高三数学正态分布2
高考数学第一轮复习:《二项分布与正态分布》
高考数学第一轮复习:《二项分布与正态分布》最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.4.能解决一些简单的实际问题.【教材导读】1.条件概率和一般概率的关系是什么?提示:一般概率的性质对条件概率都适用,是特殊与一般的关系.2.事件A,B相互独立的意义是什么?提示:一个事件发生的概率对另一个事件发生的概率没有影响.3.在一次试验中事件A发生的概率为p,在n次独立重复试验中事件A恰好发生k次的概率值为什么是C k n p k(1-p)n-k?提示:n次恰好发生k次,为C k n个互斥事件之和,每个互斥事件发生的概率为p k(1-p)k,故有上述结论.4.正态分布中最为重要的是什么?提示:概念以及正态分布密度曲线的对称性.1.条件概率及其性质条件概率的定义条件概率的性质一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B|A)≤1;(2)若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)2.事件的相互独立性(1)定义设A、B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)与对立事件的关系如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,设在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n).此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).5.正态分布(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图(1)所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图(2)所示.(3)正态总体在三个特殊区间内取值的概率值①P(μ-σ <X≤μ+σ)=0.6826;②P(μ-2σ <X≤μ+2σ)=0.9544;③P(μ-3σ <X≤μ+3σ)=0.9974.【重要结论】1.P(A)=a,P(B)=b,P(C)=c,则事件A,B.C至少有一个发生的概率为1-(1-a)(1-b)(1-c).2.X~N(μ,σ),若P(X<a)=P(X>b),则正态密度曲线关于直线x=a+b2对称.1.设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()(A)1 (B)5 3(C)5 (D)9B解析:因为μ=2,根据正态分布的性质得a+2+2a-32=2,解得a=53.2.已知随机变量X服从正态分布N(2,32),且P(X≤1)=0.30,则P(2<X<3)等于() (A)0.20 (B)0.50(C)0.70 (D)0.80A 解析:∵该正态密度曲线的对称轴方程为x =2, ∴P(X ≥3)=P(X ≤1)=0.30,∴P (1<X <3)=1-P(X ≥3)-P(X ≤1)=1-2×0.30=0.40,∴P (2<X <3)=12P (1<X <3)=0.20. 3.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f(x)=x 2+4x +X 存在零点的概率是( )(A)56 (B)45 (C)3132(D)12C 解析: ∵函数f(x)=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12,∴P(X ≤4)=1-P(X =5)=1-125=3132.4.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长幼苗的概率为________.答案:0.725.在一次高三数学模拟考试中,第22题和23题为选做题,规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12,则其中甲、乙两名学生选做同一道题的概率为________.答案:12考点一 条件概率(1)某射击手射击一次命中的概率是0.7,两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是( )(A)710 (B)67 (C)47(D)25(2)把一枚硬币任意抛掷三次,事件A 为“至少一次出现反面”,事件B 为“恰有一次出现正面”,则P(B|A)=________.解析:(1)设第一次射中为事件A 、随后一次射中为事件B , 则P(A)=0.7,P(AB)=0.4,所以P(B|A)=P (AB )P (A )=0.40.7=47. (2)由题意,知P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P (AB )P (A )=3878=37.答案:(1)C (2)37【反思归纳】 (1)一般情况下条件概率的计算只能按照条件概率的定义套用公式进行,在计算时要注意搞清楚问题的事件含义,特别注意在事件A 包含事件B 时,AB =B.(2)对于古典概型的条件概率,计算方法有两种:可采用缩减基本事件全体的办法计算P(B|A)=n (AB )n (A );直接利用定义计算P(B|A)=P (AB )P (A ). 【即时训练】 (1)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.(2)某种家用电器能使用三年的概率为0.8,能使用四年的概率为0.4,已知某一这种家用电器已经使用了三年,则它能够使用到四年的概率是________.解析:(1)解法一 设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则P(AB)=C 55C 2100,所以P(B|A)=P (AB )P (A )=5×4100×995100=499.解法二 第一次取到不合格产品后,也就是在第二次取之前,还有99件产品,其中有4件不合格的,因此第二次取到不合格品的概率为499.(2)记事件A 为这个家用电器使用了三年, 事件B 为这个家用电器使用到四年,显然事件B A ,即事件AB =B ,故P(A)=0.8,P(AB)=0.4, 所以P(B|A)=P (AB )P (A )=0.5. 答案:(1)499 (2)0.5考点二独立事件的概率甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解析:设A k,B k分别表示“甲、乙在第k次投篮投中”,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件与相互独立事件的概率计算公式知P(A3)=13+23×12×13+(23)2×(12)2×13=13+19+127=1327.(2)ξ的所有可能取值为1,2,3,且P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P(ξ=2)=P(A1B1A2)+P(A1B1A2B2)=23×12×13+(23)2×(12)2=29,P(ξ=3)=P(A1B1A2B2)=(23)2×(12)2=19.综上知,ξ的分布列为ξ 1 2 3P 232919所以E(ξ)=1×23+2×29+3×19=139.【反思归纳】概率计算的核心环节就是把一个随机事件进行类似本题的分拆,这中间有三个概念,事件的互斥,事件的对立和事件的相互独立,在概率的计算中只要弄清楚了这三个概念,根据实际情况对事件进行合理的分拆,就能把复杂事件的概率计算转化为一个个简单事件的概率计算,达到解决问题的目的.【即时训练】 某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列. 解:(1)甲、乙所付费用可以为10元、20元、30元. 甲、乙两人所付费用都是10元的概率为 P 1=13×12=16,甲、乙两人所付费用都是20元的概率为 P 1=12×13=16,甲、乙两人所付费用都是30元的概率为 P 1=1-13-12×1-12-13=136故甲、乙两人所付费用相等的概率为 P =P 1+P 2+P 3=1336.(2)随机变量ξ的取值可以为20,30,40,50,60. P(ξ=20)=12×13=16P(ξ=30)=13×13+12×12=1336P(ξ=40)=12×13+1-12-13×13+1-13-12×12=1136P(ξ=50)=12×1-12-13+1-12-13×13=536P(ξ=60)=1-12-13×1-12-13=136 故ξ的分布列为:P16 1336 1136 536 136考点三 二项分布京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄ξ服从正态分布N(μ,σ2),同时随机抽取100位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在[30,80]内),样本数据分布区间为[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如图所示的频率分布直方图.(1)若P(ξ<38)=P(ξ>68),求a ,b 的值;(2)现从样本年龄在[70,80]的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为23,且每个人回答正确与否相互之间没有影响,用η表示票友们赢得老年戏曲演唱机的台数,求η的分布列及数学期望.解:(1)根据正态曲线的对称性,由P(ξ<38)=P(ξ>68),得μ=38+682=53. 再由频率分布直方图得⎩⎪⎨⎪⎧(0.01+0.03+b +0.02+a )×10=1,0.1×35+0.3×45+10b ×55+0.2×65+10a ×75=53, 解得⎩⎪⎨⎪⎧a =0.005,b =0.035.(2)样本年龄在[70,80]的票友共有0.05×100=5(人), 由题意η=0,1,2,3,4,5,所以P(η=0)=C 05⎝ ⎛⎭⎪⎫1-235=1243, P(η=1)=C 15⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫1-234=10243, P(η=2)=C 25⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-233=40243, P(η=3)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫1-232=80243, P(η=4)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫1-231=80243, P(η=5)=C 55⎝ ⎛⎭⎪⎫235=32243, 所以η的分布列为η 012345 P1243 10243 40243 80243 8024332243所以E(η)=0×1243+1×10243+2×40243+3×80243+4×80243+5×32243=103,或根据题设,η~B ⎝ ⎛⎭⎪⎫5,23,P(η=k )=C k 5⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-235-k (k =0,1,2,3,4,5), 所以E(η)=5×23=103.【反思归纳】 在实际问题中具体列出服从二项分布的随机变量的概率分布列对解决问题有直观作用,求解服从二项分布的随机变量的概率分布列和数学期望,只要按照公式计算即可.【即时训练】 某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数所进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列、均值与方差.解:(1)由频率分布直方图,知成绩在[9.9,11.4)的频率为1-(0.05+0.22+0.30+0.03)×1.5=0.1.因为成绩在[9.9,11.4)的频数是4,故抽取的总人数为40.1=40.又成绩在6.9米以上的为合格,所以这次铅球测试成绩合格的人数为40-0.05×1.5×40=37.(2)解法一 ξ的所有可能的取值为0,1,2,利用样本估计总体,从今年该市高中毕业男生中随机抽取一名成绩合格的概率为3740,成绩不合格的概率为1-3740=340,可判断ξ~B ⎝ ⎛⎭⎪⎫2,340. P(ξ=0)=C 02×⎝ ⎛⎭⎪⎫37402=13691600,P(ξ=1)=C 12×340×3740=111800, P(ξ=2)=C 22×⎝ ⎛⎭⎪⎫3402=91600,故所求分布列为X 0 12P13691600111800 91600ξ的均值为E(ξ)=0×13691600+1×111800+2×91600=320,ξ的方差为D(ξ)=⎝ ⎛⎭⎪⎫0-3202×13691600+⎝ ⎛⎭⎪⎫1-3202×111800+⎝ ⎛⎭⎪⎫2-3202×91600=111800.解法二 求ξ的分布列同解法一.ξ的均值为E(ξ)=2×340=320,ξ的方差为D(ξ)=2×340×⎝ ⎛⎭⎪⎫1-340=111800.考点四 正态分布(1)在某项测量中,测量结果ξ服从正态分布N (4,σ2)(σ>0),若ξ在(0,4)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为( )(A)0.2 (B)0.4 (C )0.8(D)0.9(2)已知三个正态分布密度函数f i (x)=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )(A)μ1<μ2=μ3,σ1=σ2>σ3(B)μ1>μ2=μ3,σ1=σ2<σ3(C)μ1=μ2<μ3,σ1<σ2=σ3(D)μ1<μ2=μ3,σ1=σ2<σ3(3)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()(A)73(B)53(C)5 (D)3解析:(1)∵ξ服从正态分布N(4,σ2)(σ>0),∴曲线的对称轴是直线x=4,∴ξ在(4,+∞)内取值的概率为0.5.∵ξ在(0,4)内取值的概率为0.4,∴ξ在(0,+∞)内取值的概率为0.5+0.4=0.9.(2)正态分布密度函数f2(x)和f3(x)的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又f2(x)的对称轴的横坐标值比f1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数f1(x)和f2(x)的图像一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.故选D.(3)因为ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3+a+22=3,解得:a=73.故选A.答案:(1)D(2)D(3)A【反思归纳】(1)在计算服从正态分布的随机变量在特殊区间上的概率时要充分利用正态密度曲线的对称性,将所求的概率转化到我们已知区间上概率.(2)根据正态密度曲线的对称性,当P(ξ>x1)=P(ξ<x2)时必然有x1+x22=μ.【即时训练】为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中体重属于正常情况的人数是()(A)997 (B)954(C)819 (D)683解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ≤X≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.答案:D正态分布与二项分布的综合某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?审题指导满分展示:解:解答:(1)解:20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)解:由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于EX>400,故应该对余下的产品作检验.命题意图:本题考查二项分布、数学期望等基础知识,考查综合运用概率统计知识分析问题和解决问题的能力.课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)=()(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P (AB )P (A )=1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P (AB )P (A )=12×1212=12.故选B.6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得:C k 512k ×125-k =C k +1512k +1×124-k ,解得k =2.故选C.7.某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1(B)0.2(C)0.7 (D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D.9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200. 答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2 .依题意,X ~B ⎝ ⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( ) (A)5 (B)10 (C)15(D)20 B 解析:因为ξ~Bn ,12, 所以E (ξ)=n2, 又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924 C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X-N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=________.解析:∵随机变量X~N(3,σ2),∴P(X>3)=P(X<3)=0.5,∵P(X>m)=0.3,∴P(X>6-m)=P(X<m)=1-P(X>m)=1-0.3=0.7.答案:0.714.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P(0<ξ<3)=P(ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题知,P(80≤X<85)=12-P(X<75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=3×0.4×0.62=0.432,P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064, 所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850(n ≤16,n ∈N *),850(n ≥17,n ∈N *).(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P(B|A)=P(AB)P(A)=0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X表示当天的利润(单位:元),X的分布列为E(X)=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y表示当天的利润(单位:元),Y的分布列为:E(Y)=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E(X)>E(Y),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。
高三数学知识点:正态分布
高三数学知识点:正态分布
已知某次数学考试的成绩服从正态分布N(116,64),则成绩在140分以上的考生所占的百分比是多少?
解析过程:
要求成绩在140分以上的考生所占的百分比,可以利用正态分布的性质,即在均值左侧的面积为50%。
因此,首先需要求出成绩为140分的标准差,即(140-116)/8=3.然后,利用标准正态分布表可以得出,成绩在140分以上的考生所占的百分比为0.13%。
正态分布是一种非常重要的概率分布,其密度函数呈钟形曲线,均值、标准差是其两个重要参数。
在实际应用中,正态分布广泛用于描述各种自然现象和社会现象,如人口分布、气温变化等。
掌握正态分布的性质和应用方法,对于解决实际问题具有重要意义。
常见考法包括选择题和填空题,容易掌握。
但在考试中,也需要注意正态分布曲线的性质,避免出现低级错误。
总之,掌握正态分布的知识点和应用方法对于高中数学的研究和考试都非常重要。
更多相关知识点可登陆德智知识点网站和答疑平台进行研究和交流。
正态分布-讲义(学生版)
正态分布一、课堂目标1.理解正态曲线的概念,掌握正态曲线的性质.2.理解正态分布和标准正态分布的概念.3.熟练掌握利用正态曲线的对称性和原则求随机变量在某一范围内的概率.4.掌握正态分布的实际应用问题.二、知识讲解现实中,除了离散型随机变量外,还有大量问题中的随机变量不是离散型的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量.1. 正态曲线知识精讲(1)正态曲线的概念如下图,对应的函数解析式为:,(其中实数和为参数).显然,对于任意的称,,它的图象在轴的上方.我们称为正态密度函数,称它的图像为正态密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于轴上方,与轴不相交;②曲线是单峰的,它关于直线对称;③曲线在处达到峰值(最大值);④曲线与轴之间的面积为;⑤当一定时,曲线的位置由确定,曲线随着的变化而沿轴平移,如图所示;⑥当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散,如图所示.经典例题1.关于正态曲线的性质:①曲线关于直线对称,并且曲线在轴上方;②曲线关于轴对称,且曲线的最高点的坐标是;③曲线最高点的纵坐标是,且曲线无最低点;④越大,曲线越“高瘦”;越小,曲线越“矮胖”.A.①②B.②③C.③④D.①③其中正确的是().巩固练习A.B.C.D.2.如图是当取三个不同值,,时的三种正态曲线,那么,,的大小关系是().2. 正态分布知识精讲(1)正态分布的概念若随机变量的概率分布密度函数为:,(其中实数和为参数),则称随机变量服从正态分布,记为.正态分布完全由参数和确定,其中参数是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.注意:若,则.若,如下图所示,取值不超过的概率为图中区域的面积,而为区域的面积.(2)原则若,则对于任何实数,为下图阴影部分的面积,对于固定的和而言,该面积随着的减小而变大.这说明越小,落在区间的概率越大,即集中在周围概率越大.特别有,①,②,③.由知,正态总体几乎总取值于区间之内.而在此区间以外取值的概率只有.,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布的随机变量只取之间的值,并简称之为原则.经典例题3.已知随机变量服从正态分布,若,则 .4.设随机变量,则服从的总体分布可记为 .巩固练习A.B.C.D.5.随机变量服从正态分布,且,则( ).A.B.C.D.6.设随机变量服从正态分布,若,则与的值分别为( ).,,,,经典例题(1)(2)7.已知随机变量,且正态分布密度函数在上是增函数,在上为减函数,.求参数,的值.求.A.人B.人 C.人D.人8.某校高三年级的名学生在一次模拟考试中,数学考试成绩服从正态分布,则该年级学生数学成绩在分以上的学生人数大约为( ).(附数据:,)巩固复习A. B.C.D.9.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外,据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则果实直径在内的概率为().附:若 ,则,.10.某市高二名学生参加市体能测试,成绩采用百分制,平均分为,标准差为,成绩服从正态分布,则成绩在的人数为.参考数据:,,.经典例题11.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即新型冠状病毒.年月日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前的流行病学调查,潜伏期为天,潜伏期具有传染性,无症状感染者也可能(1)(2)成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.频率组距成绩分由直方图可认为答题者的成绩服从正态分布,其中,分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到)附:①,;②,则,;③,.12.年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分分),竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.(1)12(2)频率组距竞赛成绩(分)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率.若该校所有参赛学生的成绩近似服从正态分布,其中,为样本平均数的估计值,利用所得正态分布模型解决以下问题:若该校共有名学生参加了竞赛,试估计参赛学生中成绩超过分的学生数(结果四舍五入到整数).若从所有参赛学生中(参赛学生数大于)随机抽取名学生进行座谈,设其中竞赛成绩在分以上的学生数为 ,求随机变量 的分布列和均值.附:若随机变量服从正态分布,则,,.巩固练习(1)(2)13.从某公司生产线生产的某种产品中抽取件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:质量指标值频率组距求这件产品质量指标的样本平均数 和样本方差(同一组中的数据用该组区间的中点值作代表).12由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数 ,近似为样本方差.利用该正态分布,求.已知每件该产品的生产成本为元,每件合格品(质量指标值的定价为元;若为次品(质量指标值,除了全额退款外且每件次品还须赔付客户元.若该公司卖出件这种产品,记表示这件产品的利润,求.附:.若,则,.(1)12(2)14.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.假设生产状态正常,记表示一天内抽取的个零件中其尺寸在之外的零件数,求及的数学期望.一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.试说明上述监控生产过程方法的合理性.下面是检验员在一天内抽取的个零件的尺寸:附:若随机变量服从正态分布,则,,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到).经计算得,,其中为抽取的第个零件的尺寸,.3. 标准正态分布知识精讲若随机变量,则当,时,称随机变量服从标准正态分布,简称标准正态分布.标准正态分布的密度函数为,,其相应的密度曲线称为标准正态曲线.如图所示:由于标准正态总体在正态总体的研究中占有非常重要的地位,专门制作了“标准正态分布表”.在这个表中,相应于的值是指总体取值小于的概率,即,如图左边的部分所示.由于标准正态曲线关于轴对称,标准正态分布表中仅给出了对应于非负值的值,因此,如果,那么由下图根据面积相等知.知识点睛一般的正态分布均可以化成标准正态分布来进行研究.事实上,可以证明,对任一正态分布来说,取值小于的概率.所以,可以利用公式可将非标准正态分布问题转化为标准正态分布问题.经典例题15.随机变量服从标准正态分布,如果,则.巩固练习16.设随机变量服从标准正态分布,在某项测量中,已知,则在内取值的概率为.A.B.C.D.17.已知随机变量,记,则下列结论不正确的是().三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测18.已知随机变量服从正态分布,且,则.A.B.C.D.19.设两个正态分布和的密度曲线如图所示,则有( ).,,,,A. B.C.D.20.某小区有户居民,各户每月的用电量(单位:度)近似服从正态分布,则用电量在度以上的居民户数约为( ).(参考数据:若随机变量服从正态分布,则,,)21.11频率组距质量指标值(1)(2)从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.①利用该正态分布,求;②某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数,利用(Ⅰ)的结果,求.附:.若~,则,.。
8.13二项分布及正态分布
科 目数学 年级 高三 备课人 高三数学组 第 课时8.13二项分布及其应用、正态分布 一、回归教材1、设随机变量(,)B n p ξ,且13,7E p ξ==,则n= ,D ξ= .1821;72、已知(,)B n p ξ,8, 1.6E D ξξ==,则n = ,p = .10;0.83、设随机变量(2,),(3,)B p B p ξη,若5(1)9P ξ≥=,则(1)P η≥= .19274、已知随机变量ξ服从正态分布2(0,6)N ,若(2)0.023P ξ>=,则(22)P ξ-≤≤=( )CA.0.477B.0.628C.0.954D.0.9775、已知随机变量2(2,)N ξσ,且(4)0.84P ξ≤=,则(0)P ξ≤= .0.166、在一次高三模拟考试中,某校1000名学生的语文成绩近似满足正态分布.即分数(108,4)N ξ,若(100)0.2P ξ≤=,则考分在108分至116分之间的学生人数约为 人.300知识小结:1、若ξ服从二项分布,即(,)B n p ξ,则E ξ= ,D ξ= .2、解决正态分布概率问题常用方法和技巧: .二、典例分析例1、(2012 四川)某居民小区有两个相互独立的安全防范系统(简称系统)A 和系统B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值.15p = (2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ.变式训练:一袋中装有10个同样大的小球,其中有8个小球上标有“成功”,另2个小球标有“幸福”,今连续抽取3次,每次抽1个小球.(1)不放回地抽取时,求抽到“幸福”的个数ξ的分布列;(2)有放回地抽取时,求抽到“幸福”的个数η的期望.三、高考真题1、(2010 课标)某种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A.100B.200C.300D.4002、(2010 山东)已知随机变量ξ服从正态分布2(0,)N σ,若(2)0.023P ξ>=,则(22)P ξ-≤≤=( )CA.0.477B.0.628C.0.954D.0.9773、(2011 湖北)已知随机变量ξ服从正态分布2(2,)N σ,若(4)0.8P ξ<=,则(02)P ξ<<=( )A.0.6B.0.4C.0.3D.0.24、(2008 湖南)已知随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c =( )A.1B.2C.3D.45、(2010 广东)已知随机变量ξ服从正态分布(3,1)N ,若(24)0.6826P ξ≤≤=则(4)P ξ>=( )A.0.1588B.0.1587C.0.1586D.0.1585【上本作业】某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是13. (1)求小明在投篮过程中直到第三次才投中的概率;(2)求小明在4次投篮后的总得分ξ的分布列及均值.【课后反思】。
高中高三数学《正态分布》教案、教学设计
6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。
高中数学必修三正态分布知识点
高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。
当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。
叫标准正态曲线。
正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。
在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
正态分布
(1)当x = μ 时,函数值为最大. 1 (0, ] (2)f ( x) 的值域为 2 s (3) f ( x) 的图象关于
μ=0 σ=1 -3 -2 -1 0 1 2 3 x
x
=μ 对称.
(-∞,μ] 时f ( x)为增函数. (4)当 x∈ (μ,+∞) 时f ( x)为减函数. 当 x∈
S(-,-X)
S(X,)=S(-,-X)
X=m
3.特殊区间的概率:
若X~N
(m,s 2 ),则对于任何实数a>0,概率
m a m a
P(m a x ≤ m a)
x=μ
m ,s ( x )dx
m-a
m+a
特别地有(熟记)
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
【1】 (07 湖南)设随机变量 x 服从标准正态分
1) , 已 知 p ( x < - 1.96 ) =0.025 , 则 布 N (0, P(| x | 1.96) =( C )
A.0.025 C.0.950 B.0.050 D.0.975
y
o
x
【2】 (07 浙江)已知随机变量 x 服从正态分布
σ=1
σ=2
-3 -2 -1 0 1 2 3 x
(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变 化而沿x轴平移; (6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
练习:
1、若一个正态分布的概率函数是一个偶函数且该函
高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布
正态曲线: =
1
2π
−
⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.
②
=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =
−
C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −
高三数学正态分布知识点
高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。
其特点是在均值附近的概率较高,而在离均值较远处的概率较低。
在高中数学的学习中,正态分布也是一个重要的知识点。
本文将介绍高三数学正态分布的相关知识。
一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。
对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。
二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。
2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。
3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。
三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。
它是对正态分布进行标准化后的结果。
对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。
2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。
3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。
4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。
五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。
2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。
2025高三重要必考点正态分布
1.正态分布(1)正态曲线函数f(x)=x∈R.其中∈R,>0为参数.我们称f(x)为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.(2)正态分布若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为X N(,).特别地,当=0,=1时,称随机变量X服从标准正态分布.(3)正态分布的均值和方差若X N(,),则E(X)=,D(X)=.3.正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=对称;(3)曲线在x=;(4)当|x|无限增大时,曲线无限接近x轴;(5)对任意的>0,曲线与x轴围成的面积总为1;(6)在参数取固定值时,正态曲线的位置由确定,且随着的变化而沿x轴平移,如图甲所示;(7)当取定值时,正态曲线的形状由确定,当较小时,峰值高,曲线“瘦高”,表示随机变量X的分布比较集中;当较大时,峰值低,曲线“矮胖”,表示随机变量X的分布比较分散,如图乙所示.4.3原则(1)正态总体在三个特殊区间内取值的概率P(-+)0.6827;P(-2+2)0.9545;P(-3+3)0.9973.(2)3原则在实际应用中,通常认为服从正态分布N(,)的随机变量X只取[-3,+3]中的值,这在统计学中称为3原则.历届高考题最新模拟题选做1.已知随机变量ξ服从正态分布N(0,σ2),P(ξ>2)=0.023,则P(-2≤ξ≤2)=()AA.0.954B.0.977C.0.488D.0.4772.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(B)(随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%3.已知随机变量X~N(1,σ2),P(X≥0)=0.8,则P(X>2)=(A)A.0.2B.0.4C.0.6D.0.8[解析]由X~N(1,σ2),正态曲线关于X=1对称,∴P(X>2)=P(X<0)=1-P(X≥0)=0.2;故选A.3.已知三个正态密度函数φi(x)=−(x−μi)22σi2(x∈R,i=1,2,3)的图像如图所示,则()A.μ1=μ3>μ2,σ1=σ2>σ3B.μ1<μ2=μ3,σ1<σ2<σ3C.μ1=μ3>μ2,σ1=σ2<σ3D.μ1<μ2=μ3,σ1=σ2<σ3由题图中y=φi(x)的对称轴知:132u u u =,y=φ1(x)与y=φ2(x)(一样)瘦高,而y=φ3(x)胖矮,所以σ1=σ2<σ3.故选:D.4.已知随机变量X服从正态分布N(5,4),且P(X>k)=P(X<k-4),则k的值为(B) A.6B.7C.8D.9[解析]∵(k-4)+k2=5,∴k=7,故选B.5.随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=0.2,P(2<ξ<6)=0.6,则μ=(C) A.6B.5C.4D.3[解析]由题意可知P(ξ≥6)=1-P(ξ<2)-P(2<ξ<6)=0.2,∴P(ξ≥6)=P(ξ<2),∴μ=6+22=4.选C.6.已知随机变量ξ服从正态分布N(1,σ2),若P(ξ<4)=0.9,则P(-2<ξ<4)=(D) A.0.2B.0.4C.0.6D.0.8[解析]由正态曲线的对称性知P(-2<ξ<4)=2P(1<ξ<4)=212-P(ξ>4)=212-(1-P(ξ<4))=0.8.故选D.7.若随机变量X服从正态分布N(μ,σ2)(σ>0),则P(|X-μ|≤σ)≈0.6826,P(|X-μ|≤2σ)≈0.9544,P(|X-μ|≤3σ)≈0.9974.已知某校1000名学生某次数学考试成绩服从正态分布N(110,100),据此估计该校本次数学考试成绩在130分以上的学生人数约为(C)A.159B.46C.23D.13[解析]由题意,μ=110,σ=10,故P(X>130)=P(X>μ+2σ)=1-0.95442=0.0228.∴估计该校本次数学考试成绩在130分以上的学生人数约为1000×0.0228=22.8≈23.故选C.8.已知随机变量X ~N(2,1),其正态分布密度曲线如图所示.若在边长为1的正方形OABC 内随机取一点,则该点恰好取自黑色区域的概率为(D)附:若随机变量ξ~N(μ,σ2),则P(μ-σ≤ξ≤μ+σ)=0.6826,P(μ-2σ≤ξ≤μ+2σ)=0.9544.A .0.1359B .0.6587C .0.7282D .0.8641[解析]由题意P(0<X ≤1)=12×(0.9544-0.6826)=0.1359.正方形OABC 内取一点,则点恰好落在阴影部分的概率为P =1×1-0.13591×1=0.8641.选D.9.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(μ,302)和N(280,402),则下列选项正确的是(ABD)附:若随机变量X 服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)≈0.6826.A .若红玫瑰日销售量范围在(μ-30,280)的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在(280,320)的概率约为0.3413[解析]对于选项A :μ+30=280,μ=250,正确;对于选项BC :利用σ越小越集中,30小于40,B 正确,C 不正确;对于选项D :P(280<X<320)=P(μ<X<μ+σ)≈0.6826×12≈0.3413,正确.故选ABD.10.已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为[60,300],若使标准分X 服从正态分布N(180,900).(参考数据:①P(μ-σ<X ≤μ+σ)=0.6827;②P(μ-2σ<X ≤μ+2σ)=0.9545;③P(μ-3σ<X ≤μ+3σ)=0.9973.则(BC)A .这次考试标准分超过180分的约有450人B .这次考试标准分在(90,270]内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .P(240<X ≤270)=0.0428[解析]这次考试标准分超过180分的约有500人,A 错;∵P(90<X<270)=P(μ-3σ<X<μ+3σ)=0.9973,∴标准分在(90,270)内的人数约为0.9973×1000≈997,∴B 正确.甲、乙、丙恰有2人超过180分的概率为C232×=38,∴C 正确;∵P(240<X<270)=P (90<X<270)-P (120<X<240)2=P (μ-3σ<X<μ+3σ)-P (μ-2σ<X<μ+2σ)2=0.9973-0.95452=0.0214,∴D 错误.故选BC .11.已知随机变量X~N 4,22,则P 8<X <10的值约为()附:若Y~N μ,σ2,则P μ−σ<Y <μ+σ≈0.6827,P μ−2σ<Y <μ+2σ≈0.9545,P μ−3σ<Y <μ+3σ≈0.9974A.0.0215B.0.1359C.0.8186D.0.9760【解题思路】由题意确定μ=4,σ=2,根据P8<X<10=12[Pμ−3σ<X<μ+3σ−Pμ−2σ<X<μ+ 2σ],即可得答案.由题意知随机变量X~N4,22,故μ=4,σ=2,故P8<X<10=12[Pμ−3σ<X<μ+3σ−Pμ−2σ<X<μ+2σ]≈12(0.9974−0.9545)=0.02145≈0.0215,故选:A.12.已知随机变量服从正态分布X~N(2,σ2),若P(X≤1−2a)+P(X≤1+a)=1,则a=()A.0B.2C.−1D.−2根据正态分布的性质可得P(X≥1−2a)=P(X≤1+a),即可得到1−2a、1+a关于x=2对称,从而得到方程,解得即可.解:因为P(X≤1−2a)+P(X≤1+a)=1,P(X≤1−2a)+P(X≥1−2a)=1,所以P(X≥1−2a)=P(X≤1+a),所以1−2a+1+a=2×2,解得a=−2.故选:D.13.已知随机变量X服从正态分布N6,σ,若P X<4+5P X>8=1,则P4<X<6=()A.16B.14C.13D.19根据正态分布的对称性可得:P X<4=P X>8,P4<X<6=12−P X<4,结合题意可求P X<4=16,进而可求P4<X<6.X~N6,σ,则P X<4=P X>8,∴P X<4+5P X>8=6P X<4=1,则P X<4=16,∴P4<X<6=12−P X<4=13,选:C.1.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即2019新型冠状病毒.2020年2月7日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现,基于目前流行病学调查,潜伏期为1~14天,潜伏期具有传染性,无症状感染者也可能成为传染源,某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取10000人,答题成绩统计如图所示.(1)由直方图可认为答题者的成绩z服从正态分布N(μ,σ2),其中μ,σ2分别为答题者的平均成绩x-和成绩的方差s2,那么这10000名答题者成绩超过84.81分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)(2)如果成绩超过56.19分的民众我们认为是“防御知识合格者”,用这10000名答题者的成绩来估计全市的民众,现从全市中随机抽取4人,“防御知识合格者”的人数为ξ,求P(ξ≤3).(精确到0.001)附:①s2=204.75,204.75=14.31;②z~N(μ,σ2),则P(μ-σ<z<μ+σ)=0.6826,P(μ-2σ<z<μ+2σ)=0.9544;③0.84134=0.501,0.84133=0.595.[解析](1)由题意知:x-=45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,因为z服从正态分布N(μ,σ2),其中μ=x-=70.5,σ2=D(ξ)=204.75,σ=14.31,∴z服从正态分布N(μ,σ2)=N(70.5,14.312),而P(μ-σ<z<μ+σ)=P(56.19<z<84.81)=0.6826,∴P(z≥84.81)=1-0.68262=0.1587,∴竞赛成绩超过84.81的人数估计为0.1587×10000=1587人.(2)由(1)知,成绩超过56.19的概率为1-0.1587=0.8413,而ξ~B(4,0.8413),∴P(ξ≤3)=1-P(ξ=4)=1-C44·0.84134=1-0.501=0.499.2.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x-(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=142.75≈11.95;②若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.[解析](1)所抽取的100包速冻水饺该项质量指标值的样本平均数x-为:x-=5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.(2)①∵Z服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z<38.45)=P(26.5-11.95<Z<26.5+11.95)=0.6826,∴Z落在(14.55,38.45)内的概率是0.6826.②根据题意得每包速冻水饺中这种质量指标值位于(10,30)内的概率为213.02.0=+X ~X 的取值为0,1,2,3,4,P(X =0)=16121404=⎪⎭⎫ ⎝⎛C ;P(X =1)=41421⎪⎭⎫ ⎝⎛C =14;P(X =2)=42421⎪⎭⎫ ⎝⎛C =38;P(X =3)=43421⎪⎭⎫ ⎝⎛C =14;P(X =4)=44421⎪⎭⎫ ⎝⎛C =116.∴X 的分布列为X 01234P116143814116∴E(X)=4×12=2.(1)估计这100位学生的数学成绩的平均值(2)根据整个年级的数学成绩可以认为学生的数学成绩本的标准差s 的近似值为10,用样本平均数位学生,求他的数学成绩恰在64分到0().6827P X μσμσ≤≤+≈-,(2P μσ-(3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,。
高中数学必修2-3第二章2.4正态分布
2.4正态分布1.问题导航(1)什么是正态曲线和正态分布(2)正态曲线有什么特点曲线所表示的意义是什么(3)怎样求随机变量在某一区间范围内的概率2.例题导读请试做教材P74练习1题.1.正态曲线函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,φμ,σ(x)的图象为__________________正态分布密度曲线,简称正态曲线.2.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛abφμ,σ(x)d x,则称随机变量X服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X服从正态分布,则记为________X~N(μ,σ2).3.正态曲线的性质正态曲线φμ,σ(x)=12πσe-(x-μ)22σ2,x∈R有以下性质:(1)曲线位于x轴________上方,与x轴________不相交;(2)曲线是单峰的,它关于直线________x=μ对称;(3)曲线在________x=μ处达到峰值________1σ2π;(4)曲线与x轴之间的面积为________1;(5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②.4.正态总体在三个特殊区间内取值的概率值P(μ-σ<X≤μ+σ)=;P(μ-2σ<X≤μ+2σ)=;P(μ-3σ<X≤μ+3σ)=.1.判断(对的打“√”,错的打“×”)(1)函数φμ,σ(x)中参数μ,σ的意义分别是样本的均值与方差.()(2)正态曲线是单峰的,其与x轴围成的面积是随参数μ,σ的变化而变化的.()(3)正态曲线可以关于y轴对称.()答案:(1)×(2)×(3)√2.设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=()A.0 B.σC.-μD.μ答案:D3.已知随机变量X服从正态分布N(3,σ2),则P(X<3)=()答案:D4.已知正态分布密度函数为f(x)=12πe-x24π,x∈(-∞,+∞),则该正态分布的均值为________,标准差为________.答案:02π正态分布的再认识(1)参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.μ=0,σ=1的正态分布叫做标准正态分布.(2)正态分布定义中的式子实际是指随机变量X的取值区间在(a,b]上的概率等于总体密度函数在[a,b]上的定积分值.(3)从正态曲线可以看出,对于固定的μ而言,随机变量在(μ-σ,μ+σ)上取值的概率随着σ的减小而增大.这说明σ越小,X取值落在区间(μ-σ,μ+σ)的概率越大,即X集中在μ周围的概率越大.对于固定的μ和σ,随机变量X取值区间越大,所对应的概率就越大,即3σ原则.正态分布密度曲线如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.[解]从正态曲线可知,该正态曲线关于直线x=20对称,最大值为12π,所以μ=20,12πσ=12π,∴σ= 2.于是φμ,σ(x)=12π·e-(x-20)24,x∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.利用图象求正态密度函数的解析式,应抓住图象的实质,主要有两点:一是对称轴x=μ,另一是最值1σ2π,这两点确定以后,相应参数μ,σ便确定了,代入便可求出相应的解析式.扫一扫进入91导学网正态分布密度曲线1.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).求正态分布下的概率设X~N(1,22),试求:(1)P(-1<X≤3);(2)P(3<X≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)= 6.(2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =124- 6)= 9. [互动探究] 在本例条件下,试求P (X ≥5). 解:因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12(1- 4)= 8.(1)求解本类问题的解题思路是充分利用正态曲线的对称性,把待求区间的概率转化到已知区间的概率.这一转化过程中体现了数形结合思想及转化化归思想的应用.(2)常用结论有①对任意的a ,有P (X <μ-a )=P (X >μ+a ); ②P (X <x 0)=1-P (X ≥x 0);③P (a <X <b )=P (X <b )-P (X ≤a ).2.(1)(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=%,P (μ-2σ<ξ<μ+2σ)=%.)A .%B .%C .%D .%解析:选B.由正态分布的概率公式知P (-3<ξ<3)= 6,P (-6<ξ<6)= 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=错误!= 9=%,故选B.(2)设随机变量X ~N (4,σ2),且P (4<X <8)=,则P (X <0)=________.解析:概率密度曲线关于直线x =4对称,在4右边的概率为,在0左边的概率等于在8右边的概率,即-=.答案:(3)设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1).①求c的值;②求P(-4<X<8).解:①由X~N(2,9)可知,密度函数曲线关于直线x=2对称(如图所示),又P(X>c+1)=P(X<c-1),故有2-(c-1)=(c+1)-2,∴c=2.②P(-4<X<8)=P(2-2×3<X<2+2×3)=4.正态分布的实际应用某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少(2)成绩在80~90之间的学生占多少[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=6=%,∴不及格的学生所占的比为12×(1-6)=7=%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×4-6)=%.正态曲线的应用及求解策略:解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.3.(2015·杭州质检)某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12× 4+12× 6= 5. 即他在(30,60]分内赶到火车站的概率是 5.数学思想正态分布中的化归与转化思想已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)= 6,则P (X >4)=( ) A . 8 B . 7 C . 6 D . 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=1- 62= 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=φμ,σ(x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是( ) A .10与8 B .10与2 C .8与10 D .2与10解析:选B.由正态密度函数的定义可知,总体的均值μ=10,方差σ2=4,即σ=2. 2.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772 附:若X ~N (μ,σ2), 则P (μ-σ<X ≤μ+σ)= 6, P (μ-2σ<X ≤μ+2σ)= 4.解析:选C.由P (-1<X ≤1)= 6,得P (0<X ≤1)= 3,则阴影部分的面积为 3,故估计落入阴影部分的点的个数为10 000×错误!=3 413,故选C.3.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为,则X 在(0,2)内取值的概率为________.解析:如图,易得P (0<X <1)=P (1<X <2), 故P (0<X <2)=2P (0<X <1)=2×=.答案:4.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)= 6, P (3<X ≤7)= 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)= 4- 6 = 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=错误!= 9.[A.基础达标]1.设随机变量ξ~N (2,2),则D (12ξ)=( )A .1B .2 D .4解析:选C.∵ξ~N (2,2),∴D (ξ)=2. ∴D (12ξ)=122D (ξ)=14×2=12.2.下列函数是正态密度函数的是( ) A .f (x )=12σπe(x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2πe -x 22C .f (x )=122πe -(x -1)24D .f (x )=12πe x 22解析:选B.对于A :函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A 错误;对于B :符合正态密度函数的解析式,其中σ=1,μ=0,故B 正确;对于C :从系数部分看σ=2,可是从指数部分看σ=2,故C 不正确;对于D :指数部分缺少一个负号,故D 不正确.3.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12,P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错;对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=,则P (0<ξ<2)=( ) A . B . C . D .解析:选C.如图,正态分布的密度函数图象关于直线x =2对称,所以P (ξ<2)=,并且P (0<ξ<2)=P (2<ξ<4),则P (0<ξ<2)=P (ξ<4)-P (ξ<2)=-=.5.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ=( )A .1B .4C .2D .不能确定解析:选B.根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态分布密度曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.6.如果ξ~N (μ,σ2),且P (ξ>3)=P (ξ<1)成立,则μ=________.解析:∵ξ~N (μ,σ2),故概率密度函数关于直线x =μ对称,又P (ξ<1)=P (ξ>3),从而μ=1+32=2,即μ的值为2.答案:27.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-=.答案:8.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示,若体重大于kg小于等于kg属于正常情况,则这1 000名男生中属于正常情况的人数约为________.解析:依题意可知,μ=,σ=2,故P<X≤=P(μ-σ<X≤μ+σ)=6,从而属于正常情况的人数为1 000× 6≈683.答案:6839.(2015·苏州高二检测)某个工厂的工人月收入服从正态分布N(2 500,202),该工厂共有1 200名工人,试估计月收入在2 440元以下和2 560元以上的工人大约有多少人解:设该工厂工人的月收入为ξ,则ξ~N(2 500,202),所以μ=2 500,σ=20,所以月收入在区间(2 500-3×20,2 500+3×20)内取值的概率是4,该区间即(2 440,2 560).因此月收入在2 440元以下和2 560元以上的工人大约有1 200×(1-4)=1 200× 6≈3(人).10.(2015·漳州高二检测)某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路线较短,但交通拥挤,所需时间(单位为分)服从正态分布N(50,102);第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布N(60,42).(1)若只有70分钟可用,问应走哪条路线(2)若只有65分钟可用,又应走哪条路线解:由已知X~N(50,102),Y~N(60,42).由正态分布的2σ区间性质P(μ-2σ<ξ≤μ+2σ)=4.然后解决问题的关键是:根据上述性质得到如下结果:对X:μ=50;σ=10,2σ区间为(30,70),对Y:μ=60;σ=4,2σ区间为(52,68),要尽量保证用时在X?(30,70),Y?(52,68)才能保证有95%以上的概率准时到达.(1)时间只有70分钟可用,应该走第二条路线.(2)时间只有65分钟可用,两种方案都能保证有95%以上的概率准时到达,但是走市区平均用时比路线二少了10分钟,应该走第一条路线.[B.能力提升]1.设随机变量X~N(μ,σ2),则随着σ的增大,P(|X-μ|<3σ)将会()A.单调增加 B.单调减少C.保持不变D.增减不定解析:选C.对于服从正态分布的随机变量X,不论μ,σ怎么变化,P(|X-μ|<3σ)总等于4.2.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为%,则该正态总体对应的正态曲线的最高点的坐标为()A.(1,12π) B.(1,2)C.(12π,1) D.(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x=1对称,所以μ=1.又在区间(-2,4)内的概率为%, ∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π. 3.设随机变量ξ服从正态分布N (0,1),则下列结论正确的是________. ①P (|ξ|<a )=P (ξ<a )+P (ξ>-a )(a >0); ②P (|ξ|<a )=2P (ξ<a )-1(a >0); ③P (|ξ|<a )=1-2P (ξ<a )(a >0); ④P (|ξ|<a )=1-P (|ξ|>a )(a >0).解析:因为P (|ξ|<a )=P (-a <ξ<a ),所以①不正确;因为P (|ξ|<a )=P (-a <ξ<a )=P (ξ<a )-P (ξ<-a )=P (ξ<a )-P (ξ>a )=P (ξ<a )-(1-P (ξ<a ))=2P (ξ<a )-1,所以②正确,③不正确;因为P (|ξ|<a )+P (|ξ|>a )=1,所以P (|ξ|<a )=1-P (|ξ|>a )(a >0),所以④正确. 答案:②④4.设随机变量X ~N (1,22),则Y =3X -1服从的总体分布可记为________. 解析:因为X ~N (1,22),所以μ=1,σ=2. 又Y =3X -1,所以E (Y )=3E (X )-1=3μ-1=2, D (Y )=9D (X )=62, 所以Y ~N (2,62). 答案:Y ~N (2,62) 5.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P <Z <;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间,的产品件数,利用①的结果,求E (X ).附:150≈.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)= 6,P (μ-2σ<Z <μ+2σ)= 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×+180×+190×+200×+210×+220×+230×=200,s2=(-30)2×+(-20)2×+(-10)2×+0×+102×+202×+302×=150.(2)①由(1)知,Z~N(200,150),从而P<Z<=P(200-<Z<200+=6.②由①知,一件产品的质量指标值位于区间,的概率为6,依题意知X~B(100,6),所以E(X)=100× 6=.6.请仔细阅读下面这段文字,然后解决后面的问题.在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N(μ,σ2);(2)确定一次试验中的取值a;(3)作出统计推断:若a∈(μ-3σ,μ+3σ),则接受假设,若a?(μ-3σ,μ+3σ),则拒绝假设.问题:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N(30,,质检人员从该厂某一天生产的1 000块砖中随机抽查一块,测得它的抗断强度为kg/cm2,你认为该厂这天生产的这批砖是否合格为什么解:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)上的概率为,故ξ几乎必然落在上述区间内.把μ=30,σ=代入,得区间(μ-3σ,μ+3σ)=,,而?,,∴据此认为这批砖不合格.。
高考数学一轮复习专题03 正态分布(原卷版)
概率与统计 专题三: 正态分布一、知识储备1、若随机变量X 的概率分布密度函数为对任意的x R ∈,()0f x >,它的图象在x 轴的上方.可以证明x 轴和曲线之间的区域的面积为 1.我们称()f x 为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若随机变量X 的概率分布密度函数为()f x ,则称随机变量X 服从正态分布(normal dis-tribution ),记为2(,)XN μσ.特别地,当0,1μσ==时,称随机变量X 服从标准正态分布,即(0,1)X N .由X 的密度函数及图象可以发现,正态曲线有以下特点: (1)曲线在x 轴的上方,与x 轴不相交。
(2)曲线是单峰的,它关于直线x μ=对称. (3)曲线在x μ=处达到峰值(最高点)(4)当||X 无限增大时,曲线无限接近x 轴. (5)X 轴与正态曲线所夹面积恒等于1 . 2、正态分布的3σ原则22()2(),,x f x x R μσ--=∈()0.6827P X μσμσ-≤≤+≈(22)0.9545P X μσμσ-≤≤+≈ (33)0.9973P X μσμσ-≤≤+≈二、例题讲解1.(2022·湖南高三其他模拟)数学建模是高中数学核心素养的一个组成部分数学建模能力是应用意识和创新意识的重要表现.为全面推动数学建模活动的开展,某学校举行了一次数学建模竞赛活动已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如下.(1)为了对数据进行分析,将60分以下的成绩定为不合格,60分以上(含60分)的成绩定为合格.为科学评估该校学生数学建模水平决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会.记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列和数学期望;(2)已知这60名学生的数学建模竞赛成绩X 服从正态分布()2,N μσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(用一组数据的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,试估计此次竞赛受到奖励的人数.(结果根据四舍五入保留到整数位)解题中可参考使用下列数据:()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.2.(2022·全国高三其他模拟)中国人民解放军装甲兵学院(前身蚌埠坦克学院),建校至今为我国培养了一大批优秀的军事人才.在今年新入学的学生中,为了加强爱校教育,现在从全体新入学的学生中随机的抽取了100人,对他们进行校史问卷测试,得分在45~95之间,分为[)45,55,[)55,65,[)65,75,[)75,85,[]85,95五组,得到如图所示的频率分布直方图,其中第三组的频数为40.(1)请根据频率分布直方图估计样本的平均数X 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为新人学的学生校史问卷测试分数X 近似服从正态分布()2,N μσ,其中μ近似为样本平均数X ,2σ近似为样本方差2s . (i )求()47.279.9P X <<;(ii )在某间寝室有6人,求这6个人中至少有1人校史问卷测试分数在90.8分以上的概率.参考数据:若()2,XN μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=10.9≈,60.95440.76≈,50.97720.89≈,60.97720.87≈.三、实战练习1.(2022·全国高三专题练习(理))在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.(1)由频数分布表可以大致认为,此次问卷调查的得分z 服从正态分布(,210)N μ,μ近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求(3679.5)P Z <≤; (2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: (ⅰ)得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; (ⅰ)每次获赠送的随机话费和对应的概率为:现有市民甲要参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14.5,若2~(,)X N μσ, 则①()0.6827P X μσμσ-<≤≤=;②(22)0.9545P X μσμσ-<≤+=;③3309().973P X μσμσ-<≤+=.2.(2022·沙坪坝·重庆八中高三月考)消费扶贫是社会各界通过消费来自贫困地区和贫困人口的产品与服务,帮助贫困人口增收脱贫的一种扶贫方式,是社会力量参与脱贫攻坚的重要途径.某地为了解消费扶贫对贫困户帮扶情况,该地民政部门从本地的贫困户中随机抽取2000户时2021年的收入进行了一个抽样调查,得到如表所示的频数表:(1)将调查的2000户贫困户按照收入从低到高依次编号为1,2,3,……,2000,从这些贫困户中用系统抽样方法等距抽取50户贫困户进行深度帮扶,已知8号被抽到;(i )收入在[)12,14和[]16,18的贫困户卬被抽到进行深度帮扶的户数分别为多少?(ii )收入在[)12,14和[]16,18的贫困户中被抽到进行深度帮扶的凡中随机选取2户,记选取的2户中来自[)12,14的户数为X ,求X 的分布列和数学期望;(2)由频率分布表可认为该地贫困户的收入X 近似服从正态分布()211,2.6N .现从该地的所有贫困户中随机抽取10户,记收入在(]8.4,16.2之外的户数为Y ,求()2P Y ≥(精确到0.001).参考数据1:当()2~,t N μσ时,()0.6827P t μσμσ-<≤+=,()220.9545P t μσμσ-<≤+=,()330.9973P t μσμσ-<≤+=.参考数据2:100.81860.135≈,90.81860.165≈.3.(2022·湖北高三开学考试)从某企业生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布表和频率分布直方图.(1)求m ,n ,a 的值;(2)求出这1000件产品质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(3)由直方图可以认为,这种产品的质量指标值Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,其中已计算得252.6σ=.如果产品的质量指标值位于区间()10.50,39.50,企业每件产品可以获利10元,如果产品的质量指标值位于区间()10.50,39.50之外,企业每件产品要损失100元,从该企业一天生产的产品中随机抽取20件产品,记X 为抽取的20件产品所获得的总利润,求()E X .7.25,()0.6826P x μσμσ-<<+=,()220.9544P x μσμσ-<<+=.4.(2022·四川高三其他模拟(理))在创建“全国文明城市”过程中,我市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分(),198Z N μ,μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表), ①求μ的值;②利用该正态分布,求()74.588.5P Z <≤;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若2~(,)X N μσ,则()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤.5.(2022·辽宁)《中国制造2025》提出,坚持“创新驱动、质量为先、绿色发展、结构优化、人オ为本”的基本方针,通过“三步走”实现制造强国的战略目标:第一步,到2025年迈入制造强国行列;第二步,到2035年中国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,综合实力进入世界制造强国前列.质检部门对设计出口的甲、乙两种“无人机”分别随机抽取100架检测某项质量指标,由检测结果得到如下的频率分布直方图:(1)写出频率分布直方图(甲)中a 的值;记甲、乙两种“无人机”100架样本的质量指标的方差分别为2212,S S ,试比较2212,S S 的大小(只需给出答案);(2)若质检部门规定质量指标高于20的无人机为优质产品,根据上面抽取的200架无人机的质量指标进行判断,是否有95%的把握认为甲、乙两种“无人机”的优质率有差异?22()().()()()()n ad bc K n a b c d a b c d a c b d -==+++++++)20k(3)由频率分布直方图可以认为,乙种“无人机”的质量指标值Z 服从正态分布()2,N μσ.其中μ近似为样本平均数2,x σ近似为样本方差22S ,设X 表示从乙种无人机中随机抽取10架,其质量指标值位于(11.6,35.4)的架数,求X 的数学期望.注:①同一组数据用该区间的中点值作代表,计算得211.9S ;②若()2,Z N μσ~,则(P Z μσ-<<0.6826,(22)0.9544P Z μσμσμσ+=-<<+=.6.(2022·山西高三三模(理))2022年是中国共产党百年华诞.中国站在“两个一百年”的历史交汇点,全面建设社会主义现代化国家新征程即将开启.2022年3月23日,中宣部介绍中国共产党成立100周年庆祝活动八项主要内容,其中第一项是结合巩固深化“不忘初心、牢记使命”主题教育成果,在全体党员中开展党史学习教育.这次学习教育贯穿2022年全年,总的要求是学史明理、学史增信、学史崇德、学史力行,教育引导党员干部学党史、悟思想、办实事,开新局.为了配合这次学党史活动,某地组织全体党员干部参加党史知识竞赛,现从参加人员中随机抽取100人,并对他们的分数进行统计,得到如图所示的频率分布直方图.(1)现从这100人中随机抽取2人,记其中得分不低于80分的人数为ξ,试求随机变量ξ的分布列及期望;(2)由频率分布直方图,可以认为该地参加党史知识竞赛人员的分数X 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差2s ,经计算2192.44s =.现从所有参加党史知识竞赛的人员中随机抽取500人,且参加党史知识竞赛的人员的分数相互独立,试问这500名参赛者的分数不低于82.3的人数最有可能是多少?13.9≈,()0.6827P X μσμσ-<+=,()220.9545P X μσμσ-<+=,()330.9974P X μσμσ-<+=.7.(2022·全国高三其他模拟)从2021年开始,部分高校实行强基计划,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,越来越多的学生通过参加数学竞赛来证明自己的数学实力.某省举行的数学联赛初赛有10000名学生参加,成绩数据服从正态分布N (80,100),现随机抽取了某市50名参赛学生的初赛成绩进行分析,发现他们的成绩全部位于区间[50,110]内.将成绩分成6组:[50,60),[60,70),[70,80),[80,90),[90,100),[100,110],得到如图所示的频率分布直方图,该50名学生成绩的平均分是77分.(1)求a,b的值(同一组数据用该组区间的中点值为代表).(2)(i)若要在全省选拔15.865%的同学通过初赛进入决赛,则分数线应定为多少?(ii)若给成绩位于全省前228名的同学颁发初赛一等奖的证书,现从本市这50名同学里面能成功进入决赛的同学中任意抽取3人,记这3人中得到初赛一等奖的数为X,求X的分布列和数学期望.附:若X~N(μ,σ²),则P(μ﹣σ≤X≤μ+σ)≈0.6827,P(μ﹣2σ≤X<μ+2σ)≈0.9545,P(μ﹣3σ≤X≤μ+3σ)≈0.9973.8.(2022·河南郑州·(理))已知某生产线的生产设备在正常运行的情况下,生产的零件尺寸X(单位:mm)N.服从正态分布(280,25)(1)从该生产线生产的零件中随机抽取10个,求至少有一个尺寸小于265mm的概率;(2)为了保证生产线正常运行,需要对生产设备进行维护,包括日常维护和故障维修,假设该生产设备使用期限为四年,每一年为一个维护周期,每个周期内日常维护费为5000元,若生产设备能连续运行,则不会产生故障维修费;若生产设备不能连续运行,则除了日常维护费外,还会产生一次故障维修费.已知故障维修费第一次为2000元,此后每增加一次则故障维修费增加2000元.假设每个维护周期互相独立,每个周期内设备不能连续运行的概率为14.求该生产设备运行的四年内生产维护费用总和Y 的分布列与数学期望.参考数据:若~(,2)Z N μσ,则()0.6827P p Z σμσ-<<+=,(22)0.9545P Z μσμσ-<<+=,(33)0.9974Z μσμσ-<<+=,100.99870.9871≈.9.(2022·通辽新城第一中学高三其他模拟(理))近年来,学生职业生涯规划课程逐渐进入课堂,考生选择大学就读专业时不再盲目扎堆热门专业,报考专业分布更加广泛,之前较冷门的数学、物理、化学等专业报考的人数也逐年上升.下表是某高校数学专业近五年的录取平均分与当年该学校的最低提档线对照表:(1)根据上表数据可知,y 与t 之间存在线性相关关系,用最小二乘法求y 关于t 的线性回归方程; (2)据以往数据可知,该大学每年数学专业的录取分数X 服从正态分布(,16)N μ,其中μ为当年该大学的数学录取平均分,假设2022年该校最低提档分数线为540分.(i )若该大学2022年数学专业录取的学生成绩在584分以上的有3人,本专业2022年录取学生共多少人?进入本专业高考成绩前46名的学生可以获得一等奖学金.一等奖学金分数线应该设定为多少分?请说明理由.(ii )若A 同学2022年高考考了562分,他很想报考这所大学的数学专业,想第一志愿填报,请利用概率与统计知识,给该同学一个合理的建议.(第一志愿录取可能性低于60%,则建议谨慎报考)参考公式:()()()1122211ˆnnii i i i i nniii i tty y t y ntybtttnt ====---==--∑∑∑∑,x ˆˆay bt =-. 参考数据:()0.683P X μσμσ-<≤+≈,(22)0.954P X μσμσ-<≤+≈,(33)0.997P X μσμσ-<≤+≈10.(2022·合肥一六八中学高三其他模拟(理))2021年是全面建成小康社会之年,是脱贫攻坚收官之年.莲花村是乡扶贫办的科学养鱼示范村,为了调查该村科技扶贫成果,乡扶贫办调查组从该村的养鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105kg ,称重后计算得出这60条鱼质量(单位kg )的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66kg .称重后计算得出这40条鱼质量(单位kg )的平方和为117.(1)请根据以上信息,求所捕捞100条鱼质量的平均数z 和方差2s ; (2)根据以往经验,可以认为该鱼塘鱼质量X 服从正态分布()2,N μδ,用z 作为μ的估计值,用2s作为2δ的估计值.随机从该鱼糖捕捞一条鱼,其质量在[]1.21,3.21的概率是多少?(3)某批发商从该村鱼塘购买了1000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼的质量在[]1,21,3.21的条数,利用(2)的结果,求ξ的数学期望.附:(1)数据1t ,2t ,…n t 的方差()22221111nn i i i i s t tt nt n n ==⎛⎫=-=- ⎪⎝⎭∑∑, (2)若随机变量X 服从正态分布()2,N μδ,则()0.6827P X μδμδ-≤≤+=;()22P X μδμδ-≤≤+0.9545=;()330.9973P X μδμδ-≤≤+=.13.(2022·湖南师大附中高三其他模拟)某工厂引进新的生产设备M ,为对其进行评估,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65μ=,标准差 2.2σ=,以频率值作为概率的估计值.(1)为评估设备M 对原材料的利用情况,需要研究零件中某材料含量y 和原料中的该材料含量x 之间的相关关系,现取了8对观测值,求y 与x 的线性回归方程. 附:①对于一组数据()()()()112233,,,,,,,,n n x y x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为1221ˆni ii nii x y nx ybxnx ==-=-∑∑,ˆˆˆay bx =-;②参考数据:8152i i x ==∑,81228i i y ==∑,821478i i x ==∑,811849i ii x y==∑.(2)为评判设备M 生产零件的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①()0.6826P X μσμσ-<+;②(22)0,9544P X μσμσ-<+; ③(33)0.9974P X μσμσ-<+.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(3)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品.从样本中随意抽取2件零件,再从设备M 的生产流水线上随意抽取2件零件,计算其中次品总数Y 的数学期望E (Y ).。
高三总复习数学课件 二项分布及其应用、正态分布
解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .
高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布
二项分布与正态分布【考点梳理】1.条件概率2.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ).3.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.正态分布 (1)正态分布的定义如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布,记为X ~N (μ,σ2).其中φμ,σ(x )()222x μσ-- (σ>0).(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称;③曲线在x =μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 【考点突破】考点一、条件概率【例1】(1)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P(B |A )=________.(2)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A .110B .15C .25D .12 [答案] (1) 14(2) C[解析] (1)由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内”,则P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P ABP A =12π2π=14.(2)设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.【类题通法】1. 利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ),这是求条件概率的通法.2. 借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).【对点训练】1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12 [答案] B[解析] 法一 P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=11025=14.法二 事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1. 故由古典概型概率P (B |A )=n (AB )n (A )=14.2.某盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A .35B .59C .110D .25 [答案] B[解析] 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P (AB )P (A )=1335=59. 考点二、相互独立事件同时发生的概率【例2】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. [解析] (1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为:(2)设Y 率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到1个红灯的概率为1148.【类题通法】求相互独立事件同时发生的概率的主要方法 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【对点训练】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.[解析] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (E F )=13 ×25=215, P (X =100)=P (E F )=13×35=315=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为【例3】空气质量指数(AirQuality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI 的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.[解析] (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,35. ∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为【类题通法】利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P(X=k)=C k n p k(1-p)n-k的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率.【对点训练】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列.[解析] (1)设这些产品质量指标值落在区间[75,85]内的频率为x,则落在区间[55,65),[65,75)内的频率分别为4x,2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以这些产品质量指标值落在区间[75,85]内的频率为0.05.(2)由(1)得,这些产品质量指标值落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率得p=0.6.从该企业生产的这种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X服从二项分布B(n,p),其中n=3,p=0.6.因为X的所有可能取值为0,1,2,3,且P(X=0)=C03×0.60×0.43=0.064,P(X=1)=C13×0.61×0.42=0.288,P (X =2)=C 23×0.62×0.41=0.432, P (X =3)=C 33×0.63×0.40=0.216,所以X 的分布列为【例4】(1)已知随机变量ξ服从正态分布N(2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( ) A .0.6 B .0.4 C .0.3 D .0.2(2)某班有50名学生,一次考试后数学成绩ξ(ξ∈N)近似服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数约为________.[答案] (1) C (2) 10[解析] (1)画出正态曲线如图,结合图象知:P (ξ<0)=P (ξ>4)=1-P (ξ<4)=1-0.8=0.2,P (0<ξ<2)=12P (0<ξ<4)=12[1-P (ξ<0)-P (ξ>4)]=12(1-0.2-0.2)=0.3.(2)由题意,知P (ξ>110)=1-2Pξ2=0.2,所以该班学生数学成绩在110分以上的人数约为0.2×50=10. 【类题通法】对于正态分布N (μ,σ2),由x =μ是正态曲线的对称轴知:(1)对任意的a ,有P (X <μ-a )=P (X >μ+a );(2)P (X <x 0)=1-P (X ≥x 0);(3)P (a <X <b )=P (X <b )-P (X ≤a ).【对点训练】1.设随机变量ξ服从正态分布N(1,σ2),若P (ξ<2)=0.8,则P (0<ξ<1)的值为________. [答案] 0.3[解析] P (0<ξ<1)=P (ξ<2)-P (ξ<1)=0.8-0.5=0.3.2.某地高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ≤100)=0.35,若按成绩分层抽样的方式抽取100份试卷进行分析,则应从120分以上的试卷中抽取( )A .5份B .10份C .15份D .20份 [答案] C[解析] ∵数学成绩ξ服从正态分布N (100,σ2),P (80<ξ≤100)=0.35,∴P (80<ξ≤120)=2×0.35=0.70,∴P (ξ>120)=12×(1-0.70)=0.15,∴应抽取的份数为100×0.15=15.。
2.4正态分布2
取值的概率只有0.3 %。 际( m运 用3由当通中于, am常就这称只33些考这)时概之虑些正率内这情态值,个况其总区很他发体间小区生的,(称 间为取一为 取值小值般3几概几不乎原率乎超总则事不过取.件可值5能 。%于.区 在)实间,
二、正态曲线的特点
(x)
1
e
(
xm ) 2 2
2
,
x
R
( 0)
2
1、曲线位于x轴 _上___方,与x轴 _不__相__交__.
2、曲线是单峰的,它关于直线 _x___m_ 对称.
3、曲线在
_x___m__
处达到最大值
1
____2____.
4、曲线与x轴之间的面积为 __1_____.
正态总体的密度函数表达式
【解】 因为 ξ~N(90,100),所以 μ=90,σ=10. (1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是 0.954 5, 而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10 =110,于是考试成绩 ξ 位于区间(70,110)内的概率为 0.954 5. (2)由 μ=90,σ=10,得 μ-σ=80,μ+σ=100.由于正态变量在 区间(μ-σ,μ+σ)内取值的概率是 0.682 7,所以考试成绩 ξ 位于 区间(80,100)内的概率就是 0.682 7.一共有 2 000 名考生,所以考 试成绩在(80,100)间的考生大约有 2 000×0.682 7 ≈1 365(人).
经试验表明,一个随 机变量如果是众多的、互 不相干的、不分主次的偶 然因素作用结果之和,它 就服从或近似服从正态分
第十章二项分布超几何分布正态分布详解演示文稿
则称离散型随机变量 X 服从超几何分布. 如:某校高三年级某班的数学课外活动小组中有6名
男生,4名女生,从中选出4个参加数学竞赛考试, 用X表示其中的男生人数,求X的分布列.
第十九页,共四十页。
例 1、某批产品成箱包装,每箱 5 件.一用户在购进 该批产品前先取出 3 箱,设取出的 3 箱中,第一、二、三箱 中分别有 0 件、1 件、2 件二等品,其余为一等品. (1)在取出的 3 箱中,若该用户从每箱中任意抽 取 2 件产品进行检验,用 ξ 表示抽检的 6 件产品中二等品 的件数,求 ξ 的分布列及数学期望. (2)在取出的 3 箱中,若该用户从第三箱中有放回 的抽取 3 次(每次一件),求恰有两次抽到二等品的概率;
第三页,共四十页。
于是得到随机变量 ξ 的概率分布列为
ξ0
1 … k …n
P C0np0qn C1np1qn-1 … Cknpkqn-k … Cnnpnq0
我们称这样的随机变量 ξ 服从二项分布,记作 ξ~B(n,p) 其中 n,p 为参数,p 叫成功概率.
第四页,共四十页。
【例1】甲、乙两人各射击一次,击中目标的概率分
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游
戏的人数的概率;(3)用X,Y分别表示这4个人中去参加 甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分 布列与数学期望Eξ.
第八页,共四十页。
解析:依题意,这 4 个人中,每个人去参加甲游 戏的概率为13,去参加乙游戏的概率为23.设“这 4 个人 中恰有 i 人去参加甲游戏”为事件 Ai(i=0,1,2,3,4),则 P(Ai)=Ci413i234-i.
CkM·CCnNnN--kM,k=0,1,2,…,m,其中 m=min{M,n},且 n≤N, M≤N,n,M,N∈N*,称分布列
高中数学选修2-3:第八讲 正态分布 含解析 精品
第八讲 正态分布【教材扫描】1.正态曲线我们把函数,()x μσϕ=22()2x μσ--,(,)x ∈-∞+∞(其中μ是样本均值,σ是样本标准差)的图象称为正态分布密度曲线,简称正态曲线.正态曲线呈钟形,即中间高,两边低.2.正态分布随机变量X 落在区间(,]a b 的概率为()P a X b <≤=,()d ba x x μσϕ⎰,即由正态曲线,过点(,0)a 和点(,0)b 的两条x 轴的垂线,及x 轴所围成的平面图形的面积,如下图中阴影部分所示,就是X 落在区间(,]a b 的概率的近似值.一般地,如果对于任何实数a ,()b a b <,随机变量X 满足,()()d ba x P a Xb x μσϕ<≤=⎰,则称随机变量X 服从正态分布.正态分布完全由参数μ,σ确定,因此正态分布常记作2(,)N μσ.如果随机变量X 服从正态分布,则记为2(,)X N μσ~.其中,参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.3.正态曲线的性质(1)曲线位于x 轴上方,与x 轴不相交;(2)曲线是单峰的,它关于直线x μ=对称;(3)曲线在x μ=; (4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中,σ越大,曲线越“矮胖”,表示总体的分布越分散.4.正态分布的3σ原则若2(,)X N μσ~,则对于任意的实数0a >,,()d ()a a P a X a x x μμμσϕμμ+--<≤+=⎰为下图中阴影部分的面积,对于固定的μ和a 而言,该面积随着σ的减小而变大.这说明σ越小,X 落在区间(,]a a μμ-+的概率越大,即X 集中在μ周围的概率越大.特别地,有()0.6826P X μσμσ-<≤+=;(22)0.9544P X μσμσ-<≤+=;(3P X μσ-<3)μσ≤+0.9974=.由(33)P X μσμσ-<≤+0.9974=,知正态总体几乎总取值于区间(3,3)μσμσ-+之内.而在此区间以外取值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布2(,)N μσ的随机变量X 只取(3,3)μσμσ-+之间的值,并简称之为3σ原则.【知识运用】题型一:利用正态曲线的对称性求概率【例1】已知随机变量X 服从正态分布2(2,)N σ,()40.76P X <=,则(0)P X ≤=A .0.24B .0.48C .0.52D .0.76【解析】由2(2,)X N σ~,可知其正态曲线如下图所示,对称轴为直线2x =,则(0)P X ≤=(4)P X ≥=1410().760.24P X =-<=-=.故选A【变式】1.若随机变量ξ服从正态分布(0,1)N ,已知( 1.9)0.028P ξ<-=,则||( 1.9)P ξ<=A .0.028B .0.056C .0.944D .0.972【解析】由随机变量ξ服从正态分布(0,1)N ,可得( 1.9)1( 1.9)P P ξξ<=-≤-,所以||( 1.9)P ξ<=?( 1.9 1.9)( 1.9)( 1.9)12( 1.9)120.0280.944P P P P ξξξξ-<<=<-≤-=-≤-=-⨯=.故选C2.已知随机变量X ~N(2,σ2),若P(X<a)=0.32,则P(a≤X<4-a)=________.解析:由正态分布图象的对称性可得:P(a≤X<4-a)=1-2P(X<a)=0.36.答案:0.363.设随机变量X ~N(2,9),若P(X>c +1)=P(X<c -1).(1)求c 的值;(2)求P(-4<X≤8).解:(1)由X ~N(2,9)可知,密度函数关于直线x =2对称(如图所示).∵P(X>c +1)=P(X<c -1),故有2-(c -1)=(c +1)-2,∴c =2.(2)P(-4<X≤8)=P(2-2×3<X≤2+2×3)=P(μ-2σ<X≤μ+2σ)=0.954 4.题型二:由特殊区间求概率【例2】为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (单位:kg )服从正态分布(,4)N μ,且正态分布密度曲线如下图所示.若体重大于58 kg 小于等于62kg 属于正常情况,则这1000名男生中属于正常情况的人数约为A .997B .954C .819D .683【解析】由题意,可知60μ=,2σ=,故(5862)()0.6826P X P X μσμσ<≤=-<≤+=,从而属于正常情况的人数是1 0000.6826683⨯≈.故选D【变式】某设备在正常运行时,产品的质量服从正态分布,其参数为1000μ=g ,21σ=,为了检验设备运行是否正常,质量检查员需要随机地抽取产品,测量其质量.当检验员随机地抽取一个产品,测得其质量为1007g 时,他立即要求停止生产,检查设备.他的决定是否有道理呢?【解析】如果设备正常运行,产品质量服从正态分布2(,)N μσ,根据3σ原则可知,产品质量在3μσ-=10003997g -=和3100031003g μσ+=+=之间的概率为0.9974,而质量超出这个范围的概率只有0.0026,这是一个几乎不可能出现的事件.但是检验员随机抽取的产品为1007g ,这说明设备的运行极可能不正常,因此检验员的决定是有道理的题型三 :正态分布实际运用[例3] 在某次数学考试中,考生的成绩X 服从一个正态分布,即X ~N(90,100).(1)试求考试成绩X 位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?[解] ∵X~N(90,100),∴μ=90,σ=100=10.(1)由于X在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩X位于区间(70,110)内的概率就是0.954 4.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于变量X在区间(μ-σ,μ+σ)内取值的概率是0.682 6,所以考试成绩X位于区间(80,100)内的概率是0.682 6,一共有2 000名考生,所以考试成绩在(80,100)间的考生大约有2 000×0.682 6≈1 365(人).【变式】1.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分)服从X~N(50,102),则他在时间段(30,70)内赶到火车站的概率为________.解析:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X<70)=P(μ-2σ<X<μ+2σ)=0.954 4.答案:0.954 42.某厂生产的圆柱形零件的外直径X服从正态分布N(4,0.052),质量检查人员从该厂生产的1 000个零件中随机抽查一个,测得它的外直径为3.7 cm,该厂生产的这批零件是否合格?解:由于X服从正态分布N(4,0.052),由正态分布的性质,可知正态分布N(4,0.052)在(4-3×0.05,4+3×0.05)之外的取值的概率只有0.003,3.7∉(3.85,4,15),这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此可以认为该批零件是不合格的.【强化练习】1.关于正态分布N(μ,σ2),下列说法正确的是( )A.随机变量落在区间长度为3σ的区间之外是一个小概率事件B.随机变量落在区间长度为6σ的区间之外是一个小概率事件C.随机变量落在(-3σ,3σ)之外是一个小概率事件D.随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件解析:选D ∵P(μ-3σ<X<μ+3σ)=0.997 4.∴P(X>μ+3σ或X<μ-3σ)=1-P(μ-3σ<X<μ+3σ)=1-0.997 4=0.002 6.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.2.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示,则有( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2解析:选A μ反映的是正态分布的平均水平,x =μ是正态密度曲线的对称轴,由图可知μ1<μ2; σ反映的正态分布的离散程度,σ越大, 越分散, 曲线越“矮胖”,σ越小,越集中,曲线越“瘦高”, 由图可知σ1<σ2.3.设随机变量X ~N(1,22),则D ⎝ ⎛⎭⎪⎫12X =( ) A .4 B .2 C .12D .1 解析:选D 因为X ~N(1,22),所以D(X)=4,所以D ⎝ ⎛⎭⎪⎫12X =14D(X)=1. 4.若随机变量X 的密度函数为f(x)=12π·e -x 22,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( )A .p 1>p 2B .p 1<p 2C .p 1=p 2D .不确定 解析:选C 由正态曲线的对称性及题意知:μ=0,σ=1,所以曲线关于直线x =0对称,所以p 1=p 2.5.已知一次考试共有60名同学参加,考生的成绩X ~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内( )A .(90,110]B .(95,125]C .(100,120]D .(105,115] 解析:选C 由于X ~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6≈41人,60×0.954 4≈57人,60×0.997 4≈60人.6.已知随机变量2(2,)X N σ~,若()0.4P X a <=,则(4)P a X a ≤<-=A .0.4B .0.2C .0.1D .0.6 【解析】因为2(2,)X N σ~,()0.4P X a <=,所以(4)0.4P X a ≥-=,所以(4)P a X a ≤<-10.40.40.2=--=.故选B .7.已知随机变量ξ服从正态分布2(0,)N σ,若( 1.1)0.023P ξ>=,则( 1.1 1.1)P ξ-≤≤=A .0.954B .0.023C .0.977D .0.046【解析】因为随机变量ξ服从正态分布2(0,)N σ,则0μ=,则正态分布密度曲线关于直线0x =对称;由( 1.1)0.023P ξ>=及正态曲线的性质有( 1.1)0.023P ξ<-=,所以( 1.1 1.1)1P ξ-≤≤=-( 1.1)( 1.1)10.0230.0230.954p P ξξ>-<-=--=.故选A .8.已知随机变量2(0,)X N σ~,若(||2)P X a ≤=,则(2)P X >=A .12a -B .2aC .1a -D .12a + 【解析】由题意可得正态分布密度曲线关于直线0x =对称,因为正态分布密度曲线与x 轴围成的面积为1,所以A . 9.已知随机变量X 服从正态分布N(2,σ2),则P(X<2)=________.解析:由题意知曲线关于x =2对称,因此P(X<2)=12.答案:129.已知随机变量ξ服从正态分布(0,2)N ,若(2)P p ξ≥=,则(20)P ξ-<<=______________. 【解析】依题意有11(20)(02)(2)22P P P p ξξξ-<<=<<=-≥=- 10.已知随机变量ξ服从正态分布2(2,)N σ,若(4)0.7P ξ<=,则(02)P ξ<<=______________. 【解析】(02)(24)(4)(2)0.70.50.2P P P P ξξξξ<<=<<=<-<=-=.11()f x(,)μ-∞+∞∈,0σ>,则可以作为正态分布密度函数的为______________.(填函数对应的序号)(,)μ-∞+∞∈,所以(,)μ-∞-+∞∈,故它可以作为正态分布密度函数;对于②,若1σ=0μ=时的正态分布密度函数;对于12.已知随机变量X 服从正态分布2(,)N μσ,其正态曲线在(0),8-∞上是增函数,在(80,)+∞上为减函数,且7288()0.6826P X <≤=.(1)求参数μ,σ的值;(2)求7(64)2P X <≤的值.【解析】(1)因为正态曲线在(0),8-∞上是增函数,在(80,)+∞上为减函数,所以正态曲线关于直线80x =对称,所以80μ=.又7288()0.6826P X <≤=,结合()0.6826P X μσμσ-<≤+=可知8σ=.(2)因为(2P μσ-<2)0.9544X μσ≤+=,且()(6496)P X P X <=>,()640.9772P X >=. 又1()(()1721728810.68260.15872)()2P X P X ≤=-<≤=⨯-=, 所以()()()647264720.9772(10.15870.13)59P X P X P X <≤=>->=--=.13、从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .附:12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.【解析】(1)抽取产品的质量指标值的样本平均值x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=.(2)①由(1)知,Z 服从正态分布(200,150)N ,从而(187.8212.2)P Z <<(20012.2P Z =-<< 20012.2)0.6826+=.②由①可知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知(100,0.6826)X B ~,所以()1000.682668.26E X =⨯=.。
高三数学一轮复习:1228二项分布与正态分布
1.条件概率及其性质 (1)对于任何两个事件 A 和 B,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概率,用符号 P(B|A) 来表示,其公式为 P(B|A)=PPAAB(P(A)>0). 注:P(B|A)不同于 P(A|B),是在 A 发生的条件下 B 发生的概率 在古典概型中,若用 n(A)和 n(AB)分别表示事件 A 和事件 AB 所包含的基本事件的个数,则 P(B|A)=nnAAB. (2)条件概率具有的性质 ①0≤P(B|A)≤1. ②如果 B 和 C 是两个互斥事件,则 P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件 A,B,若事件 A 的发生与事件 B 的发生互不影响,则称事件 A,B 是相互独立事件. (2)若 A 与 B 相互独立,则 P(B|A)=P(B).
取两张都是‘扫黑除恶利国利民’卡的概率是16.”(1)求抽奖者获奖的概率; (2)为了增加抽奖的趣味性,规定每个抽奖者先从装有 9 张卡片的盒中随机抽出 1 张不放回,再用剩下 8 张 卡片按照之前的抽奖规则进行抽奖,现有甲、乙、丙三人依次抽奖,用 X 表示获奖的人数,求 X 的概率分 布和均值.
例 5 (2019·天津)设甲、乙两位同学上学期间,每天 7:30 之前到校的概率均为23,假定甲、乙两位同学到校 情况互不影响,且任一同学每天到校情况相互独立. (1)用 X 表示甲同学上学期间的三天中 7:30 之前到校的天数,求随机变量 X 的概率分布和均值; (2)设 M 为事件“上学期间的三天中,甲同学在 7:30 之前到校的天数比乙同学在 7:30 之前到校的天数 恰好多 2”,求事件 M 发生的概率.
)
A.1 B.2 C.4 D.不能确定
(3)若 A 与 B 相互独立,则 A 与 B , A 与 B, A 与 B 也都相互独立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手机连环夺宝单机版下载
[多选]入境邮寄物有下列情况之一的,检验检疫机构将作退回或销毁处理。()A.带有规定禁止邮寄进境的B.证单不全的C.在限期内未办理检疫审批或报检手续的D.经检疫不合格又无有效处理方法的 [单选,A3型题]3岁小儿,请判断其各种能力的正常状态。有关思维能力的发展,正常的是()A.产生萌芽状态的表象B.逐步发展其具体形象思维C.感知动作思维D.操纵动作的思维E.思维活动占主导地位 [填空题]塔板上浮阀的排列方法有正三角形和()两种。 [问答题,简答题]检查刮削精度常用哪些方法? [单选]某建筑公司承包一项建筑工程,竣工当月取得工程结算款120万元、工程抢工费8万元、提前竣工奖5万元;当月购买水泥、钢材等工程材料支出46万元、支付员工工资28万元。已知建筑业适用的营业税税率为3%。该公司当月应缴纳的营业税税额为()万元。A.120×3%=3.6B.(120+8)&tim [单选]2004年11月20日,江麓精密公司研制成功国内首台智能型全自动粉末()。A.压路机B.压机C.烧结机D.压力机 [单选]接入网中SNI指的是().A.业务节点接口B.用户一网络接口C.数据接口 [名词解释]原始铅 [单选]小儿惊厥最常见的原因是()A.癫痫B.低钙惊厥C.高热惊厥D.低血糖E.颅内感染 [单选,A1型题]经胃管肠内营养时,判断胃潴留发生的标准是在每次输营养液30分钟后,回抽液量应至少大于()。A.100mlB.200mlC.150mlD.50mlE.250ml [单选]雌激素与下列哪项激素共同作用维护血中钙磷平衡().A.肾上腺皮质激素B.降钙素C.甲状腺素D.甲状旁腺素E.雄激素 [单选]婴儿痉挛症诊断的最可靠依据是()A.3至8个月起病B.智力发育显著落后C.典型的点头样发作形式D.半数有围生期因素E.脑电图背景波异常 [单选]斯坎伦奖励计划是一种成本节省奖励计划,主要是针对()的节省。A.原料成本B.劳动力成本C.服务成本D.总成本 [单选]政府对于未来的谋划、安排和部署被称为()。A.统筹B.计划C.规划D.展望 [单选,A型题]白喉杆菌的毒力鉴定根据()A.菌体的异染颗粒特征B.吕氏血清培养基上快速生长特点C.亚碲酸钾平板上菌落特征D.Elek平板试验E.锡克试验 [单选]关于数字微波通信的站距,叙述正确的是:().A.发射机功率越大,站距越长B.射频工作频率越高,站距越长C.传播环境条件越好,距离越长 [单选]入院率偏倚又可以称为A.奈曼偏倚(Neymanbias)B.检出偏倚(detectionbias)C.混杂偏倚(confoundingbias)D.信息偏倚(informationbias)E.伯克森偏倚(Berkson'sbias) [单选]在双子叶植物次生结构中具有细胞分裂能力的结构是()。A、周皮B、韧皮部C、形成层D、木质部 [名词解释]习用品 [名词解释]基本社会化 [单选,A1型题]乳腺癌出现“酒窝征”的机制是()A.合并感染B.癌肿压迫乳管C.癌肿侵犯cooper韧带D.淋巴管癌栓阻塞E.周围组织粘连 [名词解释]等离子切割 [名词解释]免疫自稳(immunologichomeostasis) [单选]明确质量目标属于产品质量控制的()。A.制定质量核对表B.采取改进措施C.制订质量控制计划D.制定质量检测指标 [单选]对病理生理最大的影响是()。男孩,4岁,6个月起青紫,渐加重,常蹲踞。胸骨左缘第3肋间可闻及2级收缩期杂音,P2减弱,有杵状指(趾)A.肺动脉狭窄B.右位主动脉弓C.室间隔缺损D.主动脉骑跨E.右心室肥厚 [判断题]同一泵站内不能同时采用保护接地和保护接零。A.正确B.错误 [单选]车辆的外廓尺寸、轴荷和总质量应当符合国家有关车辆外廓尺寸、轴荷、质量限值等机动车安全(),不符合标准的不得生产、销售。A、设计标准B、技术标准C、通行标准 [单选,A2型题,A1/A2型题]风湿性心脏病二尖瓣狭窄心房颤动电复律以下哪项是适应证()A.出现心绞痛或晕厥B.病程2年C.高度房室传导阻滞D.既往有病态窦房结综合征E.左心房内径65mm [单选]属于细胞内正常物质异常增多或异常物质蓄积的变性是:A.脂肪变性B.黏液变性C.淀粉样变性D.细动脉管壁的玻璃样变性E.营养不良性钙化 [单选]以下带电作业方法为直接作业法的是()。A、地电位作业B、等电位作业C、中间电位作业D、带电水冲洗 [单选]溶菌法检测细胞杀菌功能,其杀菌率的计算公式是()A.吞噬细菌的细胞数/计数的细胞数×100%B.胞内含着染菌体的细胞数/计数的细胞数×100%C.(1~30、60、90min的菌落数/0min菌落数)×100%D.(1~3h的菌落数/0min菌落数)×100%E.胞内含着染菌体的细胞数 [单选]下列需要进行成本还原的方法是A.逐步综合结转分步B.逐步分项结转分步法C.平行结转分步法D.品种法 [单选]供电企业对于暂停用电不足15天的大工业电力客户,在计算其基本电费时,()基本电费。A.不计收B.不扣减C.按10天计算D.按实际天数扣减 [问答题,简答题]学校开展心理健康教育的基本途径。 [判断题]办理出入境快件,由具备报检资格的快件运营人向所在地检验检疫机构办理报检手续,凭检验检疫机构签发的出境通关单向海关办理报关。()A.正确B.错误 [单选,A2型题,A1/A2型题]关于吞咽神经检查,下列叙述哪项是正确的()。A.嘱患者伸舌,观察有无偏斜B.舌缘两侧厚薄不相等及颤动C.嘱患者张口,观察两侧软腭上抬是否有力,腭垂是否居中D.检查鼻唇沟及口角两侧是否对称E.嘱患者鼓腮或吹口哨,观察左右两侧差异 [单选]关节穿刺的禁忌证不包括()。A.被穿刺关节周围有疖肿B.被穿刺关节周围有皮肤破溃或银屑病等皮损C.免疫力低下、严重体弱的患者D.儿童或老年人E.有出血性疾病(如血友病)或有严重出血倾向性的疾病 [单选]发展中国家税收中的征收成本较低的税是()A.进口关税B.所得税C.土地税D.农业税 [判断题]加氢气密试验的压力应等于操作压力。A.正确B.错误 [单选,A1型题]长期的全胃肠外营养中,最严重的并发症是()A.高渗性非酮性昏迷B.溶质性利尿C.血磷过低D.凝血酶原过低E.氮质血症