13电磁感应习题解答14电磁场习题解答.docx
电磁感应与电磁场练习题及答案

12
的大小关系为:
[C ]
(A) 21 = 212 ; (B) 21 > 12 ;
(C)
=
21
12
;
(D) 21 = 12 .
I
I
S 1 2S
2
6、电位移矢量的时间变化率 dD / dt 的单位是
(A)库仑/米2 ; (B)库仑/秒; (C)安培/米2 ; (D)安培•米2 .
解: (1)
U q 1 t i d t 1 0.2et t 0.2 (1 et )
C C0
C
0C
(2) 由全电流的连续性,得
I d i 0.2et
四、问答题
18、 简述方程
L
H
d
l
I
S
t
D
d
S
中各项的意义,并简述这个
方程揭示了什么规律.
C
(2) 非均匀的时变磁场 B Kx cost .
O B
v
D
解:(1) 由法拉第电磁感应定律:
B 1 xy
2
y tg x
x vt
x N
i
d
/d t
d dt
(1 2
B tg
x2)
1 B tg 2x d x /dt B tg v 2t
2
在导体MN内 i 方向由M向N.
[C]
7、在感应电场中电磁感应定律可写成
EK
为感应电场的电场强度.此式表明: L
d
l
d
dt
(A) 闭合曲线 L上 EK 处处相等;
13电磁感应习题解答14电磁场习题解答

第十三章 电磁感应一 选择题3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v vv 解:导线ab 的感应电动势v BL =ε,当ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以RL B L R B F F v 22===ε安外。
所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 212 C. )cos(22θωω+t B L D. B L 2ωE. B L 221ω 解:⎰⎰⎰===⋅⨯=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E )6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。
如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( )A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向;C . (3 t + 1)R ,顺时针方向;D . (3 t + 1)R ,逆时针方向; 解:由⎰⎰⎰⋅∂∂-=⋅S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图v2i π)26(π2R t R E +=⋅解出 E i = (3 t + 1)R 所以选(C )。
7.在圆柱形空间内有感应强度B 的均匀磁场,如图所示,B 的大小以速率d B/d t 变化,在磁场中有C ,D 两点,其间可放置直导线和弯曲导线,则( )A .电动势只在直导线中产生B .电动势只在弯曲导线中产生C .电动势在直导线和弯曲导线中产生,且两者大小相等D .直导线中的电动势小于弯曲导线中的电动势 解:在圆柱形空间内的感生电场是涡选场,电场线是与圆柱同轴的同心圆,因为⎰⋅=l E d i ε,所以弯曲导线中的电动势比直导线中的电动势大。
(压轴题)高中物理必修三第十三章《电磁感应与电磁波初步》检测题(有答案解析)

一、选择题1.沈括在《梦溪笔谈》中记载了“以磁石磨针锋”制造指南针的方法,磁针“常微偏东,不全南也”。
他是世界上第一个指出地磁场存在磁偏角的人,比西方早了400年。
关于地磁场,下列说法中正确的是( )A .地磁场只分布在地球的外部B .地理南极点的地磁场方向竖直向上C .地磁场穿过地球表面的磁通量为零D .地球表面各处地磁场的磁感应强度相等2.下列说法中正确的是( )A .电源的电动势反映电源把其他形式的能转化为电能本领的大小B .电动势等于闭合电路中接在电源两极间的电压表测得的电压C .电流元IL 在磁场中受力为F ,则磁感应强度B 可能小于或等于F ILD .磁感应强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大3.如图所示,通有恒定电流的导线MN 与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd 边翻转到Ⅱ,设先后两次通过金属框的磁通量的变化量的绝对值分别为1∆Φ和2∆Φ,则( )A .12∆Φ>∆ΦB .12∆Φ=∆ΦC .12∆Φ<∆ΦD .不能判断1∆Φ与2∆Φ的关系 4.关于磁感应强度,下列说法正确的是( )A .一小段通电导线放在磁感应强度不为零的位置,那么它受到的磁场力可能为零B .通电导线所受的磁场力为零,该处的磁感应强度也一定为零C .放置在磁场中1m 长的通电导线,通过1A 的电流,受到的磁场力为1N ,则该处的磁感应强度就是1TD .磁场中某处的磁感应强度的方向跟电流在该处受到的磁场力F 的方向相同 5.如图所示,在直角三角形acd 中,∠a =60︒,三根通电长直导线垂直纸面分别放置在a 、b 、c 三点,其中b 为ac 的中点。
三根导线中的电流大小分别为I 、2I 、3I ,方向均垂直纸面向里。
通电长直导线在其周围空间某点产生的磁感应强度B =kI r,其中I 表示电流强度,r 表示该点到导线的距离,k 为常数。
已知a 点处导线在d 点产生的磁感应强度大小为B 0,则d 点的磁感应强度大小为( )A.B0B.2B0C.3B0D.4B06.如图为三根通电平行直导线的断面图,若它们的电流大小都相同,且==,则A点的磁感应强度的方向是()AB AC ADA.垂直纸面指向纸外B.垂直纸面指向纸里C.沿纸面由A指向B D.沿纸面由A指向D7.如图所示,线圈两端接在电流表上组成闭合电路.在下列情况中,电流表指针不发生偏转的是()A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动8.如图所示,两直导线中通以相同的电流I,矩形线圈位于两导线之间的实线位置Ⅰ,穿过线圈的磁通量为Φ,已知虚线位置Ⅱ与实线位置Ⅰ关于右边的直导线对称,虚线位置Ⅲ与两直导线的距离相等,虚线位置Ⅳ和虚线位置Ⅴ关于左边直导线对称,且与左边直导线的距离和实线位置Ⅰ与右边直导线的距离相等,现将线圈由实线位置移到图示各个虚线位置,则()A.将线圈由实线位置Ⅰ移到图示虚线位置Ⅱ时,磁通量大小不变B.将线圈由实线位置Ⅰ移到图示虚线位置Ⅲ时,磁通量变化大小为ΦC.将线圈由实线位置Ⅰ移到图示虚线位置Ⅳ时,磁通量变化为零D.将线圈由实线位置Ⅰ移到图示虚线位置Ⅴ时,磁通量大小不变9.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电源构成闭合电路,假定线圈产生的磁感线全部集中在铁芯内,a、b、c三个闭合金属圆环的位置如图所示.当滑动变阻器的滑片滑动时,能产生感应电流的圆环是()A.a、bB.b、cC.a、cD.a、b、c10.三根通电长直导线平行放置,其截面构成等边三角形,O点为三角形的中心,通过三根直导线的电流大小分别用小I1,I2、I3表示,电流方向如图所示.当I1=I2=I3=I时,O点的磁感应强度大小为B,通电长直导线在某点产生的磁感应强度大小跟电流成正比,则下列说法正确的是()A.当I1=3I,I2=I3=I时,O点的磁感应强度大小为2BB.当I1=3I,I2=I3=I时,O点的磁感应强度大小为3BC.当I2=3I,I1=I3=I时,O点的磁感应强度大小为3 2BD.当I3=3I,I1=I2=I时,O点的磁感应强度大小为23B11.如图所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流. a、0、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a 、c两点处的磁感应强度的方向相同C.c、d两点处的磁感应强度大小相等,方向相反D.a、b两点处的磁感应强度大小相等,方向相反12.三根完全相同的长直导线互相平行,它们的截面处于一个正方形abcd的三个顶点a、b、c处,导线中通有大小相同的电流,导线a、c中电流同向且与b中电流方向相反,如图所示。
高考物理电磁学知识点之电磁感应图文答案

高考物理电磁学知识点之电磁感应图文答案一、选择题1.下图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在1t 到2t 时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由1B 均匀增加到2B ,则该段时间线圈两端a 和b 之间的电势差a b ϕϕ-A .恒为2121()nS B B t t -- B .从0均匀变化到2121()nS B B t t --C .恒为2121()nS B B t t ---D .从0均匀变化到2121()nS B B t t --- 2.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。
边长为0.1m 、总电阻为0.005Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图甲所示。
已知导线框向右做匀速直线运动,cd 边于t =0时刻进入磁场。
导线框中感应电动势随时间变化的图线如图乙所示(规定感应电流的方向abcda 为正方向)。
下列说法正确的是( )A .磁感应强度的方向垂直纸面向内B .磁感应强度的大小为0.5TC .导线框运动速度的大小为0.05m/sD .在t =0.4s 至t =0.6s 这段时间内,导线框所受的安培力大小为0.04N3.如图所示,把金属圆环在纸面内拉出磁场,下列叙述正确的是( )A .将金属圆环向左拉出磁场时,感应电流方向为逆时针B .不管沿什么方向将金属圆环拉出磁场时,感应电流方向都是顺时针C .将金属圆环向右匀速拉出磁场时,磁通量变化率不变D.将金属圆环向右加速拉出磁场时,受到向右的安培力4.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。
A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()A.B.C.D.5.如图所示,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。
下面说法正确的是()A.闭合开关S瞬间,A、B灯同时亮,且达到正常B.闭合开关S瞬间,A灯比B灯先亮,最后一样亮C.断开开关S瞬间,P点电势比Q点电势低D.断开开关S瞬间,通过A灯的电流方向向左6.如图甲所示,矩形线圈位于一变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,磁感应强度B随时间t的变化规律如图乙所示.用I表示线圈中的感应电流,取顺时针方向的电流为正.则下图中的I-t图像正确的是 ( )A .B .C .D .7.如图所示,将直径为d ,电阻为R 的闭合金属环从匀强磁场B 中拉出,这一过程中通过金属环某一截面的电荷量为( )A .24B d R π B .2Bd R π C .2Bd R D .2Bd Rπ 8.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为02v ,线圈中的E -t 关系图可能是( )A.B.C.D.9.如图所示,一闭合直角三角形线框abc以速度v匀速向右穿过匀强磁场区域,磁场宽度大于ac边的长度.从bc边进入磁场区,到a点离开磁场区的过程中,线框内感应电流的情况(以逆时针方向为电流的正方向)是下图中的()A.B.C.D.10.有一种自行车,它有能向自行车车头灯泡供电的小型发电机,其原理示意图如图甲所示,图中N,S是一对固定的磁极,磁极间有一固定的绝缘轴上的矩形线圈,转轴的一端有一个与自行车后轮边缘结束的摩擦轮.如图乙所示,当车轮转动时,因摩擦而带动摩擦轮转动,从而使线圈在磁场中转动而产生电流给车头灯泡供电.关于此装置,下列说法正确的是()A.自行车匀速行驶时线圈中产生的是直流电B .小灯泡亮度与自行车的行驶速度无关C .知道摩擦轮与后轮的半径,就可以知道后轮转一周的时间里摩擦轮转动的圈数D .线圈匝数越多,穿过线圈的磁通量的变化率越大11.如图所示,矩形线圈abcd 在匀强磁场中可以分别绕垂直于磁场方向的轴P 1和P 2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时( )A .线圈绕P 1转动时的电流等于绕P 2转动时的电流B .线圈绕P 1转动时的电动势小于绕P 2转动时的电动势C .线圈绕P 1和P 2转动时电流的方向相同,都是a →b →c →dD .线圈绕P 1转动时dc 边受到的安培力大于绕P 2转动时dc 边受到的安培力12.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,t φ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,t φ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 13.如图所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环a ,下列各种情况中铜环a 中没有感应电流的是( )A.将电键突然断开的瞬间B.线圈中通以恒定的电流C.通电时,使滑动变阻器的滑片P做加速移动D.通电时,使滑动变阻器的滑片P做匀速移动14.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶115.如图甲所示,竖直放置的螺线管与导线abcd构成回路,导线所围区域内有一垂直纸面向里的匀强磁场,螺线管正下方水平桌面上有一导体圆环。
磁场与电磁感应习题及答案

一 选择题 (共36分)1. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]2. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B v中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na .(C) °60sin 32IB Na . (D) 0. [ ]3. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]4. (本题 3分)(2404) 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]5. (本题 3分)(5137) 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ ]6. (本题 3分)(1932) 如图所示,一矩形金属线框,以速度vv从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ] BvIO(D)IO (C)O (B)I7. (本题 3分)(2417) 对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]8. (本题 3分)(2752) 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数: (A) 一定为零. (B)一定不为零.(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的.[ ]9. (本题 3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ ]11. (本题 3分)(5675) 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 2002(21a I πµµ (B) 2002(21aI πµµ (C) 20)2(21I a µπ (D)2002(21aI µµ [ ]12. (本题 3分)(2415) 用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ ]二 填空题 (共76分)13. (本题 3分)(5303) 一平面试验线圈的磁矩大小p m 为1×10-8 A ·m 2,把它放入待测磁场中的A 处,试验线圈如此之小,以致可以认为它所占据的空间内场是均匀的.当此线圈的p m 与z 轴平行时,所受磁力矩大小为M =5×10-9 N ·m ,方向沿x 轴负方向;当此线圈的p m 与y 轴平行时,所受磁力矩为零.则空间A 点处的磁感强度B v的大小为____________,方向为______________.14. (本题 5分)(2066) 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.一带电粒子垂直磁感线射入匀强磁场,则它作________________运动. 一带电粒子与磁感线成任意交角射入匀强磁场,则它作______________运动.如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为________,作用在带电粒子上的力为________.16. (本题 5分)(2070) 截面积为S ,截面形状为矩形的直的金属条中通有电流I .金属条放在磁感强度为B v 的匀强磁场中,B v的方向垂直于金属条的左、右侧面(如图所示).在图示情况下金属条的上侧面将积累____________电荷,载流子所受的洛伦兹力f m =______________.(注:金属中单位体积内载流子数为n )17. (本题 5分)(2580) 电子质量m ,电荷e ,以速度v 飞入磁感强度为B 的匀强磁场中,v v与B v 的夹角为θ ,电子作螺旋运动,螺旋线的螺距h =________________________,半径R =______________________.18. (本题 3分)(2387) 已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩为______________________.19. (本题 3分)(2096) 在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.20. (本题 5分)(2603) A 、B 、C 为三根共面的长直导线,各通有10 A 的同方向电流,导线间距d =10 cm ,那么每根导线每厘米所受的力的大小为=l F Ad d ______________________, =l F Bd d ______________________, =lF Cd d ______________________. (µ0 =4π×10-7 N/A 2) I半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为_____________________________.22. (本题 5分)(2702) 如图所示,一直角三角形abc 回路放在一磁感强度为B 的均匀磁场中,磁场的方向与直角边ab 平行 ,回路绕ab 边以匀角速度ω旋转 ,则ac 边中的动生电动势为__________________________,整个回路产生的动生电动势为____________________________.v23. (本题 3分)(2692) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.24. (本题 3分)(2525) 一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400V ,则线圈的自感系数为L =____________.25. (本题 4分)(2619) 位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符合________和____________________的条件时,其自感系数可表成V I N L 20)/(µ=,其中V 是螺线管的体积.26. (本题 3分)(2624) 一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁场能量密度w =_____________ .(µ 0 =4π×10-7 N/A 2)27. (本题 3分)(5678) 真空中一根无限长直导线中通有电流I ,则距导线垂直距离为a 的某点的磁能密度w m =________________.有两个长度相同,匝数相同,截面积不同的长直螺线管,通以相同大小的电流.现在将小螺线管完全放入大螺线管里(两者轴线重合),且使两者产生的磁场方向一致,则小螺线管内的磁能密度是原来的__________倍;若使两螺线管产生的磁场方向相反,则小螺线管中的磁能密度为____________(忽略边缘效应).29. (本题 4分)(2180) 写出麦克斯韦方程组的积分形式:_____________________________,_____________________________, _____________________________,_____________________________.30. (本题 3分)(2198) 坡印廷矢量S v的物理意义是:_____________________________________________________________; 其定义式为 _____________________ .31. (本题 3分)(2339) 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为∫∫⋅=VSV S D d d ρv v, ① ∫∫⋅⋅∂∂−=SL S t B l E v vv v d d , ②0d =∫⋅S S B vv , ③ ∫⋅∫⋅∂∂+=SL S t DJ l H v vv v v d )(d . ④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________ (3) 电荷总伴随有电场.__________________________在没有自由电荷与传导电流的变化电磁场中, 沿闭合环路l (设环路包围的面积为S )=∫⋅ll H vv d __________________________________________.=∫⋅ll E vv d __________________________________________.三 计算题 (共46分)33. (本题10分)(2737) 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势E ,并说明线圈中的感应电流是顺时针还是逆时针方向.34. (本题10分)(2409) 如图所示,一半径为r 2电荷线密度为λ的均匀带电圆环,里边有一半径为r 1总电阻为R 的导体环,两环共面同心(r 2 >> r 1),当大环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转时,求小环中的感应电流.其方向如何?35. (本题10分)(2410) 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(已知小环的电阻为R ')?36. (本题 8分)(2138) 求长度为L 的金属杆在均匀磁场B v中绕平行于磁场方向的定轴OO '转动时的动生电动势.已知杆相对于均匀磁场B v的方位角为θ,杆的角速度为ω,转向如图所示.O无限长直导线旁有一与其共面的矩形线圈,直导线中通有恒定电流I ,将此直导线及线圈共同置于随时间变化的而空间分布均匀的磁场B v 中.设0>∂∂tB,当线圈以速度v v垂直长直导线向右运动时,求线圈在如图所示位置时的感应电动势.一 选择题 (共36分)1. (本题 3分)(2734) (A)2. (本题 3分)(2595) (D)3. (本题 3分)(2657) (A)4. (本题 3分)(2404) (B)5. (本题 3分)(5137) (D)6. (本题 3分)(1932) (C)7. (本题 3分)(2417) (C)8. (本题 3分)(2752) (C)9. (本题 3分)(2421) (D)10. (本题 3分)(2417) (C)11. (本题 3分)(5675) (B)12. (本题 3分)(2415) (B)二 填空题 (共76分)13. (本题 3分)(5303) 0.5 T 2分y 轴正方向 1分参考解:B p M m v v v ×=,由m p v平行y 轴时M = 0可知B v 必与y 轴平行,m p v沿z 轴时M 最大,故有 5.0==mp M B T由B p M m v v v ×=定出B v沿y 轴正方向.14. (本题 5分)(2066) 匀速直线 1分 匀速率圆周 2分 等距螺旋线 2分15. (本题 4分)(0361) 0 2分 0 2分16. (本题 5分)(2070) 负 2分 IB / (nS ) 3分17. (本题 5分)(2580) )/(cos 2eB m θv π 3分 )/(sin eB m θv 2分3分19. (本题 3分)(2096) 4 3分20. (本题 5分)(2603) 3×10-6N/cm 2分 0 2分3×10-6N/cm 1分21. (本题 3分)(2615) t a nI m ωωµcos 20π− 3分22. (本题 5分)(2702) 8/2B l ω 3分 0 2分23. (本题 3分)(2692) 0 3分24. (本题 3分)(2525) 0.400 H 3分25. (本题 4分)(2619) l >>a 2分 细导线均匀密绕 2分26. (本题 3分)(2624) 22.6 J ·m -3 3分27. (本题 3分)(5678) )8/(2220a I πµ 3分28. (本题 5分)(2425) 4 3分 0 2分29. (本题 4分)(2180) ∫∫⋅=V S V S D d d ρv v 1分 ∫∫⋅⋅∂∂−=S L S t B l E v v v v d d 1分 0d =∫⋅SS B v v 1分∫⋅∫⋅∂∂+=SL S t D J l H v v v v v d )(d 1分 30. (本题 3分)(2198) 电磁波能流密度矢量 2分 H E S v v v ×= 1分31. (本题 3分)(2339) ② 1分 ③ 1分 ① 1分32. (本题 4分)(5160) ∫∫⋅∂∂S S D t v v d 或 t D /d d Φ 2分 ∫∫⋅∂∂−S S B t v v d 或 t m /d d Φ− 2分三 计算题 (共46分)33. (本题10分)(2737) 解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为: )2/(0r I B π=µ 2分以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为: 23ln 2d 203201π=π⋅=∫Id r r I d d dµµΦ 与线圈相距较近的导线对线圈的磁通量为:2ln 2d 20202π−=π⋅−=∫Id r r I d d dµµΦ 总磁通量 34ln 2021π−=+=Id µΦΦΦ 4分感应电动势为: 34ln 2d d )34(ln 2d d 00αµµπ=π=−=d t I d t ΦE 2分由E >0和回路正方向为顺时针,所以E 的绕向为顺时针方向,线圈中的感应电流 亦是顺时针方向. 2分解:大环中相当于有电流 2)(r t I λω⋅=2分这电流在O 点处产生的磁感应强度大小λωµµ)(21)2/(020t r I B == 2分以逆时针方向为小环回路的正方向,210)(21r t π≈λωµΦ 2分∴ tt r t i d )(d 21d d 210ωλµΦπ−=−=E tt R r R i i d )(d 2210ωλµ⋅π−==E 2分方向:d ω(t ) /d t >0时,i 为负值,即i 为顺时针方向.1分 d ω(t ) /d t <0时,i 为正值,即i 为逆时针方向.1分35. (本题10分)(2410) 解:带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带,环带内有电流R t R I d )(d ωσ= 2分d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωµµ== 2分由于整个带电环面旋转,在中心产生的磁感应强度的大小为))((21120R R t B −=σωµ 1分选逆时针方向为小环回路的正方向,则小环中2120))((21r R R t π−≈σωµΦ 1分tt R R r t i d )(d )(2d d 1220ωσµΦ−π−=−=E tt R R R r R i i d )(d 2)( 1220ωσµ⋅′−−=′=E 2分方向:当d ω (t ) /d t >0时,i 与选定的正方向相反.1分 当d ω (t ) /d t <0时,i 与选定的正方向相同.1分36. (本题 8分)(2138) 解:在距O 点为l 处的d l 线元中的动生电动势为d E l B v v v d )(⋅×=v 2分θωsin l =v 2分∴ E ∫∫⋅π=×=Ld cos )21sin(v d )v (l B l B L αv v v ∫∫==ΛθωθθωL l l B l lB 02d sin sin d sin θω22sin 21BL = 3分 E 的方向沿着杆指向上端.1分 O B v v ×v解:取顺时针方向回路正向.设动生电动势和感生电动势分别用E 1和E 2表示,则总电动势EE = E 1 + E 2 l B l B 211v v −=E ))(22(00b a I a I l +π−π=µµv )(20b a a lIb +π=v µ 4分 ∫∂∂−=⋅∂∂−=S t B bl S t B v v d 2E 3分∴ bl tB b a a I ])(2[0∂∂−+π=vµE 1分。
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx

电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
电磁感应 带答案

第十章电磁感应考试说明的要求:知识网络:回归教材人教版教材索引:“(B1,10)”、“(X1,10)”中的“B1”表示高中物理必修1,“X1”表示高中物理选修3-1,“10”、表示第10页《选修3-2》1.(X2,3)法拉第把引起感应电流的原因概括为哪五类?2.(X2,5-7)图4.2-1、2、3,三个实验;图4.2-6,如何将导体切割磁感线等效为磁通量变化?图4.2-7,摇绳发电(再次关注地磁场)。
3.(X2,8-9)第2题,磁场不变,面积变化;第6题,可进一步思考线圈B中产生的感应电流的变化情况;第7题,注意从两个角度思考该问题——感生、动生电动势大小和方向;磁通量变化。
4.(X2,10)图4.3-2,探究感应电流方向。
5.(X2,13)图4.3-7,右手定则。
6.(X2,13)第1题,超导体中的感应电流。
7.(X2,14)第6题,楞次环实验。
思考:当磁铁N极移近B环时,B环中缺口处哪端电势高?8.(X2,14)第7题,法拉第圆盘发电机的工作原理。
E 。
9.(X2,16)图4.4-1,由法拉第电磁感应定律推导Blv10.(X2,16)反电动势,联系电动机输出的机械功率与反电动势的关系。
11.(X2,17)第3题,航天飞机、绳系卫星利用地磁场发电,思考:缆绳两端的电势高低。
12.(X2,18)第4题,动圈式扬声器;第7题,电磁流量计。
13.(X2,19)感生电场;“感生”现象中的非静电力;了解电子感应加速器。
14.(X2,20)思考与讨论,“动生”现象中的非静电力。
15.(X2,20)第1题,估算飞机两翼尖间的电势差,以及电势高低。
16.(X2,22-23)图4.6-2,定性画出通过A1的电流随时间变化的图线;图4.6-4,回答思考与讨论中的问题。
17.(X2,24)图4.6-6中产生电火花的原因?如何避免?自感系数;磁场的能量。
18.(X2,25)第1题,延时继电器;第2题,断路自感。
19.(X2,26)图4.7-1,涡流的产生;图4.7-2,真空冶炼,注意对电源的要求;图4.7-3,减小涡流的方法;图4.7-4,探雷器、安检门探测人是否携带金属制品的原理。
第八章电磁感应 电磁场习题解答-感生电场习题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第八章电磁感应电磁场习题解答-感生电场习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第八章电磁感应电磁场习题解答8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链.解线圈中总的感应电动势当时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B1 与B2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx、长为d 的面元dS,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为当电流以变化时,线圈中的互感电动势为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B)的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距形导轨左侧距离为x,则即由于静止的形导轨上的电动势为零,则ε =-2RvB.式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c)所示的坐标系,在导体上任意处取导体元dl,则由矢量(v ×B)的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量.由法拉第电磁感应定律可知,ε =0又因ε =εOP +εPO即εOP =-εPO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP,处于均匀磁场中,并绕OO′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析如前所述,本题既可以用法拉第电磁感应定律计算(此时必须构造一个包含OP导体在内的闭合回路,如直角三角形导体回路OPQO),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势显然,εQO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求杆中的感应电动势,杆的哪一端电势较高?分析本题可用两种方法求解.(1)用公式求解,建立图(a)所示的坐标系,所取导体元,该处的磁感强度.(2)用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB在一个静止的形导轨上滑动,如图(b)所示.设时刻t,杆AB 距导轨下端CD的距离为y,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx、长为y 的面元dS,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A,故点A 电势较高.8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1)管内外由磁场变化激发的感生电场分布;(2)如,求距螺线管中心轴r =5.0 cm处感生电场的大小和方向.分析变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆(若电场线是其他类型的曲线则与其对称性特点不符),同一圆周上各点的电场强度Ek 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当时,电场线绕向与前者相反.解如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l(半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R,r >R,由于,故电场线的绕向为逆时针.(2)由于r >R,所求点在螺线管外,因此将r、R、的数值代入,可得,式中负号表示Ek的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP、OQ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处的感生电场强度Ek 处处垂直,故,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有证2 由题8-17可知,在r <R 区域,感生电场强度的大小设PQ 上线元dx 处,Ek的方向如图(b)所示,则金属杆PQ 上的电动势为讨论假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势?该如何求解?8 -23 如图所示,一面积为4.0 cm2 共50 匝的小圆形线圈A,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1)两线圈的互感;(2)当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析设回路Ⅰ中通有电流I1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M21 =Φ21I1 ;也可设回路Ⅱ通有电流I2 ,穿过回路Ⅰ的磁通量为Φ12 ,则.虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS.反之,如设线圈A 通有电流I,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解(1)设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为则两线圈的互感为(2)互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A、C 的半径分别为R 和r,两线圈相距为d.若r很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -26 一个直径为0.01 m,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1)如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少?磁能密度是多少?*(2)从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析单一载流回路所具有的磁能,通常可用两种方法计算:(1)如回路自感为L(已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2)由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L.解(1)密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度处处相等,(2)自感为L,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律,当电流稳定后,其最大值按题意1,则,将其代入中,得8 -31 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中的电流连续,即.解忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流,由此得位移电流密度的大小。
第十三章电磁感应电磁场习题

第十三章电磁感应电磁场习题(一)教材外习题电磁感应习题一、选择题:1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将(A)加速铜板中磁场的增加(B)减缓铜板中磁场的增加(C)对磁场不起作用(D)使铜板中磁场反向()2.在如图所示的装置中,当把原来静止的条形磁铁从螺线管中按图示情况抽出时,(A)螺线管线圈中感生电流方向如A点处箭头所示。
(B)螺线管右端感应呈S极。
(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转。
(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转。
()3.在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A)以情况Ⅰ中为最大(B)以情况Ⅱ中为最大(C)以情况Ⅲ中为最大(D)在情况Ⅰ和Ⅱ中相同()4.如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中。
不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)5.如图,一矩形线框(其长边与磁场边界平行)以匀速v 自左侧无场区进入均匀磁场又穿出,进入右侧无场区,试问图(A )—(E )中哪一图象能最合适地表示线框中电流i 随时间t 的变化关系?(不计线框自感)( )6.在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa '和bb ',当线圈aa '和bb '如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A )M 1 = M 2 ≠ 0 (B )M 1 = M 2 = 0(C )M 1 ≠ M 2,M 2=0(D )M 1≠M 2,M 2≠0( )7.真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图。
高考物理电磁感应现象习题知识点及练习题及答案

高考物理电磁感应现象习题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。
BC 边和AD 边为绝缘轻杆,质量不计。
线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。
在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。
在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。
锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。
当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。
(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL 3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。
大学物理第9章 电磁感应和电磁场 课后习题及答案

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
高中物理必修三第十三章电磁感应与电磁波初步考点精题训练(带答案)

高中物理必修三第十三章电磁感应与电磁波初步考点精题训练单选题1、提出电磁场理论的科学家是()A.法拉第B.麦克斯韦C.赫兹D.安培答案:B提出电磁场理论的科学家是麦克斯韦。
故选B。
2、以下四幅图中,表示等量同种点电荷电场线分布情况的是()A.B.C.D.答案:AA.A是等量同种点电荷的电场线,A正确;B.B是等量异种点电荷的电场线,B错误;C.C是匀强电场的电场线,C错误;D.D是反向通电导线周围的磁感线,D错误。
故选A。
3、如图所示,金属圆环放在绝缘水平面上,通有沿逆时针(俯视看)方向的恒定电流I1,带有绝缘外皮的长直导线放在圆环上,圆环的圆心在直导线上,直导线中通有向右的恒定电流I2,圆环圆心的正上方的P点的磁感应强度大小为B,此时直导线电流在P点处产生磁场的磁感应强度大小为√3B;若将直导线中的电流减为3零,则P点的磁感应强度大小为()A.13B B.√23B C.√33B D.√63B答案:D设圆环中电流在P点产生的磁场磁感应强度大小为B1,直导线中电流为I2时在P点产生的磁场磁感应强度大小为B2,根据安培定则可知,两个磁场的磁感应强度垂直,根据题意有√B12+B22=B解得B1=√6 3B故ABC错误,D正确。
故选D。
4、三根相互平行长直导线a、b、c分别从等腰直角三角形三个顶点处垂直穿过纸面且固定,导线中通有大小和方向均相同的恒定电流,如图所示.若b导线中的电流产生的磁场在a、c连线中点O处的磁感应强度大小为B0,则O点处的磁感应强度大小为()A.√5B0B.√2B0C.3B0D.B0答案:D由安培定则可知,导线a与导线c在O点产生磁场的磁感应强度的矢量和等于零,则O点的磁感应强度大小等于导线b在O点产生的磁感应强度的大小,则O点处的磁感应强度大小为B0,则D正确,ABC错误。
故选D。
5、如图所示,纸面内有两根平行放置的通有同向、等大电流的长直细导线M、N,a、c是关于导线N对称的两点,且a点到导线M的距离大于其到导线N的距离。
《大学物理》电磁感应练习题及答案

《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
高中物理电磁感应现象习题知识归纳总结及答案解析

高中物理电磁感应现象习题知识归纳总结及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L =-2.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为12B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒: (1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.【答案】⑴23kL ,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶【解析】 【分析】 【详解】⑴导体棒被锁定前,闭合回路的面积不变,B t∆∆=k 由法拉第电磁感应定律知:E =t Φ∆∆=B S t ∆∆=23kL 由闭合电路欧姆定律知:I =E R 总=23kL由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示根据法拉第电磁感应定律有:E =012B Lv 根据闭合电路欧姆定律知:I =E R根据安培力公式有:F =012ILB 解得:F =012ILB 由牛顿第二定律知:mg -F =ma解得:a =g -2204B L vR⑶由能量守恒知:mgh =212mv +Q 由几何关系有:h =3L 解得:Q =34mgL -212mv3.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,cos370.80︒=.求:(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有sin cos mg BIL mg θμθ=+BLvI R=解得: 2.0m/s V =.(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有21sin cos 2mgs mv mgs Q θμθ⋅=+⋅+ 解得:0.10J Q =4.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.5.如图所示,“<”型光滑长轨道固定在水平面内,电阻不计.轨道中间存在垂直水平面向下的匀强磁场,磁感应强度B .一根质量m 、单位长度电阻R 0的金属杆,与轨道成45°位置放置在轨道上,从静止起在水平拉力作用下从轨道的左端O 点出发,向右做加速度大小为a 的匀加速直线运动,经过位移L .求: (1)金属杆前进L 过程中的平均感应电动势.(2)已知金属杆前进L 过程中水平拉力做功W .若改变水平拉力的大小,以4a 大小的加速度重复上述前进L 的过程,水平拉力做功多少?(3)若改用水平恒力F 由静止起从轨道的左端O 点拉动金属杆,到金属杆速度达到最大值v m 时产生热量.(F 与v m 为已知量)(4)试分析(3)问中,当金属杆速度达到最大后,是维持最大速度匀速直线运动还是做减速运动?【答案】(1)22aBL LW +2maL (3)2202122-m m F R mv B v (4)当金属杆速度达到最大后,将做减速运动 【解析】 【详解】(1)由位移﹣速度公式得2aL =v 2﹣0所以前进L 时的速度为v 2aL前进L 过程需时t =2=vaLa 由法拉第电磁感应定律有:tE ∆Φ=∆ =212222B L LB S a BL t L aL ⨯⨯⨯∆==∆(2)以加速度a 前进L 过程,合外力做功W +W 安=maL所以W 安=maL ﹣W以加速度4a 前进L 时速度为'=v =2v合外力做功W F ′+W 安′=4maL由22A B L vF BIL R==可知,位移相同时:F A ′=2F A则前进L 过程W 安′=2W 安所以W F ′=4maL ﹣2W 安=2W +2maL(3)设金属杆在水平恒力作用下前进d 时F A =F ,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d ,则220(2)2⨯===⨯mA B d v F BIl F R d所以d=22mFR B v 由动能定理有212-=m Fd Q mv 所以:Q =Fd ﹣222021122=2-m m m F R mv mv B v (4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。
(典型题)高中物理必修三第十三章《电磁感应与电磁波初步》测试题(答案解析)

一、选择题1.(0分)[ID :126778]如图所示,等腰直角三角形ABC 中,D 是AB 边的中点,置于B 点的直导线中通垂直纸面向里恒定电流时,D 点的磁感应强度大小为0B 。
若在C 点放置一根电流大小相同、方向相反的直导线,则D 点的磁感应强度变为( )A .02B ,方向向上B .02B ,方向向右C .02B ,方向垂直于AB 向上D .022B ,方向向上2.(0分)[ID :126774]三根完全相同的长直导线互相平行,通以大小和方向都相同的电流,它们的截面处于一个正方形abcd 的三个顶点a 、b 、c 处,如图所示,已知每根通电长直导线在其周围产生的磁感应强度与距该导线的距离成反比,通电导线b 在d 处产生的磁场其磁感应强度大小为B ,则三根通电导线产生的磁场在d 处的总磁感应强度大小为( )A .2B B .3BC .2.1BD .3.8B3.(0分)[ID :126770]如图所示,一束磁感线全部穿过两圆环A 、B ,圆环A 的面积大于圆环B 的面积,a 、b 是磁感线分布中的两点,则下列说法正确的( )A .穿过A 、B 两环的磁通量的大小不相等,A B Φ>ΦB .穿过A 、B 两环的磁通量的大小不相等,A B Φ<ΦC .a 、b 两点的磁感应强度的大小不相等,a b B B >D .a 、b 两点的磁感应强度的大小不相等,a b B B <4.(0分)[ID:126756]下列关于物理史实正确的是()A.安培建立了场的概念并引入电场线和磁感线来形象直观描述电场和磁场B.法拉第发现了电流的磁效应并建立了右手螺旋定则来判断电流周围磁场的方向C.奥斯特发现了电流的磁效应,首先建立了电和磁的联系D.奥斯特建立了安培定则来判断电流周围的磁场,同时提出了分子电流假说将磁体的磁场和电流的磁场归于相同本质——电荷的运动5.(0分)[ID:126754]如图所示,线圈两端接在电流表上组成闭合电路.在下列情况中,电流表指针不发生偏转的是()A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动6.(0分)[ID:126753]关于磁通量,下列说法正确的是()A.磁通量不仅有大小而且有方向,所以是矢量B.磁感应强度越大,磁通量越大C.通过某一平面的磁通量为零,该处磁感应强度不一定为零D.磁通量就是磁感应强度7.(0分)[ID:126739]1831年8月29日,法拉第经历近十年的研究终于在一次实验中发现了电磁感应现象:把两个线圈绕在同一个铁环上(如图),一个线圈接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电的瞬间,另一个线圈中也出现了电流。
第十三章电磁场与麦克斯韦方程组习题解答和分析

第十三章习题解答13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r 1,r 2;已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间;导线框长为a 宽为b ,求导线框中的感应电动势;分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律d d i tΦε=-计算感应电动势,其中磁通量s B d S Φ=⎰,B 为两导线产生的磁场的叠加;解:无限长直电流激发的磁感应强度为02IB rμ=π;取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右;取回路的绕行正方向为顺时针;由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+, 垂直纸面向里通过微分面积dS adx =的磁通量为00122()2()I I d B dS B dS adx r x r x μμππ⎡⎤Φ===+⎢⎥++⎣⎦通过矩形线圈的磁通量为000122()2()bI I adx r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰ 012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭感生电动势012012012012d ln ln cos d 2()()ln cos 2i a r b r b I t t r r ar b r b I t r r μωΦεωμωω⎛⎫++=-=-+ ⎪π⎝⎭⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针;题图13-1 题图13-213-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中B =;圆形线圈可绕通过圆心的轴O 1O 2转动,转速n =600rev/min;求圆线圈自图示的初始位置转过/2π时,1 线圈中的瞬时电流值线圈的电阻为R =100Ω,不计自感;2 感应电流在圆心处产生的磁感应强度;分析:应用法拉第电磁感应定律求解感应电动势;应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度; 解:1 圆形线圈转动的角速度2=2060nπωπ= rad/s 设t =0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向;则t 时刻通过该回路的全磁通2cos cos NB S NBS t NB r t ψωπω===电动势 2d sin d i NB r t tψεπωω=-= 感应电流 2sin ii NB r t I R Rεπωω== 将圆线圈自图示的初始位置转过/2π时,2t πω=代入已知数值 得: 0.99i I A =2 感应电流在圆心处产生的磁感应强度的大小为40 6.2210T 2ii I B Nrμ-==⨯i B 的方向与均匀外磁场B 的方向垂直;13-3 均匀磁场B 被限制在半径R =10cm 的无限长圆柱形空间内,方向垂直纸面向里;取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示;设磁场以d 1T/s d B t =的匀速率增加,已知6cm Oa Ob ==,3πθ=,求等腰梯形回路abcd 感生电动势的大小和方向;分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量;解:设顺时针方向为等腰梯形回路绕行的正方向.则t 时刻通过该回路的磁通量题图13-3 题图13-4B S BS Φ==其中S 为等腰梯形abcd 中存在磁场部分的面积,其值为2211()sin 22S R oa θθ=- 电动势d d d d i B St t Φε=-=-2211d ()sin 22d BR oa tθθ⎡⎤=--⎢⎥⎣⎦ 代入已知数值 33.6810V i ε-=-⨯“–”说明,电动势的实际方向为逆时针,即沿adcba 绕向;用楞次定律也可直接判断电动势的方向为逆时针绕向;13-4 如题图13-4所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:1 在任意时刻t 通过矩形线圈的磁通量m Φ;2 在图示位置时矩形线圈中的电动势i ε;分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t 时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势;解:1 设线圈回路的绕行方向为顺时针;由于载流长直导线激发磁场为非均匀分布,02IB xμπ=;因此,必须由积分求得t 时刻通过回路的磁通量; 取坐标Ox 垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t 通过矩形线圈的磁通量为00d d ln22b vtSa vtI Il b vtl x x a vtμμΦππ+++===+⎰⎰B S 2在图示位置时矩形圈中的感应电动势00()d d 2i t Ilv b a tabμΦεπ=-=-=电动势的方向沿顺时针绕向;13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM 与L M '',其间距离为l ,其左端与电动势为0ε的电源连接.匀强磁场B 垂直于图面向里,一段直裸导线ab 横嵌在平行导线间并可保持在导线上做无摩擦地滑动,电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;求:1 ab 达到的最大速度;2 ab 到最大速度时通过电源的电流I ;分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题;当接通电源后,ab 中产生电流;该通电导线受安培力的作用而向右加速运动,由于ab 向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab 不受安培力作用,此时ab 达到最大速度;解:1电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;设ab 运动的速度为v ,则此时直导线ab 所产生的动生电动势i Blv ε=,方向由b 指向a .由全电路欧姆定理可得此时电路中的电流为0Blv i Rε-=ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时0i =;所以ab 达到的最大速度为max v Blε=2ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时通过电路的电流i =0;所以通过电源的电流也等于零;13-6 如题图13-6所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L /5处;若已知均匀磁场B 平行于O 1O 2轴;求ab 两端间的电势差U a -U b . 分析:由动生电动势表达式先求出每段的电动势,再将ab 的电动势看成是oa 和ob 二者电动势的代数和,ab 两端的电势差大小即为ab 间的动生电动势大小;求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元dl ,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的动生电动势;解:设金属细杆ab 与竖直轴O 1O 2交于点O ,将ab 两端间的动生电动势看成ao 与ob 两段动生电动势的串联;取ob 方向为导线的正方向,在铜棒上取极小的一段线元dl ,方向为ob 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()i d v B dl vBdl B ldl εω=⨯=-=-ob 的动生电动势为242501416d d 2550L ob i abL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势ob ε的方向由b 指向O ;同理oa 的动生电动势为题图13-5 题图13-6225011d d 2550L oa i baL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势oa ε的方向由a 指向O ;所以ab 两端间的的动生电动势为2310ab ao ob oa ob B L εεεεεω=+=-+=-动生电动势ab ε的方向由a 指向了b ;a 端带负电,b 端带正电;ab 两端间的电势差2310a b ab U U B L εω-==-b 端电势高于a 端;13-7 如题图13-7所示,导线L 以角速度ω绕其端点O 旋转,导线L 与电流I 在共同的平面内,O 点到长直电流I 的距离为a ,且a >L ,求导线L 在与水平方向成θ角时的动生电动势的大小和方向;分析:载流长直导线产生磁场,导线L 绕O 旋转切割磁力线;由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的总动生电动势;解:取OP 方向为导线的正方向,在导线OP 上某处取极小的一段线元dl ,方向为OP 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()d v B dl vBdl B ldl εω=⨯=-=-将载流长直导线在该处激发磁场02(cos )IB a l μπθ=+代入,积分得导线L 在与水平方向线成θ角时的动生电动势为:()00d 2cos L i OP i I ldla l ωμεεπθ==-+⎰⎰020(cos )(cos )2cos (cos )LI a l ad l a l ωμθθπθθ+-=+⎰题图13-7 题图13-802+cos cos In 2cos I a L L a a ωμθθπθ⎛⎫=--⎪ ⎭⎝ 动生电动势的方向由P 指向O ;13-8 如题图13-8所示半径为r 的长直密绕空心螺线管,单位长度的绕线匝数为n ,所加交变电流为I =I 0sin ωt ;今在管的垂直平面上放置一半径为2r ,电阻为R 的导线环,其圆心恰好在螺线管轴线上;1计算导线环上涡旋电场E 的值且说明其方向; 2计算导线上的感应电流i I ;3计算导线环与螺线管间的互感系数M ;分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆;根据感生电场的环路定理,可求出感生电场强度;由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数; 解:1以半径为2r 的导线环为闭合回路L ,取回路L 的绕行正方向与B 呈右旋关系,自上向下看为逆时针方向;由于长直螺线管只在管内产生均匀磁场0B nI μ=,导线环上某点涡旋电场E 的方向沿导线环的切向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22(2)dB E r r dtππ=-导线环上涡旋电场E 的值为00cos 44n r r dBE I t dt μωω=-=- 若cos ωt >0,E 电场线的实际走向与回路L 的绕行正方向相反,自上向下看为顺时针方向;若cos ωt <0,E 电场线的实际走向与回路L 的绕行正方向相同,自上向下看为逆时针方向; 2 导线上的感应电流i I22001cos ii d r dB r I nI t R R dt R dt RεππμωωΦ==-=-=3导线环与螺线管间的互感系数为220B r M n r I IπμπΦ===13-9 电子感应加速器中的磁场在直径为0.50m 的圆柱形区域内是匀强的,若磁场的变化率为×10-2T/S;试计算离开中心距离为0.10m 、0.50m 、1.0m 处各点的感生电场; 分析:由磁场的柱对称性可知,变化磁场所激发的感生电场分布也具有相应的对称性,即感生电场的电场线是一系列以圆柱体中心为轴的同心圆;根据LS BE dl dS t∂=-∂⎰⎰可求出感生电场强度;解:以圆柱形的区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B呈右旋关系,为顺时针方向;由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22()2()LdB r r R dtE dl E r dB R r R dtπππ⎧-<⎪⎪==⎨⎪->⎪⎩⎰得 2d ()2d d ()2d r Br R tE R B r R r t⎧-<⎪⎪=⎨⎪->⎪⎩式中“-”说明:若d 0d Bt>,E 的实际方向与假定方向相反,否则为一致; r =0.10m 时,r <R , 4d || 5.010V/m 2d r BE t-==⨯r =0.50m 时, r >R , 24d || 6.2510V/m 2d R BE r t -==⨯ r =1.10m 时,r >R , 24d || 3.1310V/m 2d R BE r t-==⨯ 13-10 如题图13-10所示,一个限定在半径为R 的圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小;电子在磁场中A 、O 、C 各点处时,它所获得的瞬时加速度大小、方向各为若干 设r =5.0cm; 分析:根据对称性,由感生电场的环路定理求出感生电场强度,由感生电场力及牛顿第二定律求出瞬时加速度;解:以圆柱形区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B 呈右旋关系,由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律题图13-10 题图13-11d d Ll t∂=-∂⎰⎰S BE S 可得 2d d 2d LB E r r t=π=-π⎰E l r <R 得 d 2d r BE t=-由于圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小.所以d 0d Bt<,E 的实际方向与假定方向一致,为顺时针方向的切线方向;电子受到的电场力为e F eE =-,其方向为逆时针的切线方向; 瞬时加速度的大小为:d 2d eE e r B a m m t== 由于r A =0.05m,所以A 处的瞬时加速度的大小为:724.410/A a m s =⨯,方向为水平向右; 由于r C =0.05m,所以C 处的瞬时加速度的大小为:724.410/C a m s =⨯,方向为水平向左;由于r O =0,所以O 处的瞬时加速度:0O a =13-11 真空中的矩形截面的螺线环的总匝数为N ,其它尺寸如题图13-11所示,求它的自感系数;分析:自感系数一般可由LI ψ=计算,可见计算自感系数关键是确定穿过自感线圈的磁通量;假设螺线管通有电流,求出磁感应强度,再求出磁通量、磁通链,即可求出自感系数; 解:设螺绕管通有电流I ,由安培环路定理可得管内距轴线r 处的磁场强度为2NI H r =π, 2NI B H rμμ==π 通过某一截面的磁通量210021d d ln22R SR NINIhR B S h r rR μμΦ===ππ⎰⎰⎰螺绕管的磁通链2021ln2N N IhR N R μψΦ==π 自感系数:2021ln 2NN hR L IR ψμ==π13-12 设一同轴电缆由半径分别为1r 1和2r 的两个同轴薄壁长直圆筒组成,电流由内筒流入,由外筒流出,如题图13-12所示;两筒间介质的相对磁导率r 1μ=,求同轴电缆1 单位长度的自感系数;2单位长度内所储存的磁能;分析:先求磁场、磁通量,由自感系数定义式求自感系数,再由自感磁能表达式求磁能; 解:1电流由内筒流入,由外筒流出时,在内外筒之间产生的磁场为B=02Irμπ见11-19;通过内外筒之间单位长度截面的磁通量为212121d 1d lnln r Sr IIr x xr r L r μμΦμΦI 000===2π2π∴==2π⎰⎰S B2单位长度内所储存的磁能220211ln 24m I r W LI r μπ==13-13 一无限长直导线通以电流I =I 0sin ωt ,和直导线在同一平面内有一矩形线框,其短边与直导线平行,线框的尺寸及位置如题图13-13所示,且b /c =3;求: 1 直导线和线框的互感系数; 2 线框中的互感电动势;分析:互感系数由MI =φ计算,计算互感系数关键是确定穿过互感线圈的磁通量; 解:1 无限长直导线产生的磁场02IB r μπ=;取矩形线框的正法线方向为垂直纸面向里,通过矩形线框的磁通量为d d d ln ln 3bcSIIa x a xxxIa Ia b c μμΦμμ0000==-2π2π==2π2π⎰⎰⎰S B∴ 0ln 32aM IμΦ==π2线框中的互感电动势00ln 3d cos d 2i a I IMt t μωεω=-=-πi ε为正时,电动势的方向沿顺时针绕向;i ε为负时,电动势的方向沿逆时针绕向;13-14 一圆环,环管横截面的半径为a ,中心线的半径为R Ra ;有两个彼此绝缘的导线圈题图13-12 题图13-13都均匀地密绕在环上,一个N 1匝,另一个N 2匝,求: 1两线圈的自感L 1和L 2; 2两线圈的互感M ; 3M 与L 1和L 2的关系; 分析:由于Ra ,环中的磁感应强度可视为均匀;设两个线圈通有电流1I 、2I ,求出穿过螺线管线圈的磁通链数,进而求出自感、互感系数;解:1设N 1匝螺绕管线圈中通有电流I 1,由于中心线的半径R 环管横截面的半径a ,所以螺绕管内的磁场01112N I B Rμ=π,通过螺绕管线圈的磁通链数为222011011111122N I N a N B S N a I RRμμψ==π=πN 1匝螺绕管线圈自感系数:22011112N a L I Rμψ==同理,N 2匝螺绕管线圈自感系数:22022222N a L I Rμψ==2N 1匝螺绕管线圈产生的磁场B 1,通过N 2匝螺绕管线圈的磁通链数为2201101221212122N I N N a N B S N a I RRμμψ==π=π两线圈的互感20122112N N a M I Rμψ==3M 与L 1和L 2的关系22220120222N N a N aM RRμμ===13-15 一圆柱体长直导线,均匀地通有电流I ,证明导线内部单位长度储存的磁场能量为2m 0/(16)W I μ=π设导体的相对磁导率r 1μ≈;分析:均匀通有电流的长直导线,其内部和外部均存在磁场,且磁场分布呈轴对称性;据题意,只需求得单位长度导线内所储存的磁能,因此根据磁能密度公式,求得体元内的磁能,然后对圆柱内部的磁能进行积分即可;解:设圆柱形导体的半径为R .由安培环路定律可得长直导线内的磁场02,2rB I R μ=π r<R导线内的磁能密度222200m 2240012228r I r B w I R R μμμμ⎛⎫===⎪ππ⎝⎭在导线内取单位长度的同轴薄圆柱筒体元d 2d V r r =π 其磁能为 230m m 4d d d 4I W w V r r R μ==π单位长度导体柱内储存的磁场能量为22300m m 4d d 416RI I W W r r R μμ===ππ⎰⎰13-16 平行板电容器的电容为C=μF,两板上的电压变化率为dU/dt =×105V/s,则该平行板电容器中的位移电流为多少;分析:根据平行板电容器的性质,平行板间为均匀电场,电位移D 均匀分布,由平行板电容器场强与电压关系式,求出电位移通量ψ与电压U 的关系,并求出位移电流; 解:设平行板电容器的极板面积S 、间距d ,其间电位移通量为00U DS ES S dψεε=== 对平行板电容器,其电容为0SC dε=,代入上式得CU ψ= 位移电流为65d d d 2010 1.5103A d d UI C t tψ--===⨯⨯⨯= 13-17 一平行板电容器,极板是半径为R 的两圆形金属板,极板间为空气,此电容器与交变电源相接,极板上电量随时间变化的关系为q =q 0sin ωt ω为常量,忽略边缘效应,求: 1电容器极板间位移电流及位移电流密度;2极板间离中心轴线距离为rr <R 处的b 点的磁场强度H 的大小;3当/4t ω=π时,b 点的电磁场能量密度即电场能量密度与磁场能量密度之和; 分析:根据电流的连续性,电容器极板间位移电流等于传导电流求解位移电流;忽略边缘效应,极板间位移电流均匀分布求解位移电流密度;根据全电流安培环路定理求出磁场强度极板间的磁场强度;由极板间电场强度、磁场强度可求得电磁场能量密度; 解:1电容器极板间位移电流d 00d cos cos d UI CCU t q t tωωωω=== 或由电流连续性得:0cos d dqI q t dtωω== 位移电流密度02cos d d I q t S R ωωδπ== 2以中心轴线为圆心,过b 点作一半径为rr <R 的圆为回路,由全电流安培环路定理'd LH dl I =⎰,有2202cos 2d q t H r r r R ωωπδπππ==解得02cos 2q r tH Rωωπ=3 t ω=π/4时,0022cos 24q rrH R Rωπωππ/4== 0022000sin /412q E R R πσεεππε=== b 点的电磁场能量密度22222000024012244e mw w w E H q r R εμμωπε=+⎛⎫=+=+ ⎪⎝⎭13-18 由一个电容C =μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q=×10-5C 时开始作无阻尼自由振荡;试求 1电场能量和磁场能量的最大值;2当电场能量和磁场能量相等时,电容器上的电荷量; 分析:由电容器储能,自感磁能,求电场能量,磁场能量;解:1由初始条件可知,电磁振荡的初相位0ϕ=.所以电容器上的电量振荡表达式为0cos q Q t ω=自感线圈上的电流振荡表达式为0sin dqI Q t dtωω==- 系统固有振动角频率ω=由于电场能量为2220cos 22e Q Q W t C Cω==,所以电场能量的最大值为 240 4.510J 2eMAXQ W C-==⨯ 由于磁场能量为2220sin 22m LI LI W t ω==,所以磁场能量最大值为 22400 4.510J 22mMAXLI Q W C-===⨯电场能量和磁场能量的最大值相同,都与系统总能量相等;2 电场能量和磁场能量相等时,e m W W = 解得2cos 2t ω=±所以电容器上的电荷量为5024.310C 2q Q -=±=±⨯ 13-19 一个沿负z 方向传播的平面电磁波,其电场强度沿x 方向,传播速度为c ;在空间某点的电场强度为300cos 2V /m 3x E vt ππ⎛⎫=+ ⎪⎝⎭试求在同一点的磁场强度表达式,并用图表示电场强度和传播速度之间相互关系;分析:根据电场强度与磁场强度的定量关系可得该点的磁场强度; 解:由于平面电磁波沿负z 方向传播,某点电场强度E 的振动方向沿x 轴正方向,根据电场强度、磁场强度和传播方向三者满足右旋关系,则该点磁场强度的振动方向沿负y 轴方向;由此,根据电场强度与磁场强度的定量关系式可得该点的磁场强度表示式为000.8cos 2A/m 3y x H E vt εππμ⎛⎫=-=-+ ⎪⎝⎭ 用坡印廷矢量S 的方向表示电磁波的传播方向;电场强度、磁场强度和电磁波的传播方向坡印廷矢量三者满足关系S E H =⨯;题13-19解图。
第十三章 电磁感应与电磁波初步练习题附答案

第十三章电磁感应与电磁波初步练习题一、单选题1.在匀强磁场中有一个闭合金属线框如图所示,它可以绕OO 轴转动,开始时金属线框与磁感线平行,则(C)A.当金属线框平面与磁感线平行时,穿过线框的磁通量最大B.当线框平面与磁感线垂直时,穿过线框的磁通量为零C.当线框平面与磁感线垂直时,穿过线框的磁通量最大D.当线框平面与磁感线成任意角度时,穿过线框的磁通量变为零2.关于电流周围的磁感线分布情况,图中哪一个是正确的是(A)A.B.C.D.3.关于磁感线和电场线的说法中正确的是(B)A.磁感线是人们为了研究问题的方便而假想的曲线,而电场线是真实存在的B.磁感线是封闭曲线,电场线不是封闭曲线C.磁感线是从N极出发S极终止,电场线是从正电荷出发负电荷终止D.磁感线是磁场中铁屑排列成的曲线,而电场线是点电荷在电场中运动的轨迹4.选项图所示的条件下,闭合矩形线圈能产生感应电流的是(磁场范围足够大)()A.B.C.D.5.关于电磁波及电磁波谱,下列说法正确的是(D)A.雷达是用X光来测定物体位置的设备B.医学检查中的拍片实际上是让患者接受一定剂量的γ射线照射C.用红外线照射时,大额钞票上用荧光物质印刷的文字会发出可见光D.变化的电场可以产生磁场6.下列各说法中正确的是(D)A.由B = FIL可知,磁场中某点的磁感应强度B与磁场力F成正比,与电流元IL成反比B.通电导线在不受磁场力的地方,磁感应强度一定为零C.试探电荷在不受电场力的地方,电场强度不一定为零D.一小段长为L = 0.5m的导线放在匀强磁场中,当通过的电流I = 2A时,受到的磁场力为4N,则该处的磁感应强度大小可能为6T7.某区域存在如图所示的磁场,其中小圆面积为S1,内有垂直纸面向外的磁场,磁感应强度的大小为B1,大圆面积为S2,大圆与小圆之间有垂直纸面向里的磁场,磁感应强度的大小为B2,已知B2>B1,S2>2S1,则该区域内磁通量Φ的大小等于(D)A.(B1+B2)S2B.(B2-B1)S2C.B2S2-B1S1D.B2S2-(B1+B2)S18.下列关于磁场、电场及电磁波的说法中正确的是(C)A.赫兹提出电磁场理论,并通过实验证实了电磁波的存在B.只要空间某处的电场或磁场发生变化,就会在其周围产生电磁波C.不同电磁波具有不同的波长,红外线的波长大于可见光的波长。
《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》习题参考标准答案..《电磁场与电磁波》知识点及参考答案第1章⽮量分析1、如果⽮量场F 的散度处处为0,即0F≡,则⽮量场是⽆散场,由旋涡源所产⽣,通过任何闭合曲⾯S 的通量等于0。
2、如果⽮量场F 的旋度处处为0,即0F ??≡,则⽮量场是⽆旋场,由散度源所产⽣,沿任何闭合路径C 的环流等于0。
3、⽮量分析中的两个重要定理分别是散度定理(⾼斯定理)和斯托克斯定理, 它们的表达式分别是:散度(⾼斯)定理:SVFdV F dS ??=??和斯托克斯定理:sCF dS F dl=。
4、在有限空间V 中,⽮量场的性质由其散度、旋度和V 边界上所满⾜的条件唯⼀的确定。
( √ )5、描绘物理状态空间分布的标量函数和⽮量函数,在时间为⼀定值的情况下,它们是唯⼀的。
( √ )6、标量场的梯度运算和⽮量场的旋度运算都是⽮量。
( √ )7、梯度的⽅向是等值⾯的切线⽅向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章电磁场的基本规律(电场部分)1、静⽌电荷所产⽣的电场,称之为静电场;电场强度的⽅向与正电荷在电场中受⼒的⽅向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/⽶)。
3、静电系统在真空中的基本⽅程的积分形式是:V V sD d S d V Q ρ?==?和0lE dl ?=?。
4、静电系统在真空中的基本⽅程的微分形式是:V D ρ??=和0E=。
5、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。
6、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =0;⽽磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表⾯为等位⾯;在导体表⾯只有电场的法向分量。
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx

电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章电磁感应
选择题
以选(E )
6 .半径为R 的圆线圈处于均匀磁场 B 中,B 垂直于线圈平面向上。
如果磁 感应强度为B=3 t 2+2 t+1 ,则线圈中的感应电场为:
( )
2 2
A.
2π (3 t + 1)R ,顺时针方向; B. 2π (3 t + 1)R ,逆时针方向;
C . (3 t + 1)R ,顺时针方向;
D . (3 t + 1)R ,逆时针方向;
解:由:E idI = - — d S ,则感应电场的大小满足
Ll
∂.
3 •如图所示, 地在导轨上滑动, 则外力的大
一匀强磁场
除电阻R 外, B 垂直纸面向内,长为 L 的导线 其它部分电阻不计,当ab 以匀速
ab 可以无摩擦
V 向右运动时,
2 2
A. B L V
2、2 BLV C.- 2R
解:导线ab BL V B.- R BLV D. R
的感应电动势
2,2 2
BLV E. R
.;:=BL V ,当
XX Jy X
-
Γζ ~X ~X - X 共 V * X X -÷⅛_⅛⅛_X
选择题3图
ab 以匀速V 向右运动时,导线 ab 受到的外力 与安培力是一对平衡力,所以 F 外=F 安=B -L
R
所以选(D )
4 .一根长度L 的铜棒在均匀磁场 B 中以匀角速度ω旋转着,B 的方向垂直
铜棒转动的平面,如图,设 t = 0 时, 铜棒与 棒两端之间的感应电动势是: (
) 2
A. L B cos(,t
■')
B. 1
∙L 2B COS 7
2
C. 2 , L 2 Bcos( ∙ ∙t …R
D. L 2 B
E. 1 ■ .L 2 B
2
解: ;=(V B ) d I =(L BVdl = O
L
B *
'∣dl
Ob 成θ角,则在任一时刻t 这根铜 =1 BL 2
, 所
2
选择题4图
E i 2 TtR= (6t ■ 2) πR 2
解出
E i = (3 t + 1)R 所以选(C )O
7 •在圆柱形空间内有感应强度 B 的均匀磁场,如图所示,
B 的大小以速率
dB/dt 变化,在磁场中有 C , D 两点,其间可放置直导线和弯曲导线,则
( )
A •电动势只在直导线中产生 B. 电动势只在弯曲导线中产生
C. 电动势在直导线和弯曲导线中产生,且两者大小相等 D .直导线中的电动势小于弯曲导线中的电动势 解:在圆柱形空间内的感生电场是涡选场,
电场线是与圆
柱同轴的同心圆,因为;=E i
d l ,所以弯曲导线中的电动势 解:感生电流l
「,又因为l =dq ,所以有-丸,
R Rdt
dt
Rdt dt
即 二:』-Rg =25 2.G 1G § =5 1G^Wb
8. —个薄壁纸筒,长为 3Gcm 、截面直径为3.0cm ,筒上绕有5GG 匝线圈,
比直导线中的电动势大。
所以选( 二填空题
1.如图所示,一很长的直导线通有交变电流
I= I o Sin ω t ,
形线圈ABCD ,长为I ,宽为b£,线圈与导线在同一平面内,则回路 的感应
电动势 ___________ O
解:在矩形线圈上距直导线 X 处,取一宽为dx ,长为 l ,且与直导线平行的长条形面积,该面积上磁感应强度
D )O 它旁边有一长方 ABCD 中
磁通量
出 μ
o I
为B —
2 πx ^Il
d ①=BdS
d x
2 πx
b
」II
①
-dx a
2 πx
JG I l . b
In — 2 π a »ol
⑷ b =— = ------------- (IL) = — ------------------ ( I L ) l G Co S)t
dt 2 π a dt 2 ∏ a
2 .将条形磁铁插入与冲击电流计串联的金属环中时,有 电荷通过电流计,若连接电流计的电路总电阻 .计=
整个线圈的磁通量 感应电动势
d ① J G I b d I
——(I L )- =
2 π a dt
q = 2.0× 1θ'c 的
R = 25Ω ,则穿过环磁通的变化 l
填空题1图
纸筒内用= 5000的铁芯充满,则线圈的自感系数为 ______
2 2
N 7 (500) 2
L S =5000 4 ∏10 ^ ∏0.015)2 =3.7(H)
l 0.3
计算题
1 •两根无限长平行直导线相距为d,载有大小相等方向相反的电流I,电流变化率dl∕dt= α>0。
一个边长为d的正方形线圈位于导线平面内与一根导线相距d,如图所示,求线圈中的感应电动势;,并说明线圈中的感应电动势是顺时针
还是逆时针。
解:通过正方形线圈的总磁通为(以顺时针绕向为线圈回路的正方向)
解:
」0 I 2
----- d dr — d
2∏ r ■
J O Id 3 ^0Id .L0Id
ln ln 2 ln 2 π2 2 π 2 π
感应电动势为:
d
2 ∏r
计算题1图
d①POd 4 dI I I Od a 4
(ln ) In
dt 2∏ 3 dt 2∏ 3
由于;>0,所以;的绕向为顺时针方向。
3 •如图,有两条相距I的平行长直光滑裸导线MN、M'N',其两端分别与
电阻R1、R2相连;匀强磁场B垂直于图面向里;裸导线ab垂直搭在平行导线上,
向右作匀速运动,裸导线MN、M'N'与并在外力作用下以速率V平行于导线MN ab
的电阻均不计;
(1)求电阻R1与R2中的电流I1与
(2)设外力提供的功率不能超过某值I2 ,并说明其流向;
P o,求导线ab的最大速率。
解:(1)导线ab中的动生电动势
= B∕v不计导线电阻时, a,b两点电×
U a -U b =; = Blv RI 故I l = (U a -U b) / R 1 = Blv / R i 由M流向
M •
∣2 = ( U a - U b) / R 2=B∣V∕ R2
X l X
LL
X
a
X
b.
× × ×
计算题3图
由N流向N
(2)外力提供的功率等于两电阻上消耗的焦耳热功率
2 2 2 2 2
P = R i 11 +R2 12 = B l V ( R1+R2) / R1R2
2 2 2
B IV (R 1+R 2) / R 1R 2≤ P o
1 I R I R
2 P
V
m
^ BI I R 1
■ R 2
6.在一个长直密绕的螺线管中间放一正方形小线 圈,若螺线管长 1m ,绕了 1000匝,通以电流
I =
10cos100π t ( SI ),正方形小线圈每边长 5cm ,共100 匝,电阻为1 Ω,求线圈中感应电流最大值 (正方形线
圈的法线方向与螺线管的轴线方向一致)
解: n =1000 (匝 ∕m ) B=^nl
J--N d
Na 2 -O n 巴=二 2
10 丄 Sin 100 π t
dt dt 2 ↑
I
m =ε m
/ R =π 10 A =0.99A
第十四章电磁场
一 选择题
1 .对位移电流,有下述四种说法,请指出哪一种说法正确。
()
(A) 位移电流是由变化电场产生的。
(B) 位移电流是由线性变化磁场产生的。
(C) 位移电流的热效应服从焦尔一楞次定律。
(D)
位移电流的磁效应不服从安培环路定理。
解:本题选(A )。
d ①
2 .在感应电场中电磁感应定律可以写成 -L
E K d I---,式中E K 为感
dt
应电场的电场强度。
此式表明:
(
)
(A) 闭合曲线I 上E K 处处相等。
(B) 感应电场是保守场。
(C) 感应电场的电力线不是闭合曲线。
(D)
在感应电场中不能像对静电场那样引入电势的概念。
解:本题选(D )。
最大速率
计算题6图。