大数据学习环境搭建系列(一)大数据集群平台介绍

合集下载

CDH大数据集群环境搭建步骤

CDH大数据集群环境搭建步骤

CDH大数据集群环境搭建步骤搭建CDH大数据集群环境需要进行以下步骤:1.准备硬件和操作系统:- 硬件要求:至少3台服务器,其中一台作为master节点,其他作为worker节点。

每台服务器至少具有4个CPU核心、16GB内存、100G以上硬盘空间。

- 操作系统要求:集群中的所有服务器需要运行相同的操作系统版本,推荐使用CentOS 7或者Red Hat Enterprise Linux 72.安装基础组件:- 使用root用户登录所有服务器,执行以下命令更新系统:`yum update -y`- 安装JDK:在每台服务器上执行以下命令安装JDK:`yum install-y java-1.8.0-openjdk-devel`- 安装其他依赖包:在每台服务器上执行以下命令安装其他依赖包:`yum install -y wget vim curl ntp`- 授予安装脚本执行权限:`chmod +x cloudera-manager-installer.bin`- 运行安装脚本:`./cloudera-manager-installer.bin`4.配置CDH集群管理器:- 打开Web浏览器,输入master节点的IP地址和端口号7180(默认)访问Cloudera Manager Web控制台。

- 在“Install a New Cluster”页面上,按照提示配置集群名称、选择操作系统等信息,并选择需要安装的组件(如HDFS、YARN、HBase 等)。

- 提供worker节点的主机名或IP地址,在设置完所有配置项后,点击“Continue”按钮。

5.配置集群节点:- 在“Choose Services”页面上,选择需要在集群中安装的服务。

- 在“Assign Roles”页面上,将角色分配给master节点和worker节点。

- 在“Check Configuration”页面上,检查配置项是否正确,如有错误,根据提示进行修改。

基于Hadoop的大数据分析系统设计与开发

基于Hadoop的大数据分析系统设计与开发

基于Hadoop的大数据分析系统设计与开发一、引言随着互联网的快速发展和智能化技术的不断进步,大数据分析已经成为各行各业的重要组成部分。

在海量数据的背景下,如何高效地存储、处理和分析数据成为了企业发展的关键。

Hadoop作为一个开源的分布式计算框架,被广泛应用于大数据处理领域。

本文将介绍基于Hadoop的大数据分析系统设计与开发。

二、Hadoop简介Hadoop是一个由Apache基金会开发的分布式系统基础架构,可以有效地存储和处理大规模数据。

其核心包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。

HDFS用于存储数据,而MapReduce则用于并行处理数据。

三、大数据分析系统架构设计1. 数据采集在设计大数据分析系统时,首先需要考虑数据采集的问题。

数据可以来自各种来源,包括传感器、日志文件、数据库等。

在数据采集阶段,需要确保数据的完整性和准确性。

2. 数据存储HDFS作为大数据存储的核心组件,具有高可靠性和可扩展性。

在设计大数据分析系统时,可以将原始数据存储在HDFS中,以便后续的处理和分析。

3. 数据处理MapReduce是Hadoop中用于并行处理大规模数据集的编程模型。

通过MapReduce编程,可以实现对数据的高效处理和计算。

在设计大数据分析系统时,需要合理地设计MapReduce任务,以提高计算效率。

4. 数据分析除了MapReduce之外,Hadoop还支持其他数据处理框架,如Spark、Hive等。

这些框架可以帮助用户进行更复杂和多样化的数据分析工作。

在设计大数据分析系统时,需要根据实际需求选择合适的数据分析工具。

四、大数据分析系统开发1. 环境搭建在进行大数据分析系统开发之前,需要搭建好Hadoop集群环境。

通过配置Hadoop集群,可以实现多台机器之间的协同工作,提高系统的稳定性和可靠性。

2. 数据处理流程编写根据设计阶段确定的数据处理流程,开发人员可以编写相应的MapReduce程序。

大数据平台安装实训报告

大数据平台安装实训报告

一、实训背景随着信息技术的飞速发展,大数据已成为国家战略资源。

为了培养具备大数据技术能力的人才,我国高校纷纷开设大数据相关课程。

本实训旨在通过实际操作,使学生掌握大数据平台的搭建与配置,为今后从事大数据相关工作打下坚实基础。

二、实训目标1. 熟悉大数据平台的基本概念、架构及常用技术。

2. 掌握Hadoop、Hive、HBase等大数据组件的安装与配置。

3. 熟悉大数据平台的集群部署与维护。

4. 提高动手实践能力,培养团队合作精神。

三、实训环境1. 操作系统:CentOS 72. 虚拟机软件:VMware Workstation3. 大数据组件:Hadoop 3.1.0、Hive 3.1.2、HBase 2.2.4四、实训内容1. 创建虚拟机与操作系统的安装(1)使用VMware Workstation创建虚拟机,并安装CentOS 7操作系统。

(2)配置虚拟机网络,实现虚拟机与主机之间的网络互通。

2. 集群主节点JDK和Hadoop的安装与配置(1)修改主机名,便于区分不同节点。

(2)进入hosts文件,配置IP地址及对应的主机名。

(3)配置本机网卡配置文件,确保网络连通性。

(4)测试网络连接是否正常。

(5)安装JDK 8,为Hadoop提供运行环境。

(6)安装Hadoop 3.1.0,并配置Hadoop环境变量。

(7)初始化Hadoop集群,确保集群正常运行。

3. 集群从节点JDK和Hadoop的实现(1)将集群主节点的配置文件分发到其他子节点上。

(2)在从节点上安装JDK 8和Hadoop 3.1.0。

(3)修改从节点的hosts文件,确保集群内节点之间可以相互通信。

4. Hive和HBase的搭建与配置(1)安装Hive 3.1.2和HBase 2.2.4。

(2)配置Hive环境变量,并启动Hive服务。

(3)配置HBase环境变量,并启动HBase服务。

5. 大数据平台的集群部署与维护(1)测试Hadoop集群的MapReduce、YARN等组件是否正常运行。

Cloudera大数据平台环境搭建(CDH5.13.1)傻瓜式说明书

Cloudera大数据平台环境搭建(CDH5.13.1)傻瓜式说明书

Cloudera大数据平台环境搭建(CDH5.13.1版)目录Cloudera大数据平台环境搭建 (1)(CDH5.13.1版) (1)1.基础环境 (4)1.1.软件环境 (4)1.2.配置规划 (4)1.3.所需要的软件资源 (4)1.4.修改机器名(所有节点) (5)1.5.设置防火墙(所有节点) (6)1.6.配置免密码登录SSH (6)1.7.关闭SELINUX(所有节点) (8)1.8.修改Linux内核参数(所有节点) (8)1.9.其他安装与配置(所有节点) (10)1.10.配置NTP服务 (10)1.11.安装oracle JDK1.8 (所有节点) (12)1.12.Mysql安装(主节点) (13)2.安装CM (15)2.1.传包,解包 (15)2.2.创建数据库 (15)2.3.创建用户 (16)2.4.制作本地YUM源 (16)2.5.拷贝jar包 (17)2.6.修改cloudera-scm-agent配置 (17)2.7.启动CM Server和Agent (18)2.8.访问CM (18)3.安装CDH (18)3.1.登录后界面 (18)3.2.选择CM版本 (19)3.3.指定主机 (20)3.4.选择CDH版本 (21)3.4.1.出现“主机运行状态不良”错误 (22)3.5.检查主机正确性 (23)3.6.选择安装的服务 (23)3.7.角色分配 (24)3.8.数据库设置 (24)3.8.1.测试连接报错: (25)3.9.群集设置 (26)3.10.开始安装 (28)3.11.安装完成 (29)3.11.1.警告信息: (29)4.常见错误 (31)4.1.初始化数据库错误: (31)4.2.未能连接到Host Monitor (32)1.基础环境1.1.软件环境本文将介绍Centos7.4 离线安装CDH和Cloudera Manager过程,软件版本如下:1.2.配置规划本次安装共5台服务器,服务器配置及用途如下:1.3.所需要的软件资源1)JDK环境:JDK版本:1.8.0_151jdk-8u151-linux-x64.rpm下载地址:/technetwork/java/javase/downloads/jdk8-downloads-2133151.html2)CM包:CM版本:5.13.1cloudera-manager-centos7-cm5.13.1_x86_64.tar.gz下载地址:/cm5/cm/5/cloudera-manager-centos7-cm5.13.1_x86_64.tar.gz3)CDH包CDH版本:5.13.1,CDH-5.13.1-1.cdh5.13.1.p0.2-el7.parcel;CDH-5.13.1-1.cdh5.13.1.p0.2-el7.parcel.sha1;manifest.json下载地址:/cdh5/parcels/5.13.1/manifest.json/cdh5/parcels/5.13.1/CDH-5.13.1-1.cdh5.13.1.p0.2-el7.parcel.sha1 /cdh5/parcels/5.13.1/CDH-5.13.1-1.cdh5.13.1.p0.2-el7.parcel4)JDBC连接jar包:jar包版本:5.1.43,mysql-connector-java-5.1.43.jar下载地址:/maven2/mysql/mysql-connector-java/5.1.43/mysql-connector-java-5.1.43.jar1.4.修改机器名(所有节点)1)修改机器名称这种方式,在Centos7中可以永久性改变主机名称。

linuxxshelljdkhadoop(环境搭建)虚拟机安装(大数据搭建环境)

linuxxshelljdkhadoop(环境搭建)虚拟机安装(大数据搭建环境)

linuxxshelljdkhadoop(环境搭建)虚拟机安装(⼤数据搭建环境)【hadoop是2.6.5版本xshell是6版本jdk是1.8.0.131 虚拟机是CentOS-6.9-x86_64-bin-DVD1.iso vmware10】1.创建虚拟机第⼀步:在VMware中创建⼀台新的虚拟机。

如图2.2所⽰。

图2.2第⼆步:选择“⾃定义安装”,然后单击“下⼀步”按钮,如图2.3所⽰。

图2.3第三步:单击“下⼀步” 按钮,如图2.4所⽰。

图2.4第四步:选择“稍后安装操作系统”,然后单击“下⼀步” 按钮,如图2.5所⽰。

图2.5第五步:客户机操作系统选择Linux,版本选择“CentOS 64位”,然后单击“下⼀步” 按钮,如图2.6所⽰。

图2.6第六步:在这⾥可以选择“修改虚拟机名称”和“虚拟机存储的物理地址”,如图2.7所⽰。

图2.7第七步:根据本机电脑情况给Linux虚拟机分配“处理器个数”和每个处理器的“核⼼数量”。

注意不能超过⾃⼰电脑的核数,推荐处理数量为1,每个处理器的核⼼数量为1,如图2.8所⽰。

图2.8第⼋步:给Linux虚拟机分配内存。

分配的内存⼤⼩不能超过⾃⼰本机的内存⼤⼩,多台运⾏的虚拟机的内存总合不能超过⾃⼰本机的内存⼤⼩,如图2.9所⽰。

图2.9第九步:使⽤NAT⽅式为客户机操作系统提供主机IP地址访问主机拨号或外部以太⽹⽹络连接,如图2.10所⽰。

图2.10第⼗步:选择“SCSI控制器为LSI Logic(L)”,然后单击“下⼀步” 按钮,如图2.11所⽰。

图2.11第⼗⼀步:选择“虚拟磁盘类型为SCSI(S)”,然后单击“下⼀步” 按钮,如图2.12所⽰。

图2.12第⼗⼆步:选择“创建新虚拟磁盘”,然后单击“下⼀步” 按钮,如图2.13所⽰。

图2.13第⼗三步:根据本机的磁盘⼤⼩给Linux虚拟机分配磁盘,并选择“将虚拟机磁盘拆分为多个⽂件”,然后单击“下⼀步”按钮,如图2.14所⽰。

Hadoop平台搭建与应用(第2版)(微课版)项目1 认识大数据

Hadoop平台搭建与应用(第2版)(微课版)项目1 认识大数据

Hadoop平台搭建与应用教案靠、高性能、分布式和面向列的动态模式数据库。

⑤ ZooKeeper(分布式协作服务):其用于解决分布式环境下的数据管理问题,主要是统一命名、同步状态、管理集群、同步配置等。

⑥ Sqoop(数据同步工具):Sqoop是SQL-to-Hadoop的缩写,主要用于在传统数据库和Hadoop之间传输数据。

⑦ Pig(基于Hadoop的数据流系统):Pig的设计动机是提供一种基于MapReduce 的Ad-Hoc(计算在query时发生)数据分析工具。

⑧ Flume(日志收集工具):Flume是Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。

⑨ Oozie(作业流调度系统):Oozie是一个基于工作流引擎的服务器,可以运行Hadoop的MapReduce和Pig任务。

⑩ Spark(大数据处理通用引擎):Spark提供了分布式的内存抽象,其最大的特点就是快,是Hadoop MapReduce处理速度的100倍。

YARN(另一种资源协调者):YARN是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

Kafka(高吞吐量的分布式发布订阅消息系统):Kafka可以处理消费者规模的网站中的所有动作流数据。

任务1.1 认知大数据,完成系统环境搭建(1)安装CentOS系统(确保CentOS系统版本在7及以上,以便配合后续Docker 安装)。

①在VMware中设置CentOS 7镜像,进入后选择第一项安装CentOS 7,如图1-8所示。

②在新打开页面中设置时间(DATE&TIME),分配磁盘(INSTALLATION DESTINATION)和网络设置(NETWORK&HOST NAME)等,如图1-9所示。

③单击“INSTALLATION DESTINATION”链接,在打开的界面中选择“I will configure partitioning”选项,然后单击“Done”按钮,跳转到分配磁盘页面即可进行磁盘分配,如图1-10所示。

大数据--Hadoop集群环境搭建

大数据--Hadoop集群环境搭建

⼤数据--Hadoop集群环境搭建⾸先我们来认识⼀下HDFS, HDFS(Hadoop Distributed File System )Hadoop分布式⽂件系统。

它其实是将⼀个⼤⽂件分成若⼲块保存在不同服务器的多个节点中。

通过联⽹让⽤户感觉像是在本地⼀样查看⽂件,为了降低⽂件丢失造成的错误,它会为每个⼩⽂件复制多个副本(默认为三个),以此来实现多机器上的多⽤户分享⽂件和存储空间。

Hadoop主要包含三个模块:HDFS模块:HDFS负责⼤数据的存储,通过将⼤⽂件分块后进⾏分布式存储⽅式,突破了服务器硬盘⼤⼩的限制,解决了单台机器⽆法存储⼤⽂件的问题,HDFS是个相对独⽴的模块,可以为YARN提供服务,也可以为HBase等其他模块提供服务。

YARN模块:YARN是⼀个通⽤的资源协同和任务调度框架,是为了解决Hadoop中MapReduce⾥NameNode负载太⼤和其他问题⽽创建的⼀个框架。

YARN是个通⽤框架,不⽌可以运⾏MapReduce,还可以运⾏Spark、Storm等其他计算框架。

MapReduce模块:MapReduce是⼀个计算框架,它给出了⼀种数据处理的⽅式,即通过Map阶段、Reduce阶段来分布式地流式处理数据。

它只适⽤于⼤数据的离线处理,对实时性要求很⾼的应⽤不适⽤。

多相关信息可以参考博客:。

本节将会介绍Hadoop集群的配置,⽬标主机我们可以选择虚拟机中的多台主机或者多台阿⾥云服务器。

注意:以下所有操作都是在root⽤户下执⾏的,因此基本不会出现权限错误问题。

⼀、Vmware安装VMware虚拟机有三种⽹络模式,分别是Bridged(桥接模式)、NAT(⽹络地址转换模式)、Host-only(主机模式):桥接:选择桥接模式的话虚拟机和宿主机在⽹络上就是平级的关系,相当于连接在同⼀交换机上;NAT:NAT模式就是虚拟机要联⽹得先通过宿主机才能和外⾯进⾏通信;仅主机:虚拟机与宿主机直接连起来。

大数据技术架构

大数据技术架构
高效率。通过分发数据,Hadoop 可以在数据所在节点上进 行并行处理,处理速度非常快。
可靠性。Hadoop 能自动维护数据的多份备份,并且在任 务失败后能自动重新部署计算任务。
缺点
Hadoop 采用文件存储系统,所以读写时效性较差。
Hadoop 生态系统日趋复杂,组件之间的兼容性差,安装 和维护比较困难。 Hadoop 的各个组件功能相对单一。
边缘计算。将计算分散到数据产生、存储和查询端,数据产生既符合 CDM 的要求,同时也传输 给实时模型反馈,让客户端传送数据的同时马上进行反馈,而不需要所有事件都要到中央端处理 之后再进行下发。
5.3 Hadoop 生态架构
Part 01
Hadoop 基本概念
1 Hadoop 基本概念
定义
Hadoop 是一个由 Apache 基金会开发的大数据分布 式系统基础架构,实现高速运算和存储。Hadoop 是 可扩展的,它可以方便地从单一服务器扩展到数千台服 务器,每台服务器进行本地计算和存储。低成本、高可 靠、高扩展、高有效、高容错等特性使 Hadoop 成为 最流行的大数据分析系统之一。
定义
Spark 是基于内存计算的大数据并行计算框架, 可用于构建大型的、低延迟的数据分析应用程序。
Part 02
Spark 生态系统
2 Spark 生态系统
Spark
生态系 统
Part 03
Spark 主要特点
3 Spark 主要特点
Spark 主要特点
运行速度快。Spark 使用先进的 DAG 执行引擎,以支持循环数据流与内存计算,基于内存的执行速度 可比 Hadoop MapReduce 快上百倍,基于磁盘的执行速度也能快 10 倍左右。 容易使用。Spark 支持使用 Scala、Java、Python 和 R 语言进行编程,简洁的 API 设计有助于用户轻 松构建并行程序,并且可以通过 Spark Shell 进行交互式编程。

大数据竞赛平台介绍

大数据竞赛平台介绍

大数据竞赛平台介绍第一章平台介绍1.1 架构介绍大数据竞赛平台采用私有云系统建设,基于私有云环境架构建设大数据竞赛系统,结合当今大数据形势、主流竞赛设备、技术在数据挖掘与分析等方向为学校提供全面的竞赛环境。

通过动手实际操作,强化学生对大数据技术知识的理解,提高集群部署与数据分析操作能力。

整个平台的运行依托于云计算系统,将云计算系统的计算资源与各种教学资源整合在一起,向用户提供各种服务。

具体说明如下:底层IaaS层为整合各种IT资源,包括云资源计算设备、管理控制设备、资源调度设备资源。

统一的云系统将这些设备资源进行虚拟化管理,向上提供基础服务,包括分布式数据存储、计算服务、负载管理和备份等。

这一层使用虚拟化技术,将分布式计算资源进行整合,为实验室的运行提供统一管理和使用。

中间的PaaS层为云系统业务调度中心,包括统一身份认证管理、各种管理功能、竞赛考题资源管理、统一业务访问控制和数据监控、采集和分析功能等。

这一层将各种竞赛环境需要的开发支持与管理工具、实验教学管理工具等有机地整合在一起,对上一层资源工具打包整合进行按需分配。

SaaS层包含了向最终用户提供的各种服务以及各种资源调用。

方式为通过竞赛系统,将竞赛考题和所需要的实验环境进行整合为用户进行服务。

调用资源的终端可以为PC、笔记本电脑、各种云终端和平板电脑。

云系统的优点是可以通过网络进行访问,可在教室、办公室、图书馆、寝室访问使用,可有效的提高系统使用率。

1.2 竞赛平台该模块为此平台的核心内容,参赛选手在此进行大数据竞赛。

当开启比赛模式后,参赛选手统一在此页面下进行登录,登录后,竞赛平台页面包含以下主要信息:虚拟机信息、通知栏、当前成绩、比赛题目、排行榜、比赛信息等。

登录界面竞赛系统1.3 虚拟机信息虚拟机信息功能是为选手提供操作机连接服务,为保证比赛的公平性与安全性,每一支参赛队伍的账号密码都随机生成。

因此,选手需要根据虚拟机的信息进行登录访问。

大数据分析平台的搭建与配置手册

大数据分析平台的搭建与配置手册

大数据分析平台的搭建与配置手册随着信息技术的不断进步和大数据时代的到来,大数据分析平台逐渐成为许多企业和机构的重要工具。

搭建和配置一个稳定高效的大数据分析平台对于实现数据驱动的决策和创新至关重要。

本手册将为您详细介绍大数据分析平台的搭建和配置过程,帮助您步入大数据分析的世界。

一、平台基础环境搭建1. 需求分析:在搭建大数据分析平台之前,首先需要明确您的需求和目标。

了解您的数据源、数据规模、分析需求以及机器性能等方面的信息,可以帮助您选择适合的硬件和软件环境。

2. 硬件配置:根据您的需求和预算,选择合适的硬件设备。

一般情况下,大数据分析平台需要高性能的服务器、存储设备和网络设备来支持海量数据的存储和处理。

3. 网络环境搭建:搭建稳定可靠的网络环境对于大数据分析平台至关重要。

确保网络设备的带宽和稳定性,以及网络安全的防护措施。

4. 操作系统选择:根据您的数据分析软件和工具的要求,选择适合的操作系统。

常用的操作系统包括Linux、Windows Server等。

二、软件环境配置1. 数据存储配置:大数据分析平台的核心是数据存储。

根据您的数据大小和访问需求,可以选择不同的数据存储方案,如分布式文件系统(HDFS)、关系型数据库、NoSQL数据库等。

对于大规模数据分析,一般采用分布式存储系统,以实现高可用和容错性。

2. 数据处理配置:选择适合的数据处理框架和工具,如Hadoop、Spark等。

配置集群环境,以支持并行计算和数据处理。

安装并配置相关软件包,设置集群规模和节点配置。

3. 数据安全配置:在大数据分析平台中,数据安全是不可忽视的问题。

配置访问控制策略、加密传输等安全机制,确保敏感数据的保密性和隐私性。

4. 数据可视化配置:数据分析的结果通常通过可视化的方式呈现给用户。

选择适合的数据可视化工具,如Tableau、Power BI等,并配置相应的连接设置和权限控制。

三、平台管理与维护1. 集群管理:了解集群管理工具的使用,如Hadoop的YARN、Hive、Ambari等。

大数据Hadoop学习之搭建Hadoop平台(2.1)

大数据Hadoop学习之搭建Hadoop平台(2.1)

⼤数据Hadoop学习之搭建Hadoop平台(2.1) 关于⼤数据,⼀看就懂,⼀懂就懵。

⼀、简介 Hadoop的平台搭建,设置为三种搭建⽅式,第⼀种是“单节点安装”,这种安装⽅式最为简单,但是并没有展⽰出Hadoop的技术优势,适合初学者快速搭建;第⼆种是“伪分布式安装”,这种安装⽅式安装了Hadoop的核⼼组件,但是并没有真正展⽰出Hadoop的技术优势,不适⽤于开发,适合学习;第三种是“全分布式安装”,也叫做“分布式安装”,这种安装⽅式安装了Hadoop的所有功能,适⽤于开发,提供了Hadoop的所有功能。

⼆、介绍Apache Hadoop 2.7.3 该系列⽂章使⽤Hadoop 2.7.3搭建的⼤数据平台,所以先简单介绍⼀下Hadoop 2.7.3。

既然是2.7.3版本,那就代表该版本是⼀个2.x.y发⾏版本中的⼀个次要版本,是基于2.7.2稳定版的⼀个维护版本,开发中不建议使⽤该版本,可以使⽤稳定版2.7.2或者稳定版2.7.4版本。

相较于以前的版本,2.7.3主要功能和改进如下: 1、common: ①、使⽤HTTP代理服务器时的⾝份验证改进。

当使⽤代理服务器访问WebHDFS时,能发挥很好的作⽤。

②、⼀个新的Hadoop指标接收器,允许直接写⼊Graphite。

③、与Hadoop兼容⽂件系统(HCFS)相关的规范⼯作。

2、HDFS: ①、⽀持POSIX风格的⽂件系统扩展属性。

②、使⽤OfflineImageViewer,客户端现在可以通过WebHDFS API浏览fsimage。

③、NFS⽹关接收到⼀些可⽀持性改进和错误修复。

Hadoop端⼝映射程序不再需要运⾏⽹关,⽹关现在可以拒绝来⾃⾮特权端⼝的连接。

④、SecondaryNameNode,JournalNode和DataNode Web UI已经通过HTML5和Javascript进⾏了现代化改造。

3、yarn: ①、YARN的REST API现在⽀持写/修改操作。

Hadoop大数据开发基础教案Hadoop集群的搭建及配置教案

Hadoop大数据开发基础教案Hadoop集群的搭建及配置教案

Hadoop大数据开发基础教案-Hadoop集群的搭建及配置教案教案章节一:Hadoop简介1.1 课程目标:了解Hadoop的发展历程及其在大数据领域的应用理解Hadoop的核心组件及其工作原理1.2 教学内容:Hadoop的发展历程Hadoop的核心组件(HDFS、MapReduce、YARN)Hadoop的应用场景1.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节二:Hadoop环境搭建2.1 课程目标:学会使用VMware搭建Hadoop虚拟集群掌握Hadoop各节点的配置方法2.2 教学内容:VMware的安装与使用Hadoop节点的规划与创建Hadoop配置文件(hdfs-site.xml、core-site.xml、yarn-site.xml)的编写与配置2.3 教学方法:演示与实践相结合手把手教学,确保学生掌握每个步骤教案章节三:HDFS文件系统3.1 课程目标:理解HDFS的设计理念及其优势掌握HDFS的搭建与配置方法3.2 教学内容:HDFS的设计理念及其优势HDFS的架构与工作原理HDFS的搭建与配置方法3.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节四:MapReduce编程模型4.1 课程目标:理解MapReduce的设计理念及其优势学会使用MapReduce解决大数据问题4.2 教学内容:MapReduce的设计理念及其优势MapReduce的编程模型(Map、Shuffle、Reduce)MapReduce的实例分析4.3 教学方法:互动提问,巩固知识点教案章节五:YARN资源管理器5.1 课程目标:理解YARN的设计理念及其优势掌握YARN的搭建与配置方法5.2 教学内容:YARN的设计理念及其优势YARN的架构与工作原理YARN的搭建与配置方法5.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节六:Hadoop生态系统组件6.1 课程目标:理解Hadoop生态系统的概念及其重要性熟悉Hadoop生态系统中的常用组件6.2 教学内容:Hadoop生态系统的概念及其重要性Hadoop生态系统中的常用组件(如Hive, HBase, ZooKeeper等)各组件的作用及相互之间的关系6.3 教学方法:互动提问,巩固知识点教案章节七:Hadoop集群的调优与优化7.1 课程目标:学会对Hadoop集群进行调优与优化掌握Hadoop集群性能监控的方法7.2 教学内容:Hadoop集群调优与优化原则参数调整与优化方法(如内存、CPU、磁盘I/O等)Hadoop集群性能监控工具(如JMX、Nagios等)7.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节八:Hadoop安全与权限管理8.1 课程目标:理解Hadoop安全的重要性学会对Hadoop集群进行安全配置与权限管理8.2 教学内容:Hadoop安全概述Hadoop的认证与授权机制Hadoop安全配置与权限管理方法8.3 教学方法:互动提问,巩固知识点教案章节九:Hadoop实战项目案例分析9.1 课程目标:学会运用Hadoop解决实际问题掌握Hadoop项目开发流程与技巧9.2 教学内容:真实Hadoop项目案例介绍与分析Hadoop项目开发流程(需求分析、设计、开发、测试、部署等)Hadoop项目开发技巧与最佳实践9.3 教学方法:案例分析与讨论团队协作,完成项目任务教案章节十:Hadoop的未来与发展趋势10.1 课程目标:了解Hadoop的发展现状及其在行业中的应用掌握Hadoop的未来发展趋势10.2 教学内容:Hadoop的发展现状及其在行业中的应用Hadoop的未来发展趋势(如Big Data生态系统的演进、与大数据的结合等)10.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点重点和难点解析:一、Hadoop生态系统的概念及其重要性重点:理解Hadoop生态系统的概念,掌握生态系统的组成及相互之间的关系。

基于Hadoop的大数据处理与分析平台设计与实现

基于Hadoop的大数据处理与分析平台设计与实现

基于Hadoop的大数据处理与分析平台设计与实现一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今社会中不可或缺的重要资源。

大数据的处理和分析对于企业决策、市场营销、风险控制等方面起着至关重要的作用。

在这样的背景下,基于Hadoop的大数据处理与分析平台设计与实现显得尤为重要。

二、Hadoop简介Hadoop是一个开源的分布式计算平台,可以对大规模数据进行存储和处理。

它由Apache基金会开发,采用Java编程语言。

Hadoop主要包括Hadoop Common、Hadoop Distributed File System(HDFS)、Hadoop YARN和Hadoop MapReduce等模块。

三、大数据处理与分析平台设计1. 架构设计在设计基于Hadoop的大数据处理与分析平台时,首先需要考虑整体架构。

典型的架构包括数据采集层、数据存储层、数据处理层和数据展示层。

其中,数据采集层负责从各个数据源收集数据,数据存储层用于存储原始和处理后的数据,数据处理层包括数据清洗、转换和计算等功能,数据展示层则提供可视化的报表和图表展示。

2. 数据采集与存储在大数据处理平台中,数据采集是至关重要的一环。

可以通过Flume、Kafka等工具实现对各类数据源的实时采集。

而数据存储方面,HDFS是Hadoop中用于存储海量数据的分布式文件系统,具有高可靠性和高扩展性。

3. 数据处理与计算Hadoop MapReduce是Hadoop中用于并行计算的编程模型,通过Map和Reduce两个阶段实现对大规模数据的处理和计算。

同时,Hadoop YARN作为资源管理器,可以有效管理集群中的资源,并提供任务调度功能。

4. 数据展示与应用为了更好地展示和利用处理后的数据,可以使用Apache Hive、Apache Pig等工具进行SQL查询和复杂分析操作。

此外,通过搭建BI系统或者开发自定义应用程序,可以实现对数据进行更深入的挖掘和应用。

大数据一体化教学实训平台简介

大数据一体化教学实训平台简介

大数据一体化教学实训平台简介大数据一体化教学实训平台是由泰迪科技自主研发,旨在为高校大数据相关专业提供一体化教学实训环境及课程资源。

本平台共包含9大模块:云资源管理平台、教学管理平台、大数据分析平台、Python 数据挖掘建模平台、R语言数据挖掘建模平台、大数据开发实训平台、Python编程实训平台、R语言编程实训平台、大数据整合平台。

以教学管理平台、云资源管理平台为支撑,以优质的课程、项目案例资源为核心,并以自主研发的数据挖掘建模平台为实训工具,把课程、软件、硬件内容统一结合,满足高校大数据教学与实训的一体化平台。

大数据一体化教学实训平台架构(总)大数据一体化教学实训平台架构(理学方向)大数据一体化教学实训平台架构(工学方向)大数据一体化教学实训平台特点•B/S架构:可直接通过客户机的浏览器对服务器端的一体化教学实训平台进行访问。

•模块丰富:提供软硬件管理、教学管理、实验实训等系列模块,满足不同的教学与实训场景使用。

•拓展性强:教师自主开设新课程、添加各种课程资源与活动,满足用户的个性化需求。

•单点登录:用户只需一次登录即可访问所有的教学与实训平台,解决了登录繁琐、操作不便等问题。

•资源一体:提供教学大纲、教学视频、教学PPT、课后习题、实验指导书、实验数据、实验代码、实验环境等一系列的教学实训资源,全方位解决实际教学与实训过程中所遇到的问题。

•教学一体:分别提供“教”与“学”的软件环境,教学与实训模块深度融合,真正实现一体化。

•软硬件一体:硬件环境采用云柜的方式进行搭建,内部集成机柜、服务器(部署一体化教学实训平台)、供配电、UPS、变频空调、应急通风等,整个云柜架构和谐统一、方便安装与维护。

云资源管理平台简介云资源管理平台主要对实验室云虚拟化资源进行管理及维护,负责对实验室所有软件系统进行管理与监控,将云存储资源、服务器资源和网络资源整合,然后通过虚拟化搭建私有云平台,在私有云平台上搭建教学管理平台与一系列的大数据实训平台。

(1)Spark简介

(1)Spark简介
紧密集成的优点:
1.
如果Spark底层优化了,那么基于Spark底层的组件,也得到了相应的优化。例如,Spark底 层增加了一个优化算法,那么Spark的SQL和机器学习包也会自动的优化。 紧密集成,节省了各个组件组合使用时的部署,测试等时间。 当向Spark增加新的组件时,其它的组件,可以立刻享用新组件的功能。 无缝连接不同的处理模型。
2.
Shark是一种较老的基于Spark的SQL项目,它是基于Hive修改的,它现在已经被Spark SQL替 代了。
Spark的组件

1. 2.
Spark Streaming:
是实时数据流处理组件,类似Storm。 Spark Streaming提供了API来操作实时流数据。
Spark的组件


Spark系列课程大纲

Spark简介:Spark介绍,搭建Spark开发环境,开发简单的Spark程序 Spark核心概念RDDs:RDDs介绍,RDDs的操作,KeyValue对RDDs的操作,数据分片 Spark高级编程:累加器和广播变量 Spark管理与调优:集群管理,调优等
2.
3.
Spark Core提供了很多APIs来创建和操作这些集合(RDDs)。
Spark的组件

1.
Spark SQL:
是Spark处理结构化数据的库。它支持通过SQL查询数据,就像HQL(Hive SQL)一样,并且支 持很多数据源,像Hive表,JSON等。Spark SQL是在Spark 1.0版本中新加的。
2015
Spark简介
—by 球哥
大数据学习网介绍

我们的网址是: 我们提供专业的大数据学习视频,包括Hadoop,Spark,Storm,Mahout,机 器学习等。 我们定价合理,让每个人都学得起大数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据集群平台介绍
掌握搭建大数据集群的方法是学习大数据技术的人需要具备的基础技能,因此我会通过接下来的三十余篇文章介绍大数据平台的搭建方法。

在本文中我将向小伙伴们介绍一下搭建大数据集群需要哪些知识以及我们接下来搭建的大数据集群平台架构,让大家对平台有个总体的认识并普及一些概念。

首先我们接触的是虚拟机,及在虚拟机中安装Linux操作系统
集群搭建完成后我们总共会有四个虚拟机,其中伪分布集群有一台虚拟机,虚拟机名称为single_node。

分布式集群有三个虚拟机名称分别为master、slave1、slave2。

各个虚拟机的IP配置及安装软件(含软件运行的模块)如下表所示。

注:hostname:每个节点的主机名称
IP:每个节点的IP地址
NN:NameNode
DN:DataNode
NM:NodeManager
RM:ResourceManager
SNN:SecondaryNameNode
/ :表示不安装
分布式集群的架构如下图所示
slave1 192.168.***.12
slave2 192.168.***.13
Master
192.168.***.11
1、硬件
节点:我们后面会经常提到节点,分布式环境中一个服务器就是一个节点,在我们搭建的集群中服务器指的是通过VMware软件虚拟出来的虚拟机。

操作系统:服务器上运行的操作系统基本上都是Linux操作系统,当然虚拟机中安装的也是Linux系统。

网络:集群中的多个节点之间协同工作需要不断交换数据及状态、命令等信息,因此需要互通的网络环境。

我们的集群是通过虚拟机软件虚拟出来的,网络也是由虚拟机软件虚拟出的虚拟网卡来实现数据交换的。

2、软件
集群中的软件主要有hadoop、spark、hive、hbase、zookeeper这几个。

Hadoop
虽然大数据集群平台根据具体业务需求不同配置组成不同,但大部分集群都会以hadoop集群为基础。

例如大数据仓库Hive及分布式数据库Hbase的存储都会用到hadoop 集群的分布式文件系统HDFS,计算部分默认使用Hadoop原生的MapReduce计算框架。

分布式计算框架spark可以使用hadoop内置的通用资源管理模块yarn来提供统一的资源管理和调度。

hadoop大数据集群一般说来可以有单机模式、伪分布模式、分布式模式这三种模式。

分布式模式:是实际应用的一种模式,分布式集群由多个节点组成理论上集群中的节点越多,集群的性能也就越好。

单机模式:单机模式只在一个节点上运行,是一种默认的配置方式,无需进行其他配置即可运行,以单Java进程运行,方便进行调试,此时HDFS是不可用的。

伪分布式:此模式同样也是在单节点上运行的,与单机模式不同的是程序是以不同的Java 进程来运行的,节点即作为NameNode也作为DataNode,此时可以使用HDFS,是常用的开发测试模式。

Spark
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎,是目前比较流行的分布式计算框架。

Spark 主要有三个特点:
首先,高级API 剥离了对集群本身的关注,Spark 应用开发者可以专注于应用所要做的计算本身。

其次由于是基于内存的计算框架等原因,Spark 很快,支持交互式计算和复杂算法。

最后,Spark 是一个通用引擎,可用它来完成各种各样的运算,包括SQL 查询、文本处理、机器学习等,而在Spark 出现之前,我们一般需要学习各种各样的引擎来分别处理这些需求。

Hive
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。

其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Zookeeper
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Hadoop和Hbase的重要组件。

它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

Hbase
HBase是一个分布式的、面向列的开源数据库,HBase在Hadoop之上提供了类似于Bigtable的能力。

HBase是Apache的Hadoop项目的子项目。

HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

另一个不同的是HBase基于列的而不是基于行的模式。

Sqoop
是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如: MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

相关文档
最新文档