程可以得到系统的稳定性、平衡点、周期解等重要信息,从而为我们提供了优化系统和设计控制方法的依据。
数学建模中的微分方程及其应用研究
数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。
数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。
微分方程是数学建模中的关键工具之一。
在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。
一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。
微分方程可以分为常微分方程和偏微分方程两种。
常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。
它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。
通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。
三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。
在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。
2. 对模型中的常微分方程进行求解。
3. 通过解析解或数值解来得到所需的结果。
以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。
牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。
通过求解这个方程,我们可以得到天体的运动轨迹。
2. 描述弹簧振动的简谐运动。
弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用摘要:正文:数学建模概述建模定义:数学建模(Mathematical Modeling)就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。
数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。
建模步骤:1.模型准备在解决一个问题之前,我们首先要弄清楚这个问题的具体含义,包含的数学关系。
需要求解的问题,限制条件和里面的逻辑关系。
用数学语言将这个问题进行翻译。
同时,要在图书馆或网上资料库找到相关文章,或数据支持。
加深自己对这个问题的理解的同时,也为下文的求解提供一定的理论支持和参考。
2.模型假设实际生活中的问题非常复杂,相关影响因素也特别多,我们不可能把所有的因素都考虑在内,往往需要通过假设忽略其中一些不重要、对结果影响小、发生几率不大、符合常识的假设。
通过这些假设对问题进行简化。
3.模型建立建立模型的过程就是对问题进行数学语言转化的过程,其中要注意模型尽可能地简单,不能太复杂,所运用的数学原理要适用于该问题。
而且尽可能转化成自己熟悉的,擅长的模型。
4.模型求解模型的求解往往要运用合适的数学软件,如SPSS,MATLAB,R,Lingo,Python 等。
根据自己的问题的不同类型选择合适的软件进行求解。
结果可能呈现出数据,图表,分析表等不同的形式。
5.模型检验进行模型检验时,通常通过利用已知过给数据和所给的一个相应结果检验模型的正确性。
如图像重建;预测模型可以通过以往数据进行检验;相关性问题通过R 值进行检验等。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用常微分方程是数学中的一个重要分支,它研究描述自然现象中连续变化的函数的微分方程。
在数学建模中,常微分方程是一种常用的工具,用于描述和解释各种自然和社会现象。
本文将探讨常微分方程在数学建模中的应用,并详细介绍其中的一些具体案例。
首先,常微分方程在经济学建模中发挥着重要作用。
经济学中,人们经常使用常微分方程来描述经济系统中的变化。
例如,经济增长模型可以使用一阶线性常微分方程来描述。
这个方程中的未知函数是时间的函数,表示经济变量(如国内生产总值)的增长率。
通过求解这个方程,可以推导出经济增长模型中的稳定点、周期性和渐近行为等信息,从而对经济现象进行预测和分析。
其次,常微分方程在物理学建模中也有广泛的应用。
物理学中的许多自然现象可以用微分方程来描述,例如运动学、力学、光学等。
例如,一个简单的自由落体模型可以用一阶非线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示物体的高度随时间的变化。
通过求解这个方程,可以推导出物体的运动轨迹、终止位置和速度等信息,从而对物理现象进行分析和预测。
此外,常微分方程在生物学建模中也有重要的应用。
生物学中的许多现象和过程可以用微分方程来描述,例如生物种群的增长、化学反应速率的变化等。
例如,一个简单的生物种群模型可以用一阶线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示种群数量随时间的变化。
通过求解这个方程,可以推导出种群的稳定点、消亡速度和周期性等信息,从而对生物现象进行研究和分析。
最后,常微分方程还在工程学建模中广泛应用。
工程学中的许多问题,如电路、动力学系统、流体力学等,都可以用微分方程来描述。
例如,一个简单的电路模型可以用一阶非线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示电流随时间的变化。
通过求解这个方程,可以推导出电流的稳定值、频率响应和幅频特性等信息,从而对电路的性能进行分析和优化。
综上所述,常微分方程在数学建模中具有重要的应用。
常微分方程在数学建模中的有效运用研究
常微分方程在数学建模中的有效运用研究作者:王复友来源:《课程教育研究·中》2015年第04期【摘要】常微分方程是17世纪随着微积分发展起来的一种研究连续量变化的工具和解决很多实际问题与数学直接的桥梁的应用学科。
牛顿证实地球公转的轨道是椭圆形的就是通过对常微分方程进行求解得出的。
海王星的发现也是科学家在解开常微分方程得出的结论,事实上确实是通过这样发现了海王星的存在。
【关键词】常微分方程数学建模数学模型【中图分类号】G42 【文献标识码】A 【文章编号】2095-3089(2015)04-0171-01一、数学模型的概念所谓的数学模型就是通过对数学工具的运用从而把实际问题和理论知识相结合,并且解释具体的现象和情况对未来的事物发展方向进行预测,从而进行控制优化,以便更好的指导社会生活发展等。
数学建模的基本流程就是:实际问题建模构建数学模型;然后对数学模型运用数学工具进行数学处理;得到处理后的数学模型的解;通过对数学模型的解加以阐述和解释来得出实际问题的解;最后通过实际问题的解回归到实际问题中加以预测或者解决问题。
所以,数学模型其实就是通过数学工具或者数学语言对实际问题的一个概况描述。
主要目的就是为了解决实际问题。
二、数学建模的方法第一步准备模型,首先是对想要建模的实际问题进行了解,确定建模目的,弄清建模的内容方向,然后通过计算机或者在图书馆查阅相关信息,然后对问题进行总结分析,进行深入研究调查。
第二步是通过对模型的深入调查研究以后,对问题进行化繁为简,抓住问题的主要因素,把次要的不影响大的结果的因素忽略简化,进而对模型提出假设构想,然后不断的进行修改和完善。
第三步是在模型假设的基础上,选择正确的合理的科学的数学工具对实际问题的变量进行描述,要注意分清变量的类型,正确选择合适的数学工具建立微分方程。
要尽可能的把握问题的本质,简化掉多余的信息,进行严密周祥的推理,同时要保证思路清晰、明了尽量提高准确性,科学性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北方民族大学学士学位论文论文题目:常微分方程在数学建模中的应用院(部)名称:信息与计算科学学院****:***专业:信计学号:********指导教师姓名:魏波论文提交时间:论文答辩时间:学位授予时间:北方民族大学教务处制摘要本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用.关键词:常微分方程,数学建模,数学模型AbstractIn this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields.Keywords: ordinary differential equations, mathematical modeling, mathematical model.目录第一章绪论 (4)1.1背景及意义 (4)1.2本文研究的主要内容 (4)第二章微分方程的基本理论及稳定性研究 (6)2.1 微分方程的一般理论 (6)2.1.1微分方程的一般形式 (6)2.1.2微分方程解的存在惟一性 (7)2.2人口模型 (10)第三章常微分方程在数学建模中的应用 (12)3.1 减肥的数学模型 (13)3.2化工车间的通风问题模型 (15)第四章总结 (17)参考文献 (18)致谢 (19)第一章绪论1.1背景及意义常微分方程的发展、形成与许多学科都有着密切的联系,例如几何学、物理学、化学、生物学、经济学甚至电子科技、航天航空等.为数学的分支学科—常微分方程的发展起着深刻而重要的影响,特别是计算机的发展更为常微分方程的应用及理论研究提供有力的工具.数学若想解决实际的许多问题,就要通过观察研究实际对象的特征和内在的关系规律,抓住问题的主要矛盾,建立起反映实际问题的数学模型.而在数学模型求解的问题上,常微分方程是最重要的知识工具.因此继续探讨研究常微分方程在数学建模中的应用依然是有着及其重要的学术价值和及其深刻的现实意义.目前,已有很多学者对此方面进行了研究,例如,朱美玲在《太远城市职业技术学院报》中简要介绍了常微分方程的发展和数学建模的过程以及常微分方程在数学建模中的一些应用,并对数学建模在数学教学中的地位和作用作了一些展望;王英霞在《才智》2011年12期中介绍常微分方程的发展、数学建模的特点;重点介绍了常微分方程与数学建模相互结合,在不同的领域中的相关的具体例子,总结常微分方程在数学建模中的重要性;赵家林在《中国科教创新导刊》2009年第1期中描述了客观是的数量关系的一种重要数学模型.数学领域的中心学科常微分方程至今已有近300年的发展历史,为了寻求、解决类似自由落体下落过程中下落距离和时间的函数关系;研究火箭在空中飞行时的飞行轨道等这类实际性的问题,往往就要求我们找到满足某些特定条件的一个或多个未知数方程,为了解决这类实际问题从而产生了微分方程.把含有未知函数及未知函数导数或微分的方程称之为微分方程.微分方程是在处理实际问题的过程中产生的, 微分方程的研究又促进实际问题的解决,同时也促进其他学科的发展.1.2本文研究的主要内容本文通过对常微分方程、数学模型、以及常微分方程在数学建模中应用的介绍,如:微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、人口模型、减肥的数学模型、化工车间的通风问题模型等.发现应用数学理论研究解决实际过程中的问题.而一切数学模型的建立和求解,都是为了更好的应用数学理论指导实际生活.常微分方程的出现以及常微分方程在数学建模中的广泛应用,就是为了更好地使普通人理解并利用数学理论,更好的解决实际中的问题.把理论升华为由知识型向能力型转化,突显微分方程以及微分方程在数学建模中的应用,努力在各个领域做出突出重大贡献.本文共分为四个章节:第一章,对全文进行概述,介绍了常微分方程在数学建模中的应用的背景和意义、国内外的研究现状以及本文研究的主要内容.第二章,微分方程的基本理论及稳定性研究.第三章,常微分方程在数学建模中的应用.第四章,全文综述、总结.第二章 微分方程的基本理论及稳定性研究2.1 微分方程的一般理论微分方程是研究函数变化规律的有力工具,有着广泛的实际应用.针对所研究的对象建立微分方程模型是解决问题的第一步,实际中只有求出微分方程的解才能对所研究的问题进行解释说明.一般说来,求微分方程的解析解是困难的,大多数的微分方程需要数值方法来求解,因此首先需要研究微分方程的解的存在唯一性和稳定性问题.2.1.1微分方程的一般形式一阶微分方程()()⎪⎩⎪⎨⎧==00,x t x t x f dt dx (2.1)其中()x t f ,是t 和x 的已知函数,()00x t x =为初始条件,又称定解条件。
一介微分方程组()()()()()⎪⎩⎪⎨⎧====,,...2,1,...,2,1,...,,0021n i x t x n i x x x t f dt dx i i n i i (2.2)又称为一阶正规方程组.如果引入向量()()()()()Tn T n x x x x x x x x 00201021,,,,,..., == ()Tn T n dt dx dt dx dt dx dt dx f f f f ⎪⎭⎫ ⎝⎛==,,,,,,,2121 则方程(2.2)可以写为简单的形式()()⎪⎩⎪⎨⎧==00,x t x x t f dt dx (2.3)即与方程(3、1)的形式相同,当n=1时为方程(2.1).对于任一高阶的微分方程⎪⎪⎭⎫ ⎝⎛=--11,,,;n n n n dt x d dt dx x t f dt x d如果记()(),,,;,2,1,01101--===n n i i i y y y t f dtdy n i y dt x d ,即可化为一阶方程组的形式。
一般解法如下:例1.求方程组yx dx dy -= 解 将变量分离得xdx ydx -=两边积分,即得22222c x y +-= 因而,通解为c y x =+22这里c 是任意正常数.或者解出y ,写出显函数形式的解2x c y -±=2.1.2微分方程解的存在惟一性正规方程组(2.3)的解在什么条件下存在,且惟一呢?有下面的定理. 定理2.1(Cauchy —peano ) 如果函数()x t f ,在b x x t t R ≤-≤-00,:α上连续,则方程组(2.3)在h t t ≤-0上有解()t x φ=满足初值条件()00t x φ=,此处()()x t f M M b a h Rx l ,,,min max ,∈=⎪⎭⎫ ⎝⎛= 定理3.2 如果函数()x t f ,在b x x t t R ≤-≤-00,:α 上连续,且满足利普希茨(Lipschitz )条件(即存在正常数L 使得,()()()()()()2121,,x x L x t f x t f -≤-,其中()()()R x t x t ∈21,),,(,则方程组(2.3)满足初值条件()00t x φ= 的解是惟一的。
2.1.3微分方程的稳定性问题在实际问题中,微分方程所描述的是物质系统的运到规律,在用微分方程来研究这个物理过程中,人们只能考虑影响该过程的主要因素,而不得不忽略一些人为次要的因素,这种次要的因素通常称为干扰因素,这些干扰因素在实际中可以瞬时的起作用,也可持续的起作用.从数学上来看,前者会引起初值条件的变化,而后者会影响微分方程本身的变化,在实际问题中,干扰因素是客观存在的,由此可见,对于它的影响程度的研究的必要的,即初值条件或微分方程的微小变化是否也只是引起对应解的微小变化?这就是微分方程的稳定性问题,这里仍以方程组(2.3)为例讨论.(1)有限区间的稳定性如果()x t f ,在某个有限的区域1+⊂n R G 内连续,且对x 满足礼普希茨条件,()()b t a t x ≤≤=ψ是方程组(2.3)的一个特解,则当0x 充分接近于()()b t a t ≤≤00ψ时,方程组(2.3)在b t a ≤≤上满足初值条件()00t x x =的解 ()00,,x t t x φ=有()()()()b t a t x t t t x ≤≤=→ψφψ00,,lim 00 即对0>ε,总存在相应的()0>εδ,当()()εδψ<-00t x 时,对一切b t a ≤≤有()()εψφ<-t x t t 00,,此时称方程组(2.3)的解()t x ψ=在有限区间b t a ≤≤上是稳定的。