平面向量的基本运算学案
新人教A版必修4高中数学2.3.1 平面向量基本定理学案
高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。
2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。
2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析
新教材2020-2021学年高中数学人教A版必修第二册学案:6.3.1平面向量基本定理含解析6.3平面向量基本定理及坐标表示6.3.1平面向量基本定理[目标]1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理;2.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理.[难点] 平面向量基本定理的应用.要点整合夯基础知识点平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.如图,设OA、OB、OC为三条共端点的射线,P为OC上一点,能否在OA 、OB 上分别找一点M 、N ,使OP →=错误!+错误!?提示:能。
过点P 作OA 、OB 的平行线,分别与OB 、OA 相交,交点即为N 、M .3.若向量a ,b 不共线,且c =2a -b ,d =3a -2b ,试判断c ,d 能否作为基底.提示:设存在实数λ使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0.由于a ,b 不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c ,d 不共线,故c ,d 能作为基底。
典例讲练破题型类型一 基底的概念[例1] 下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .②④B .②③④C .①③D .①③④[解析] 因为不共线的任意两个向量均可作为平面的一组基底,故②③正确,①不正确;由平面向量基本定理知④正确.综上可得②③④正确.[答案]B根据平面向量基底的定义知,判断能否作为基底问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底。
初中数学教案平面向量的加法与减法
初中数学教案平面向量的加法与减法初中数学教案:平面向量的加法与减法引言:平面向量是数学中的重要概念,它们在解决几何和代数问题中起着重要作用。
平面向量的加法与减法是其中的基本运算,通过掌握这些运算,学生们将能更好地理解和应用平面向量的概念。
本教案将重点介绍初中数学中平面向量的加法与减法,并提供相应的教学活动和练习。
一、概念与性质1. 平面向量的定义:平面向量是具有大小和方向的标量,用箭头表示。
2. 平面向量的加法:平面向量的加法满足平行四边形法则。
即将两个向量的起点连接起来,构成一个平行四边形,那么这两个向量的和就是该平行四边形对角线的向量。
3. 平面向量的减法:平面向量的减法可以通过将减数取负后与被减数相加,即将减数的方向翻转180度,然后与被减数相加。
二、教学活动活动1:向量相加的可视化1. 准备一张平面坐标纸和两个向量的起点。
2. 让学生标出这两个向量,然后将它们的起点连接起来。
3. 请学生通过平行四边形法则,确定这两个向量的和。
4. 让学生将这个和向量画在纸上,观察并讨论结果。
活动2:向量相减的实际应用1. 选择一个与日常生活相关的实际场景,例如风力的影响。
2. 以箭头的形式表示不同风速和风向的向量。
3. 让学生利用相减法确定两个不同风速的合成风速,并判断合成风速对不同活动的影响。
三、练习题1. 已知向量AB = (2, 3)和向量AC = (-1, 5),求向量AB + AC的结果。
2. 已知向量CD = (-3, 2)和向量CE = (4, -1),求向量CD - CE的结果。
3. 如果向量AB = (1, 2)和向量BC = (3, -4),求向量AC的结果。
四、扩展应用1. 提供更复杂的平面向量加法与减法练习题,加强学生对概念的理解和应用能力。
2. 探索平面向量运算的几何解释,例如向量代表位移、速度或力。
结语:通过本教案的学习,学生们应该能够理解平面向量的加法与减法的概念,并能够运用这些知识解决问题。
人教B版必修第二册6.2.3第1课时平面向量的坐标及其运算、两点间的距离公式与中点坐标公式学案
6.2.3平面向量的坐标及其运算第1课时平面向量的坐标及其运算、两点间的距离公式与中点坐标公式(教师独具内容)课程标准:1.借助平面直角坐标系,掌握平面向量的正交分解及坐标表示.2.会用坐标表示平面向量的加、减运算与数乘运算.教学重点:1.了解正交基底,掌握向量的正交分解及坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.掌握平面直角坐标系内两点之间的距离公式与中点坐标公式.教学难点:平面向量坐标运算的应用.知识点一平面向量的坐标(1)向量的垂直平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b□01垂直,记作□02a⊥b.(2)正交基底:如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为□03正交基底.(3)正交分解:在正交基底下向量的分解称为向量的□04正交分解.(4)坐标的定义①给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称□05(x,y)为向量a的坐标,记作□06a=(x,y).②如图,在平面上指定一点O作为原点,以e1的方向为x轴的正方向,以e2的方向为y轴的正方向,以e1(或e2)的模为单位长度建立平面直角坐标系,对于平面上任意一个向量a,如果我们把它的始点平移到原点O,那么a的□07终点对应的坐标就是向量a的坐标.(5)向量的坐标表示若OA →=x e 1+y e 2=(x ,y ),则□08OA →的坐标为(x ,y )⇔□09点A 的坐标为(x ,y ).知识点二 向量的运算与坐标的关系 (1)向量坐标的运算已知平面上的两个向量a ,b ,满足a =(x 1,y 1),b =(x 2,y 2).①a =b ⇔□01x 1=x 2且y 1=y 2.即平面上两个向量相等的充要条件是□02它们的坐标对应相等.②a +b =□03(x 1+x 2,y 1+y 2). ③u a +v b =□04(ux 1+v x 2,uy 1+v y 2). ④u a -v b =□05(ux 1-v x 2,uy 1-v y 2). (2)向量的模向量a =(x ,y ),则|a |=□06x 2+y 2.知识点三 两点之间的距离公式与中点坐标公式 设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点. (1)两点之间的距离公式 AB =|AB →|=□01 (x 2-x 1)2+(y 2-y 1)2.(2)中点坐标公式设线段AB 的中点为M (x ,y ),则x =□02x 1+x 22,y =□03y 1+y 22.1.求平面上向量坐标的三种方法 (1)将向量用单位向量e 1,e 2表示出来;(2)将向量的始点平移到原点,读出终点的坐标; (3)用向量终点的坐标减去始点的坐标. 2.向量的坐标与点的坐标的区别(1)当且仅当向量的始点为坐标原点时,向量坐标与终点坐标相同. (2)(x ,y )在直角坐标系中有双重含义,既可以表示一个点,也可以表示一个向量.为了区分,我们通常说点(x ,y ),向量(x ,y ).(3)向量坐标前带“=”而点的坐标前不带. 注意:两个相等向量的始点和终点可以不同.3.向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关.若a =(a 1,a 2),则将a 任意平移后其坐标仍为(a 1,a 2).4.通过平面直角坐标系,可以将平面内任一向量用一个有序实数对来表示;反过来,任一有序实数对也表示一个向量.也就是说,一个平面向量就是一个有序实数对.这样就可以把许多几何问题代数化.1.判一判(正确的打“√”,错误的打“×”)(1)把一个向量分解成两个互相垂直的基向量,叫做向量的正交分解.( ) (2)AB→=(-2,-1)即表示B (-2,-1),A (0,0).( ) (3)两个相等向量的始点和终点相同.( ) 答案 (1)√ (2)× (3)×2.做一做(请把正确的答案写在横线上)(1)已知AB→=(x ,y ),B 的坐标是(-2,1),那么OA →的坐标为________.(2)在平面直角坐标系内,已知i ,j 分别是x 轴、y 轴正方向上的单位向量,若a =i -2j ,则向量用坐标表示为a =________.(3)若点A (3,5),B (2,1),则向量AB→的坐标为________.(4)若a =(3,2),b =(0,-1),则2b -a 的坐标是________. 答案 (1)(-2-x,1-y ) (2)(1,-2) (3)(-1,-4) (4)(-3,-4)题型一 平面向量的坐标表示例1 已知向量e 1=(1,0),e 2=(0,1),对坐标平面内的任一向量a ,给出下列四个结论:①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的始点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3D .4[解析] 由平面向量基本定理,知①正确;例如,a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的始点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.[答案] A向量的坐标与其终点的坐标不一定相同.由于向量的起点可以任意选取,如果向量是以坐标原点为始点的,则向量的坐标就与其终点的坐标相同;如果向量不以坐标原点为始点,则向量的坐标就与其终点的坐标不同.如图,分别用单位正交基底{i ,j }表示向量a ,b ,c ,d ,并求出它们的坐标.解 由图可知a =AA 1→+AA 2→=2i +3j ,∴a =(2,3). 同理可得b =-2i +3j =(-2,3), c =-2i -3j =(-2,-3), d =2i -3j =(2,-3).题型二 平面向量的坐标运算例2 设向量a ,b 的坐标分别是(-1,2),(3,-5),求下列各向量的坐标. (1)a +b ;(2)a -b ;(3)3a ;(4)2a +5b .[解] (1)a +b =(-1,2)+(3,-5)=(2,-3). (2)a -b =(-1,2)-(3,-5)=(-4,7). (3)3a =3(-1,2)=(-3,6).(4)2a +5b =2(-1,2)+5(3,-5)=(-2,4)+(15,-25)=(13,-21).平面向量坐标的线性运算(1)若已知向量的坐标,则直接应用两个向量和、差及数乘的运算法则进行. (2)向量坐标的线性运算可完全类比数的运算进行.(1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则|c |=________; (2)已知向量a =(x 2-3x -4,x +3),b =(0,2),若a =b ,求x 的值. 答案 (1)1853 (2)见解析解析 (1)由已知得3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),所以c =⎝ ⎛⎭⎪⎫-133,-43, ∴|c |=⎝ ⎛⎭⎪⎫-1332+⎝ ⎛⎭⎪⎫-432=1853. (2)根据“两向量相等,则其对应坐标相等”列方程组求解.∵a =b ,∴⎩⎪⎨⎪⎧x 2-3x -4=0,x +3=2,解得x =-1.题型三 两点间的距离公式与中点坐标公式例3 已知平面内的三个点A (1,-2),B (7,0),C (-5,6). (1)求AB→+12AC →的坐标;(2)求AB +AC 的长.[解] (1)∵A (1,-2),B (7,0),C (-5,6),∴AB→=(7-1,0+2)=(6,2),AC →=(-5-1,6+2)=(-6,8).∴12AC →=(-3,4),∴AB →+12AC →=(6,2)+(-3,4)=(3,6). (2)由两点间的距离公式得, AB =(7-1)2+(0+2)2=36+4=210. AC =(-5-1)2+(6+2)2=36+64=10.∴AB +AC =10+210. 故AB +AC 的长为10+210.(1)在求一个向量的坐标时,可以先求出这个向量的始点坐标和终点坐标,再用终点坐标减去始点坐标即可得到该向量的坐标.(2)求线段的长度时,注意利用两点间的距离公式求解.已知点A (0,1),B (3,2),向量AC →=(-4,-3),点M 为BC 的中点.(1)求点M 的坐标; (2)求BC +2BM 的长.解 (1)设C (x ,y ),则AC →=(x -0,y -1)=(x ,y -1)=(-4,-3),即⎩⎪⎨⎪⎧x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,所以C (-4,-2),由中点坐标公式知,M ⎝ ⎛⎭⎪⎫3-42,2-22, 即M ⎝ ⎛⎭⎪⎫-12,0.(2)由两点间的距离公式,可知 BC =(-4-3)2+(-2-2)2=49+16=65. BM =⎝ ⎛⎭⎪⎫-12-32+(0-2)2=494+4=652.∴BC +2BM =65+65=265. ∴BC +2BM 的长为265.题型四 平面向量坐标运算的应用例4 已知平面上三个点的坐标为A (3,7),B (4,6),C (1,-2),求点D 的坐标,使得这四个点为构成平行四边形的四个顶点.[解] 设点D 的坐标为(x ,y ),(1)当平行四边形为ABCD 时,AB →=DC →,∴(4,6)-(3,7)=(1,-2)-(x ,y ),∴⎩⎪⎨⎪⎧ 1-x =1,-2-y =-1,∴⎩⎪⎨⎪⎧x =0,y =-1.∴D (0,-1); (2)当平行四边形为ABDC 时,同(1)可得D (2,-3); (3)当平行四边形为ADBC 时,同(1)可得D (6,15). 综上所述,点D 可能为(0,-1)或(2,-3)或(6,15).1.进行向量坐标运算的常见方法(1)向量的坐标运算主要是利用向量的加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,然后进行向量的坐标运算,另外,解题过程中要注意方程思想的运用.(2)利用向量的坐标运算解题,主要是根据相等向量的坐标对应相等这一原则,通过列方程(组)进行求解.(3)利用坐标运算求向量的基底表示,一般是先求出基底向量和被表示向量的坐标,再利用待定系数法求出相应系数.2.利用向量的坐标运算求参数的思路已知含参数的向量等式,依据某点的位置探求参数的问题,其本质是向量坐标运算的运用,用已知点的坐标和参数表示出该点的坐标,利用该点的位置确定其横、纵坐标应满足的条件,建立关于参数的方程(组)或不等式(组)进行求解.在平面直角坐标系xOy 中,点A (-1,2),B (4,3),C (3,6),AP →=AB →+λAC →(λ∈R ).(1)试求实数λ为何值时,点P 在第二、四象限的角平分线上; (2)试求实数λ为何值时,点P 在第三象限内.解 设P (x ,y ),因为AP→=AB →+λAC →,所以OP →=O A →+AP →=O A →+AB →+λAC →=OB →+λAC →=(4,3)+λ(4,4)=(4+4λ,3+4λ).(1)因为点P 在第二、四象限的角平分线上,所以x =-y ,所以4+4λ=-(3+4λ),解得λ=-78,所以当λ=-78时,点P 在第二、四象限的角平分线上. (2)因为点P 在第三象限内,所以⎩⎪⎨⎪⎧ x <0,y <0,所以⎩⎪⎨⎪⎧4+4λ<0,3+4λ<0,解得λ<-1.所以当λ<-1时,点P 在第三象限内.1.已知MA →=(-2,4),MB →=(2,6),则12AB →=( ) A .(0,5) B .(0,1) C .(2,5) D .(2,1)答案 D解析 ∵AB →=MB →-MA →=(2,6)-(-2,4)=(4,2),∴12AB →=(2,1).2.若向量a =(x -2,3)与向量b =(1,y +2)相等,则x =________,y =________. 答案 3 1解析 ⎩⎪⎨⎪⎧ x -2=1,3=y +2,解得⎩⎪⎨⎪⎧x =3,y =1.3.如下图,向量a ,b ,c 的坐标分别是________、________、________.答案 (-4,0) (0,6) (-2,-5)解析 解法一:将各向量向基底所在直线分解. a =-4i +0j ,∴a =(-4,0). b =0i +6j ,∴b =(0,6), c =-2i -5j ,∴c =(-2,-5).解法二:分别将向量a ,b ,c 的始点平移到原点,则终点坐标即为向量的坐标,得a =(-4,0),b =(0,6),c =(-2,-5).解法三:根据一个向量的坐标等于向量终点的坐标减去始点的坐标,知a =(-6,2)-(-2,2)=(-4,0);b =(2,6)-(2,0)=(0,6);c =(-3,-6)-(-1,-1)=(-2,-5).4.设AB →=(-2,-5),B 点坐标为(-1,3),则A 点坐标为________. 答案 (1,8)解析 设A (x ,y ),则⎩⎪⎨⎪⎧-1-x =-23-y =-5,解得x =1,y =8,即A (1,8).5.已知a +b =(2,-8),a -b =(-8,16),求a 和b . 解 解法一:设a =(m ,n ),b =(p ,q ),则有⎩⎨⎧m +p =2,n +q =-8,m -p =-8,n -q =16,解得⎩⎨⎧m =-3,n =4,p =5,q =-12.所以a =(-3,4),b =(5,-12). 解法二:a =12[(a +b )+(a -b )]=(-3,4),1b=2[(a+b)-(a-b)]=(5,-12).。
平面向量的概念及线性运算(优质课)教案
1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。
平面向量教学案
平面向量专题一 平面向量的基本运算一,知识点回顾1,向量的有关概念:向量及其表示、向量的模(长度)|AB |、零向量、单位向量、平行向量(共线向量)、相等向量 (向量是自由的,与起点无关) 2,向量加法、减法:向量加法满足“三角形法则”与“平行四边形法则”。
)(b a b a-+=-3,实数与向量的积4,两个向量共线的充要条件向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ。
定比分点:12P P PP λ=, 定比分点的向量表达式: 12111O P O P O P λλλ=+++(O 为平面内任意点)5,平面向量的基本定理(平面向量的分解与合成)二,专题讲解1,判断下列各命题是否正确 (1)零向量没有方向(2)b a ==则(3)单位向量都相等 (4) 两相等向量若共起点,则终点也相同(5) 若b a=,c b =,则c a = (6) 若b a //,c b //,则c a // (7) (8)若四边形ABCD 是平行四边形,则DA BC CD B ==,A(9) b a =的充要条件是||||b a=且b a //;2,已知G 是△ABC 的重心,求证:0=++GC GB GA3,如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC=b ,试用a,b 将向量OE ,BF ,BD , FD 表示出来4,如图平行四边形ABCD 的对角线OD,AB 相交于点C ,线段BC 上有一点ECB ABM 满足BC=3BM,线段CD 上有一点N 满足CD =3CN,设b OB a OA ==,,试用b a ,表示MN5,设非零向量a 、b 不共线,c =k a +b ,d =a +k b (k R),若c∥d ,试求k6,如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若AB m AM = ,AC n AN =,则m n +的值为 .三,巩固练习1,(山东)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA +=C.0PB PC +=D.0PA PB PC ++=2,(湖南文)如图, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-=D .0BD BE FC --=3,(湖南文)如图,两块斜边长相等的直角三角板拼在一起,若A D x AB y AC =+ ,则 x = ,y =4,(北京)已知向量a 、b 不共线,c k =a +b (k ∈R),d =a -b,如果c //d ,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向ABCOMN5,(广东)在平行四边形A B C D 中,A C 与B D 交于点O E ,是线段O D 的中点,A E 的延长线与C D交于点F .若AC = a ,BD = b ,则AF =A .1142+a bB .2133+a bC .1124+a bD .1233+a b6,(湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,D C BD = 2,C E E A = 2,AF FB =则AD BE CF ++ 与BC( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直四,拓展训练平面内的任意一个向量,都可以用平面两个不共线的向量唯一的表示,在向量的表示中,分解是关键,同时还要用好图形。
《4.1第一节 平面向量的概念及其线性运算》 学案
学习过程复习预习1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________.2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗?所谓有向线段就是________________________,三角函数线都是_____________.知识讲解考点1 向量的有关概念考点2 向量的线性运算考点3 共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.例题精析【例题1】【题干】设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0 B.1C.2 D.3【答案】D【解析】向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.【例题2】【题干】如图,在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使DB=13OB.设OA=a,OB=b,用a,b表示向量OC,DC.【解析】OC=OB+BC=OB+2BA=OB+2(OA-OB) =2OA-OB=2a-b.DC=OC-OD=OC-23OB=(2a-b)-2 3b=2a-53b.【例题3】【题干】已知a,b不共线,OA=a,OB=b,OC=c,OD=d,OE=e,设t∈R,如果3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若存在,求出实数t的值,若不存在,请说明理由.【解析】由题设知,CD =d -c =2b -3a ,CE =e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0, 解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.课堂运用【基础】1.如图,已知AB=a,AC=b,BD=3DC,用a,b表示AD,则AD=()A.a+34b B.14a+34bC.14a+14b D.34a+14b2.已知向量p=a|a|+b|b|,其中a、b均为非零向量,则|p|的取值范围是()A.[0,2] B.[0,1] C.(0,2] D.[0,2]3.(2013·保定模拟)如图所示,已知点G是△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且AM =x AB,AN=y AC,则x·yx+y的值为()A.3 B.1 3C.2 D.1 2【巩固】4.在▱ABCD中,AB=a,AD=b,AN=3NC,M为BC的中点,则MN=________(用a,b表示).5.(2013·淮阴模拟)已知△ABC和点M满足MA+MB+MC=0.若存在实数m使得AB+AC=m AM成立,则m =________.【拔高】6.如图所示,在五边形ABCDE中,点M、N、P、Q分别是AB、CD、BC、DE的中点,K和L分别是MN和PQ的中点,求证:KL=14AE.7.设两个非零向量e1和e2不共线.(1)如果AB=e1-e2,BC=3e1+2e2,CD=-8e1-2e2,求证:A、C、D三点共线;(2)如果AB=e1+e2,BC=2e1-3e2,CD=2e1-k e2,且A、C、D三点共线,求k的值.课程小结(1)向量共线的充要条件中要注意“a≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.。
高中数学必修二 (学案)平面向量的运算
平面向量的运算【第一课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ; (2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC →+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB +BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ→ C .SP→ D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c .过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|,所以|AB →+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a=⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|, 所以AB→=2DC →,DC →=12AB →.(1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN →=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN →=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求: ①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12 (2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |, 所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 答案:(1)π3 (2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量,则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e . 4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. 5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). 四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3. 2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0, 所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×⎝ ⎛⎭⎪⎫-45e=-125e .答案:-125e4.已知|a |=1,|b |=2. (1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |; (3)若a -b 与a 垂直,求a 与b 的夹角. 解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2. (2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。
高中数学 第二章 平面向量 2.2 平面向量的线性运算教学案数学教学案
2.2 平面向量的线性运算第1课时向量加法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P80~P83的内容,回答下列问题.(1)观察教材P80图2.2-1,思考:某对象从A点经B点到C 点,两次位移的结果是什么?与从A点直接到C点的位移有什么关系?提示:从A点经B点到C点,两次位移的结果是位移,与从A点直接到C点的位移相等.(2)观察教材P80“探究”的内容,思考:①力F对橡皮条产生的效果,与力F1与F2共同产生的效果相同吗?提示:产生的效果相同.②力F与力F1、F2有怎样的关系?提示:力F是F1与F2的合力.力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.(3)数的加法启发我们,从运算的角度看,F可以认为是F1与F2的什么运算?提示:F可以认为是F1与F2的和,即位移、力的合成可看作向量的加法.2.归纳总结,核心必记(1)向量加法的定义求两个向量和的运算,叫做向量的加法.(2)向量加法的运算法则向量求和的法则三角形法则已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=_.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任一向量a的和有a+0=0+a=a.平行四边形法则以同一点O为起点的两个已知向量a、b为邻边作▱OACB,则以O为起点的对角线_就是a与b的和.我们把这种作向量和的方法叫做向量加法的平行四边形法则.①交换律:a+b=b+a;②结合律:a+b+c=(a+b)+c=a+(b+c).[问题思考](1)两个向量相加就是两个向量的模相加吗?提示:因为向量既有大小,又有方向,所以两个向量相加不是模的相加.两个向量相加应满足三角形法则或平行四边形法则.(2)当两非零向量a,b共线时,向量加法的平行四边形法则还能用吗?三角形法则呢?提示:平行四边形法则不能用,但三角形法则可用.(3)式子=0正确吗?[课前反思](1)向量加法的定义:;(2)求向量和的三角形法则:;(3)求向量和的平行四边形法则:;(4)向量加法的交换律:;(5)向量加法的结合律:.[思考1] 求作两个向量和的方法有哪些?提示:三角形法则和平行四边形法则.[思考2] 三角形法则和平行四边形法则的适用条件有什么不同?名师指津:(1)三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)当两个向量不共线时,两个法则是一致的.如图所示, (平行四边形法则),(3)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量的起点相同.讲一讲1.(1)如图①,利用向量加法的三角形法则作出a+b;(2)如图②,利用向量加法的平行四边形法则作出a+b.[尝试解答] (1)如图ⓐ所示,设=a,∵a与b有公共点A,故过A点作=b,连接即为a+b.(2)如图ⓑ,设=a,过O点作=b,则以OA、OB为邻边作▱OACB,连接OC,则=a+b.应用三角形法则和平行四边形法则应注意的问题(1)三角形法则可以推广到n个向量求和,作图时要求“首尾相连”,即n个首尾相连的向量的和对应的向量是第一个向量的起点指向第n个向量的终点的向量.(2)平行四边形法则只适用于不共线的向量求和,作图时要求两个向量的起点重合.(3)求作三个或三个以上的向量的和时,用三角形法则更简单.练一练1.如图,已知a、b、c,求作向量a+b+c.解:作法:在平面内任取一点O,如图所示.作=a+b+c.[思考] 向量加法有哪些运算律?名师指津:向量加法的交换律:a+b=b+a;向量加法的结合律:(a+b)+c=a+(b+c).讲一讲2.化简下列各式:解决向量加法运算时应关注两点(1)可以利用向量的几何表示,画出图形进行化简或计算.(2)要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母的排列顺序,特别注意勿将0写成0.练一练2.如图,在△ABC中,O为重心,D、E、F分别是BC、AC、AB 的中点,化简下列三式:讲一讲3.在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到达B地接到受伤人员,然后又从B地按南偏东55°的方向飞行800 km送往C地医院,求这架飞机飞行的路程及两次位移的和.[尝试解答] 如图所示,设分别表示飞机从A地按北偏东35°方向飞行800 km,从B地按南偏东55°的方向飞行800 km.则飞机飞行的路程指的是;两次飞行的位移的和指的是依题意,有=800+800=1 600 (km).又α=35°,β=55°,∠ABC=35°+55°=90°.=8002+8002=8002(km).其中∠BAC=45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是 1 600 km,两次飞行的位移和的大小为800 2 km,方向为北偏东80°.利用向量的加法解决实际应用题的三个步骤练一练3.轮船从A港沿东偏北30°方向行驶了40 km到达B处,再由B处沿正北方向行驶40 km到达C处,求此时轮船与A港的相对位置.解:如图所示,设分别是轮船的两次位移,则表示最终位移,且=+.∠CAD=60°,即此时轮船位于A港东偏北60°,且距离A港40 3 km处.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是向量和的作法以及向量和的运算,难点是向量和的应用.2.要掌握向量加法的三个问题(1)求作向量的和,见讲1;(2)向量加法运算,见讲2;(3)向量加法的应用,见讲3.3.求作向量时应注意以下两点(1)利用三角形法则求和向量时,关键要抓住“首尾相接”,并且和向量是由第一个向量的起点指向最后一个向量的终点.(2)利用平行四边形法则求和向量时,应注意“共起点”.课下能力提升(十四)[学业水平达标练]题组1 求作向量的和1.如图,已知两个不共线的非零向量a,b,求作a+b.解:在平面内任取一点O,2.已知两非零向量a,b(如图所示)求作a+b.解:如图所示:在平面内任取一点O,作题组2 向量加法运算4.下列等式错误的是( )A.a+0=0+a=aA.2 5 B.45C.12 D.66.根据图示填空.解析:由三角形法则知7.已知正方形ABCD 的边长为1,=a ,=c ,=b ,则|a +b +c |为________.解析:|a +b +c |===2 2.答案:22 8.如图,O 为正六边形ABCDEF 的中心,根据图示计算: 解:(1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 为其对角线,所以题组3 向量加法的应用 9.若a 等于“向东走8 km ”,b 等于“向北走8 km ”则|a +b |=________,a +b 的方向是________. 解析:如图所示,设=a ,=b ,则=a +b ,且△ABC 为等腰直角三角形,则||=8 2 km ,∠BAC =45°.答案:8 2 km 北偏东45°10.雨滴在下落一定时间后的运动是匀速的,无风时雨滴下落的速度是4.0 m/s ,现在有风,风使雨滴以433m/s 的速度水平向东移动,求雨滴着地时的速度和方向.解:如图,用表示雨滴下落的速度,表示风使雨滴水平向东的速度.以,为邻边作平行四边形OACB ,就是雨滴下落的实际速度. 在Rt △OAC 中,||=4,||=433,∴∠AOC =30°. 故雨滴着地时的速度大小是833m/s ,方向与垂直方向成30°角向东.[能力提升综合练]1.设a =,b 是任一非零向量,则在下列结论中,正确的为( )①a∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |;⑤|a +b |=|a |+|b |.A .①②B .①③C .①③⑤D .③④⑤解析:选C a ==0,∴①③⑤是正确的.2.已知D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中不正确的是( )解析:选D 由向量加法的平行四边形法则可知,3.如图,四边形ABCD 是梯形,AD ∥BC ,则=( )4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足,则下列结论中正确的是( )A .P 在△ABC 的内部B .P 在△ABC 的边AB 上C .P 在AB 边所在的直线上D .P P 在△ABC 的外部解析:选D ,根据平行四边形法则,如图,则点P 在△ABC 外.答案:6.若P 为△ABC 的外心,且,则∠ACB =________. 解析:∵,则四边形APBC 是平行四边形. 又P 为△ABC 的外心,因此∠ACB =120°.答案:120°7.在四边形ABCD 中,对角线AC 、BD 交于点O 且||==0,cos ∠DAB =12.求 又cos ∠DAB =12,∠DAB ∈(0,π), ∴∠ DAB =60°,∴△ABD 为正三角形.8.已知船在静水中的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.解:作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt△ACD中,=|v水|=10 m/min,∴α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°的角.第2课时向量减法运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P85~P86的内容,回答下列问题.(1)一个数x的相反数是什么?一个向量a有相反向量吗?若有,如何表示?提示:一个数x的相反数是-x.一个向量a有相反向量,记为-a.(2)任何一个数x与它相反数的和为0,那么向量a与它的相反向量的和是什么?提示:a+(-a)=0.(3)根据前一节所学的内容,你能作出向量a与b的差a-b 吗?提示:可以,先作-b,再按向量加法的平形四边形法则或三角形法则作出a+(-b)即可.2.归纳总结,核心必记(1)相反向量与a长度相等,方向相反的向量,叫做a的相反向量,记作-a.①规定:零向量的相反向量仍是零向量;②-(-a)=a;③a+(-a)=(-a)+a=0;④若a与b互为相反向量,则a=-b,b=-a,a+b=0.(2)向量的减法①定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.②几何意义:以O为起点,作向量=a,=b,则_=a -b,如图所示,即a-b可以表示为从向量b的终点指向向量a的终点的向量.[问题思考](1)若两个非零向量a与b互为相反向量,则a与b应具备什么条件?提示:①长度相等;②方向相反.(2)相反向量与相反数一样吗?提示:不一样.相反数是两个数符号相反,绝对值相等,相反向量是指两个向量方向相反,模相等.(3)若a-b=c-d,则a+d=b+c成立吗?提示:成立.移项法则对向量的运算是成立的.[课前反思](1)相反向量的定义:;(2)向量减法的定义:;(3)向量减法的几何意义:.讲一讲(1)向量减法运算的常用方法(2)向量加减法化简的两种形式①首尾相连且为和;②起点相同且为差.做题时要注意观察是否有这两种形式,同时要注意逆向应用.练一练1.化简下列各式:[思考1] 已知两个非零向量a,b,如何作a-b?名师指津:求作两向量的差可以转化为两个向量的和,也可以直接用向量减法的三角形法则,即把两向量的始点重合,则差向量就是连接两个向量的终点,并指向被减向量.[思考2] a-b的几何意义是什么?名师指津:a-b的几何意义是:当向量a,b的始点相同时,从向量b的终点指向向量a的终点的向量.讲一讲2.(1)四边形ABCD中,若( )A.a-b+c B.b-(a+c)C.a+b+c D.b-a+c(2)如图,已知向量a,b,c不共线,求作向量a+b-c.[尝试解答] (1)=a+c-b.(2)法一:如图①所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,则=a+b-c.法二:如图②所示,在平面内任取一点O,作=a,=b,则=a+b,再作=c,连接OC,则=a+b-c.答案:(1)A求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a-b,可以先作-b,然后作a+(-b)即可.(2)也可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.练一练2.如图,O为△ABC内一点,=a,=b,=c.求作:(1)b+c-a;(2)a-b-c.如图所示.(2)由a-b-c=a-(b+c),如图,作▱OBEC,连接OE,连接AE,则=a-(b+c)=a-b-c.讲一讲3.如图,解答下列各题:利用已知向量表示其他向量的一个关键及三点注意(1)一个关键一个关键是确定已知向量与被表示向量的转化渠道.(2)三点注意①注意相等向量、相反向量、共线向量以及构成三角形三向量之间的关系;②注意应用向量加法、减法的几何意义以及它们的运算律;③注意在封闭图形中利用多边形法则.练一练—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是相反向量、向量减法的运算以及利用已知向量表示未知向量,难点是利用已知向量表示未知向量.2.要掌握向量减法的三个问题(1)向量的减法运算,见讲1;(2)向量减法及其几何意义,见讲2;(3)利用已知向量表示未知向量,见讲3.3.掌握用已知向量表示某向量的基本步骤第一步:观察各向量的位置;第二步:寻找(或作)相应的平行四边形或三角形;第三步:运用法则找关系;第四步:化简结果.课下能力提升(十五)[学业水平达标练]题组1 向量的减法运算1.已知非零向量a与b同向,则a-b( )A.必定与a同向B.必定与b同向C.必定与a是平行向量D.与b不可能是平行向量解析:选C 若|a|>|b|,则a-b与a同向,若|a|<|b|,则a-b与-b同向,若|a|=|b|,则a-b=0,方向任意,且与任意向量共线.故A,B,D皆错,故选C.3.给出下面四个式子,其中结果为0的是( )A.①② B.①③C.①③④ D.②③题组2 向量减法及其几何意义4.若O,E,F是不共线的任意三点,则以下各式中成立的是( )解析:选B 由减法法则知B正确.A.[3,8] B.(3,8)C.[3,13] D.(3,13)6.如图,在正六边形ABCDEF中,=( )7.已知菱形ABCD边长都是2,求向量的模.题组3 利用已知向量表示未知向量8.如图,向量,则向量可以表示为( ) A.a+b-c B.a-b+cC.b-a+c D.b-a-c解析:选C =b-a+c.故选C.9.已知一点O到▱ABCD的3个顶点A,B,C的向量分别是a,b,c,则向量等于( )A.a+b+c B.a-b+cC.a+b-c D.a-b-c解析:选B 如图,点O到平行四边形ABCD的三个顶点A,B,C的向量分别是a,b,c,结合图形有=a-b+c.10.如图,已知ABCDEF是一正六边形,O是它的中心,其中=b,=c,则等于________.解析:=b-c.答案:b-c11.如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且=a,=b,=c,试用a,b,c表示向量[能力提升综合练]1.有下列不等式或等式:①|a|-|b|<|a+b|<|a|+|b|;②|a|-|b|=|a+b|=|a|+|b|;③|a|-|b|=|a+b|<|a|+|b|;④|a|-|b|<|a+b|=|a|+|b|.其中,一定不成立的个数是( )A.0 B.1 C.2 D.3解析:选A ①当a与b不共线时成立;②当a=b=0,或b =0,a≠0时成立;③当a与b共线,方向相反,且|a|≥|b|时成立;④当a与b共线,且方向相同时成立.2.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则( ) A.8 B.4 C.2 D.14.平面上有三点A,B,C,设若m,n 的长度恰好相等,则有( )A.A,B,C三点必在同一直线上B.△ABC必为等腰三角形且∠B为顶角C.△ABC必为直角三角形且∠B=90°D.△ABC必为等腰直角三角形解析:选C 由|m|=|n|,知A,B,C为一矩形的三顶点,且△ABC中∠B为直角.答案:6.设平面向量a1,a2,a3满足a1-a2+a3=0,如果平面向量b1,b2,b3满足|b i|=2|a i|,且a i顺时针旋转30°后与b i同向,其中i=1,2,3,则b1-b2+b3=________.解析:将a i顺时针旋转30°后得a i′,则a1′-a2′+a3′=0.又∵b i与a i′同向,且|b i|=2|a i|,∴b1-b2+b3=0.答案:07.设O是△ABC内一点,且,若以线段OA,OB为邻边作平行四边形,第四个顶点为D,再以OC,OD为邻边作平行四边形,其第四个顶点为H.试用a,b,c表示.解:由题意可知四边形OADB为平行四边形,又四边形ODHC为平行四边形,8.已知O为四边形ABCD所在平面外一点,且向量、满足等式.作图并观察四边形ABCD的形状,并证明.解:通过作图(如图)可以发现四边形ABCD为平行四边形.证明如下:∵,∴,∴,∴AB綊DC,∴四边形ABCD为平行四边形.第3课时向量数乘运算及其几何意义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 87~P 90的内容,回答下列问题.(1)已知非零向量a ,根据向量的加法,作出a +a +a 和(-a )+(-a )+(-a ),你认为它们与a 有什么关系?提示:a +a +a =3a 的长度是a 长度的3倍,且方向相同;(-a )+(-a )+(-a )=-3a 的长度是a 长度的3倍,且方向相反.(2)λa 与a (λ≠0,a ≠0)的方向、长度之间有什么关系? 提示:当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反,且λa 的长度是a 长度的|λ|倍.(3)若a =λb ,则a 与b 共线吗?提示:共线.2.归纳总结,核心必记(1)向量数乘运算一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反W. 特别地,当λ=0或a =0时,0a =0或λ0=0.(2)向量数乘的运算律设λ,μ为实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.特别地,(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.(3)共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.(4)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.[问题思考](1)向量与实数可以求积,那么向量和实数可以进行加减运算吗?提示:不可以,向量与实数不能进行加减运算,如λ+a,λ-2b无法运算.(2)数乘向量与实数的乘积等同吗?提示:不等同.数乘向量的结果仍然是一个向量,既有大小又有方向.实数相乘运算的结果是一个实数,只有大小没有方向.(3)λ=0时,λa=0;a=0时,λa=0,这两种说法正确吗?提示:不正确,λa=0中的“0”应写为“0”.[课前反思](1)向量数乘的概念:;(2)向量数乘的运算律:;(3)共线向量定理:;(4)向量的线性运算:.[思考] 向量的线性运算与代数多项式的运算有什么类似之处?名师指津:向量的线性运算类似于多项式的运算,具有实数与多个向量和的乘积形式,计算时应先去括号.共线向量可以“合并同类项”“提取公因式”,这里的“同类项”“公因式”是指向量,实数看作是向量的系数.讲一讲1.化简下列各式:(1)3(6a +b )-9⎝⎛⎭⎪⎫a +13b ;(2)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a .[尝试解答] (1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .向量数乘运算的方法(1)向量的数乘运算类似于多项式的代数运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)向量也可以通过列方程来解,把所求向量当作未知数,利用解代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.练一练1.设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝⎛⎭⎪⎫a -23b +(2b -a ).解:原式=13a -b -a +23b +2b -a=⎝ ⎛⎭⎪⎫13-1-1a +⎝⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝⎛⎭⎪⎫-103-53j =-53i -5j . 讲一讲2.已知在▱ABCD 中,M ,N 分别是DC ,BC 的中点.若,试用e 1,e 2表示[尝试解答] ∵M ,N 分别是DC ,BC 的中点,∴MN 綊12BD . 用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示,其实质是向量线性运算的反复应用.练一练2.如图所示,四边形OADB 是以向量OA ―→=a ,OB ―→=b 为邻边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示 [思考1] 如何证明向量a 与b 共线?名师指津:要证向量a 与b 共线,只需证明存在实数λ,使得b =λa (a ≠0)即可.[思考2] 如何证明A ,B ,C 三点在同一条直线上?名师指津:讲一讲3.(1)已知e 1,e2是两个不共线的向量,若=2e1-8e2,=e1+3e2,=2e1-e2,求证:A,B,D三点共线.(2)已知A,B,P三点共线,O为直线外任意一点,若求x+y的值.∵AB与BD有交点B,∴A,B,D三点共线.(2)由于A,B,P三点共线,所以向量在同一直线上,由向量共线定理可知,必定存在实数λ使故x=1-λ,y=λ,即x+y=1.用向量共线的条件证明两条直线平行或重合的思路(1)若b=λa(a≠0),且b与a所在的直线无公共点,则这两条直线平行;(2)若b=λa(a≠0),且b与a所在的直线有公共点,则这两条直线重合.例如,若向量,则共线,又有公共点A,从而A,B,C三点共线,这是证明三点共线的重要方法.练一练3.如图所示,已知D,E分别为△ABC的边AB,AC的中点,延长CD到M使DM=CD,延长BE至N使BE=EN,求证:M,A,N 三点共线.证明:∵D为MC的中点,且D为AB的中点,∴M,A,N三点共线.—————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是向量的数乘运算及共线向量定理,难点是共线向量定理的应用.2.掌握与向量数乘运算有关的三个问题(1)向量的线性运算,见讲1;(2)用已知向量表示未知向量,见讲2;(3)共线向量定理及应用,见讲3.3.本节课的易错点当A、B、C、D四点共线时,共线;反之不一定成立.4.要掌握用已知向量表示其他向量的两种方法(1)直接法.(2)方程法.当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.5.注意以下结论的运用(1)以AB,AD为邻边作▱ABCD,且则对角线所对应的向量=a+b,=a-b.课下能力提升(十六)[学业水平达标练]题组1 向量的线性运算1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( ) A .2a -b B .2b -aC .b -aD .a -b解析:选B 原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b =2b -a .2.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④解析:选B ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误.题组2 用已知向量表示未知向量A .r =-12p +32q B .r =-p +2qC .r =32p -12q D .r =-q +2p=-12p +32q .4.在△ABC 中,点P 是AB 上一点,且则t 的值为( )A.13B.23C.12D.535.如图所示,在▱ABCD 中,=a ,=b ,AN =3NC ,M 为BC 的中点,则=________.(用a ,b 表示)=12b -14(a +b )=14b -14a =14(b -a ). 答案:14(b -a ) 6.如图所示,已知▱ABCD 的边BC 、CD 的中点分别为K 、L,且=e 1,=e 2,试用e 1,e 2表示⎩⎪⎨⎪⎧-y +12x =e 1, ①x -12y =e 2. ②-2×②+①得12x -2x =e 1-2e 2, 解得x =23(2e 2-e 1),即=23(2e 2-e 1)=43e 2-23e 1, 同理得y =23(-2e 1+e 2), 即=-43e 1+23e 2.题组3 共线向量定理的应用7.对于向量a ,b 有下列表示:①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2;③a =4e 1-25e 2,b =e 1-110e 2; ④a =e 1+e 2,b =2e 1-2e 2.其中,向量a ,b 一定共线的有( )A .①②③B .②③④C .①③④D .①②③④解析:选A 对于①,a =-b ;对于②,a =-12b ;对于③,a =4b ;对于④,若a =λb (λ≠0),则e 1+e 2=λ(2e 1-2e 2),即(1-2λ)e 1+(1+2λ)e 2=0,所以1-2λ=1+2λ=0,矛盾,故④中a 与b 不共线.8.已知向量a ,b ,且=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,CC .B ,C ,D D .A ,C ,D解析:选A=(-5a +6b )+(7a -2b )=2a +4b =2,所以A ,B ,D 三点共线.9.已知e 1,e 2是两个不共线的向量,而a =k 2e 1+⎝⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个共线向量,则实数k =________.解析:由题设知k 22=1-52k 3, 所以3k 2+5k -2=0,解得k =-2或13. 答案:-2或1310.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE =23AD ,=a ,=b .(1)用a ,b 分别表示向量(2)求证:B ,E ,F 三点共线.[能力提升综合练]2.已知向量a ,b 是两个非零向量,在下列四个条件中,一定可以使a ,b 共线的是( )①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0;③x a +y b =0(其中实数x ,y 满足x +y =0);④已知梯形ABCD ,其中A .①②B .①③C .②D .③④解析:选A 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;λa -μb =0,λa =μb ,故②可以;x =y =0,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.解析:选B 如图,在△ABC 中,以BM ,CM 为邻边作平行四边形MBDC ,依据平行四边形法则可得两向量有公共点M ,则A ,M ,D 三点共线,设BC ∩MD =E ,结合MD 是平行四边形MBDC 的对角线可知,AE 是△ABC 的中线,同理可证BM ,CM 也在△ABC 的中线上,即M 是△ABC 的重心.以AB 、AC 为邻边作平行四边形ABFC ,依据向量加法的平行四边形法则可得4.如图所示,两射线OA 与OB 交于O ,则下列选项中哪些向量的终点落在阴影区域内(不含边界)( )A .①②B .①②④C .①②③D .③④到λx +(1-x )λ=λ>1;注意到1+2=3>1,34+13>34+14=1,12+13=56<1,34+15=1920<1,故选A. 答案:236.已知两个不共线向量e 1,e 2,且=e 1+λe 2,=3e 1+4e 2,=2e 1-7e 2,若A ,B ,D 三点共线,则λ的值为________.又=e 1+λe 2,且A ,B ,D 三点共线,所以存在实数μ,即e 1+λe 2=μ(5e 1-3e 2),又e 1,e 2不共线,所以⎩⎪⎨⎪⎧5μ=1,-3μ=λ,则λ=-35. 答案:-357.如图,已知在平行四边形ABCD 中,AH =HD ,BF =MC =14BC ,设=a ,=b ,试用a ,b 分别表示解:∵ABCD 是平行四边形,BF =MC =14BC , ∴FM =BC -BF -MC =12BC . ∴FM =12BC =12AD =AH . ∴FM 綊AH .∴四边形AHMF 也是平行四边形.8.已知O ,A ,M ,B 为平面上四点, (λ∈R ,λ≠0且λ≠1).(1)求证:A ,B ,M 三点共线;(2)若点B在线段AM上,求实数λ的范围.。
平面向量基本定理学案
2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示学习目的:1.了解平面向量基本定理,了解基底的含义.2. 掌握两个向量夹角的定义以及两向量垂直的定义.3.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.重点:平面向量基本定理难点:两向量夹角的定义及定理的运用自学设计:一. 两向量的夹角与垂直1.夹角:已知两个 a 和b ,作OA =a ,OB =b ,则 =θ,叫做向量a 与b 的夹角.记作,a b (1)范围:向量a 与b 的夹角的范围是 .(2)当00θ=时a 与b .(3)当0180θ=时a 与b .2.垂直:如果向量a 与b 的夹角是 ,则称a 与b 垂直,记作 .在等边ABC ∆中, ,AB BC = .二. 平面向量基本定理1.定理:如果1e ,2e 是同一平面内的两个 向量,那么对于这一平面内的 向量a , 实数1,2λλ,使a = (称为平面向量的线性表示) .2.基底: 的向量1e ,2e 叫做表示这一平面内 向量的一组基底.由定义,平面向量的基底唯一吗?3.把一个向量分解成两个 的向量,叫做把向量正交分解.4.平面向量的坐标:在平面直角坐标系中,分别取与x 轴y 轴方向相同的两个 i ,j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x,y,使得a = ,则把有序数对 叫做向量a 的坐标.课堂达标:(A 组)1.关于基底的说法正确的序号是(1)平面内不共线的任意两个向量都可作为一组基底.(2)基底中的向量可以是零向量.(3)平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.O θA B ba2.若i =(1,0), j =(0,1),且a =2i +j ,则a 的坐标为( )A.(2,0)B.(2,1)C.(1,0)D.(0,1)3.如图所示,D 是BC 边的中点,试用基底,AB AC AD 表示课堂达标:(B组)已知四边形OADB 是以向量OA =a ,OB =b 为邻边的平行四边形,C 为对角线的交点.又11,33BM BC CN CD == ,试用a ,b 表示,.OM ON。
新教材高中数学第6章平面向量的坐标及其运算学案含解析新人教B版必修第二册
新教材高中数学学案含解析北师大版必修第二册:6.2.3 平面向量的坐标及其运算学习 任 务核 心 素 养(教师独具)1.掌握平面向量的正交分解及其坐标表示.(重点)2.会用坐标表示平面向量的加、减与数乘向量运算.(重点)3.会用坐标表示平面向量共线的条件,能用向量共线的条件来解决有关向量共线、直线平行及点共线等问题.(重点、难点)1.通过学习向量的正交分解,培养数学抽象的核心素养.2.通过向量的直角坐标运算,提升数学运算的核心素养.通过上节学习我们知道,以单位向量e 为基底建立数轴,则数轴上的向量坐标等于它的终点坐标,类似地,请思考:问题:(1)平面直角坐标系的基底应满足什么条件? (2)在直角坐标系中(如图),向量OA →应怎样用基底表示?(3)若点A 的坐标为(x ,y ),则向量OA →的坐标与(x ,y )有什么关系? [提示] (1)基底{e 1,e 2}中,e 1,e 2为单位向量且相互垂直. (2)OA →=x e 1+y e 2. (3)OA →的坐标也是(x ,y ). 1.向量的正交分解2.向量的坐标 (1)定义:一般地,给定平面内两个相互垂直的单位向量e 1,e 2,对于平面内的向量a ,如果a =xe 1+ye 2,则称(x ,y )为向量a 的坐标,记作a =(x ,y ).(2)意义:设点A 的坐标为(x ,y ),则OA →=(x ,y ).符号(x ,y )在直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.知识点2 平面上向量的运算与坐标的关系向量的 加、减法若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),即两个向量和与差的坐标等于两个向量相应坐标的和与差实数与向量的积 若a =(x ,y ),λ∈R ,则λa =(λx ,λy ),即数乘向量的积的坐标等于数乘以向量相应坐标的积向量的数乘、加、减混合运算 若a =(x 1,y 1),b =(x 2,y 2),u ,v ∈R ,则u a ±v b =(ux 1±v x 2,uy 1±v y 2) 向量的模若a =(x ,y ),则|a |=x 2+y 2注:平面上两个向量相等的充要条件是它们的坐标对应相等.1.已知点A (1,-3),AB →的坐标为(3,7),则点B 的坐标为( )A .(4,4)B .(-2,4)C .(2,10)D .(-2,-10)A [设点B 的坐标为(x ,y ),由AB →=(3,7)=(x ,y )-(1,-3)=(x -1,y +3)=(3,7),得B (4,4).]2.已知a =(1,-1),b =(3,0),则3a -2b 等于( )A .(5,3)B .(4,-1)C .(-2,-1)D .(-3,-3)D [3a -2b =3(1,-1)-2(3,0)=(3,-3)-(6,0)=(-3,-3).] 知识点3 平面直角坐标系内两点之间的距离公式与中点坐标公式 平面上两点A (x 1,y 1),B (x 2,y 2)间的距离公式|AB →|=(x 2-x 1)2+(y 2-y 1)2, AB 的中点坐标公式⎩⎨⎧x =x 1+x 22,y =y 1+y22.3.已知平面直角坐标系内的两点A (-1,2),B (2,6),则AB =________;若AB 的中点为M ,则M 的坐标为________.5 ⎝⎛⎭⎫12,4 [AB =(-1-2)2+(2-6)2=5.设M (x ,y ),则x =-1+22=12,y =2+62=4.] 知识点4 向量平行的坐标表示(1)设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 2y 1=x 1y 2.(2)设a =(x 1,y 1),b =(x 2,y 2),如果向量b 不平行于坐标轴,即x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2. 4.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定B [∵a +b =3e 1-e 2,∴c =2(a +b ),∴a +b 与c 共线.]5.已知a =(-6,2),b =(m ,-3),且a ∥b ,则m =( )A .-9B .9C .3D .-3B [由a ∥b ,得-6×(-3)=2m ,∴m =9.]类型1 平面向量的坐标表示【例1】 (1)如图所示,若向量e 1,e 2是一组单位正交向量,则向量2a +b 在平面直角坐标系中的坐标为( )A .(3,4)B .(2,4)C .(3,4)或(4,3)D .(4,2)或(2,4)(2)如图,在直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.①求向量a ,b 的坐标; ②求向量BA →的坐标; ③求点B 的坐标.[思路探究] (1)借助平面向量的正交分解直接求解.(2)①由OA =4,∠AOx =45°可求出点A 的坐标,从而求出a 的坐标,再由∠OAB =105°,得出∠COy ,进而得点C 的坐标,根据OC →=AB →得出b 的坐标.②由①中b 的坐标及b 与BA →的关系得出BA →的坐标. ③可借助OB →=OA →+AB →求出点B 的坐标.(1)A [以向量a ,b 公共的起点为坐标原点,建立如图坐标系,因为e 1=(1,0),e 2=(0,1), 所以2a =(2,1),b =(1,3),所以2a +b =(2,1)+(1,3)=(3,4),即2a +b 在平面直角坐标系中的坐标为(3,4),故选A .](2)[解] ①作AM ⊥x 轴于点M (图略), 则OM =OA ·cos 45°=4×22=22, AM =OA ·sin 45°=4×22=22, 所以A (22,22).故a =(22,22). 因为∠AOC =180°-105°=75°,∠AOy =45°, 所以∠COy =30°.又OC =AB =3,所以C ⎝⎛⎭⎫-32,332,所以AB →=OC →=⎝⎛⎭⎫-32,332,即b =⎝⎛⎭⎫-32,332.②由①知BA →=-AB →=-b =⎝⎛⎭⎫32,-332.③OB →=OA →+AB →=(22,22)+⎝⎛⎭⎫-32,332=⎝⎛⎭⎫22-32,22+332,所以点B 的坐标为⎝⎛⎭⎫22-32,22+332.求向量坐标的三个步骤[跟进训练]1.(1)已知{e 1,e 2}为单位正交基底且a =3e 1+4e 2,b =-3e 1,则a ,b 的坐标分别为________.(2)如图,在正方形ABCD 中,O 为中心,且OA →=(-1,-1),则OB →=________;OC →=__________;OD →=________.(1)(3,4),(-3,0) (2)(1,-1) (1,1) (-1,1) [(1)由平面向量坐标的定义知a =(3,4),b =(-3,0).(2)由题意知,OC →=-OA →=-(-1,-1)=(1,1),由正方形的对称性可知,B (1,-1),所以OB →=(1,-1),同理OD →=(-1,1).]类型2 平面向量的坐标运算【例2】 (1)设AB →=(2,3),BC →=(m ,n ),CD →=(-1,4),则DA →=( ) A .(1+m,7+n ) B .(-1-m ,-7-n ) C .(1-m,7-n )D .(-1+m ,-7+n )(2)已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( )A .⎝⎛⎭⎫-4,12 B .⎝⎛⎭⎫4,-12C .⎝⎛⎭⎫-1,-32 D .(8,1)(3)若A ,B ,C 三点的坐标分别为(2,-4),(0,6),(-8,10),求AB →+2BC →,BC →-12AC →的坐标.[思路探究] (1)可利用向量加法的三角形法则将DA →分解为DC →+CB →+BA →来求解. (2)可借助AB →=OB →-OA →来求12AB →坐标.(3)可利用AB →=(x B -x A ,y B -y A )来求解. (1)B (2)A [(1)DA →=DC →+CB →+BA →=-CD →-BC →-AB → =-(-1,4)-(m ,n )-(2,3) =(-1-m ,-7-n ). (2)12A B →=12(OB →-OA →) =12[](-5,-1)-(3,-2) =12(-8,1)=⎝⎛⎭⎫-4,12,∴12AB →=⎝⎛⎭⎫-4,12.] (3)[解] ∵AB →=(-2,10),BC →=(-8,4),AC →=(-10,14), ∴AB →+2BC →=(-2,10)+2(-8,4) =(-2,10)+(-16,8)=(-18,18), BC →-12AC →=(-8,4)-12(-10,14)=(-8,4)-(-5,7) =(-3,-3).平面向量坐标的线性运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.[跟进训练]2.已知a =(-1,2),b =(2,1),求:(1)2a +3b ;(2)a -3b ; (3)12a -13b . [解] (1)2a +3b =2(-1,2)+3(2,1) =(-2,4)+(6,3)=(4,7).(2)a -3b =(-1,2)-3(2,1)=(-1,2)-(6,3) =(-7,-1).(3)12a -13b =12(-1,2)-13(2,1) =⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23. 类型3 向量坐标运算的综合应用1.已知点O (0,0),A (1,2),B (4,5),及OP →=OA →+tAB →.当t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限?[提示] ∵OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t,2+3t ). 若点P 在x 轴上,则2+3t =0,∴t =-23.若点P 在y 轴上,则1+3t =0,∴t =-13.若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0,∴-23<t <-13.2.如果尝试发现1条件不变,四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.[提示] ∵OA →=(1,2),PB →=(3-3t,3-3t ), 若四边形OABP 为平行四边形,则OA →=PB →,∴⎩⎪⎨⎪⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.3.已知在非平行四边形ABCD 中,AB ∥DC ,且A ,B ,D 三点的坐标分别为(0,0),(2,0),(1,1),则顶点C 的横坐标的取值范围是什么?[提示] 当ABCD 为平行四边形时,则AC →=AB →+AD →=(2,0)+(1,1)=(3,1),故满足条件的顶点C 的横坐标的取值范围是(1,3)∪(3,+∞).【例3】 (1)已知点A (2,3),B (5,4),C (7,10).若A P →=A B →+λA C →(λ∈R ),试求λ为何值时,①点P 在一、三象限角平分线上? ②点P 在第三象限内?(2)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),求λ的值.[思路探究] (1)先用λ表示点P 的横、纵坐标,再根据条件列方程或不等式求解.(2)根据向量坐标的条件关系求出参数.[解] (1)设点P 的坐标为(x ,y ), 则A P →=(x ,y )-(2,3)=(x -2,y -3), A B →+λA C →=[(5,4)-(2,3)]+λ[(7,10)-(2,3)] =(3,1)+λ(5,7)=(3+5λ,1+7λ). ∵A P →=A B →+λA C →,∴⎩⎪⎨⎪⎧ x -2=3+5λ,y -3=1+7λ,则⎩⎪⎨⎪⎧x =5+5λ,y =4+7λ. ①若P 在一、三象限角平分线上, 则5+5λ=4+7λ,∴λ=12,即λ=12时,点P 在一、三象限角平分线上.②若点P 在第三象限内,则⎩⎪⎨⎪⎧5+5λ<0,4+7λ<0,∴λ<-1.即λ<-1时,点P 在第三象限内.(2)a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2), 由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0, 解得λ=12.1.待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,此方法是待定系数法的基本形式,也是方程思想的一种基本应用.2.坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量.由此可建立相等关系求某些参数的值.[跟进训练]3.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?[解] 由已知得,k a +b =(k -3,2k +2),a -3b =(10,-4),∵k a +b 与a -3b 平行,∴(k -3)×(-4)-10(2k +2)=0,解得k =-13.此时k a +b =⎝⎛⎭⎫-13-3,-23+2=⎝⎛⎭⎫-103,43=-13(a -3b ),∴当k =-13时,k a +b 与a -3b 平行,并且反向.1.若a =(2,1),b =(1,0),则3a -2b 的坐标是( ) A .(5,3) B .(4,3) C .(8,3) D .(0,-1) B [3a -2b =3(2,1)-2(1,0)=(4,3).]2.下列各组向量中,不能作为表示平面内所有向量基底的一组是( ) A .a =(-2,4),b =(0,3) B .a =(2,3),b =(3,2) C .a =(2,-1),b =(3,7) D .a =(4,-2),b =(-8,4)D [对于D 选项,b =-2a ,即a ∥b ,故a 与b 不能作为平面内所有向量的一组基底.] 3.如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),那么AB →可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +jC [记O 为坐标原点,则OA →=2i +3j ,OB →=4i +2j ,所以AB →=OB →-OA →=2i -j .] 4.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为________.⎝⎛⎭⎫35,-45 [AB →=(3,-4),则与AB →同方向的单位向量为AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45.]5.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则x =________. 12[因为a =(1,2),b =(x,1), u =a +2b =(1,2)+2(x,1)=(2x +1,4), v =2a -b =2(1,2)-(x,1)=(2-x,3). 又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 解得x =12.]回顾本节内容,自我完成以下问题:1.向量的终点的坐标与此向量的坐标完全相同吗?[提示] 向量的坐标和这个向量终点的坐标不一定相同,当且仅当向量的起点是原点时,向量的坐标和这个向量的终点坐标才相同.2.平面直角坐标系内两点之间的距离公式与中点坐标公式,对平面内的任意两点都成立吗?[提示] 都成立.3.用向量的坐标运算判断向量共线要注意什么问题?[提示] 设a =(x 1,y 1),b =(x 2,y 2),当证明a ∥b 时,可利用x 2y 1=x 1y 2进行证明,此种方法没有a ≠0的条件限制,便于应用;也可用x 2x 1=y 2y 1进行证明,即两向量的对应坐标成比例,特别注意x 1y 1≠0的条件限制.。
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
平面向量基本定理学案
平面向量基本定理预习学案一、学习目标1、 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题。
2、 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法。
二、学习重点、难点重点:平面向量基本定理的应用 难点:对平面向量基本定理的理解 三、问题探究1、 当基底确定后,平面内任一向量的表示是唯一的,为什么?2、 同一非零向量在不同基底下的分解式相同吗?四、知识梳理1、 平面向量基本定理:2、 我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为2211e a e a +叫做3、 已知A ,B 是直线l 上任意两点,O 是l 外一点,则对于直线l 上任一点P ,存在实数t ,使关于基底的分解式为=OP ,这个等式叫做直线的向量参数方程式。
课堂效果自测有向量的基底的是()所在平面上表示其他所行四边形向量组中可作为这个平两对角线的交点,下列是平行四边形设点ABCD O .1①AB AD 与 ②BC DA 与 ③DC CA 与 ④OB OD 与 A.①② B.①③ C.①④ D.③④2.如图,D,E,F 是三角形ABC 的边BC,CA,AB 的中点,且b CA a BC 2,2==,在给出的下列四个等式中,正确的是( )①b a AD 2+=②b a BE +=2 ③a b BF += ④CA BC AB CF BE AD ++=++A. ①②B. ①③C. ②③④D. ①②③④3.在平行四边形ABCD 中,NC AN b AD a AB 3,,===,点M 为BC 中点,则MN ={}NPMP MN b a b AC a AB AB AP CA CN BC BM AB CA BC ABC P V M ,,,,41,41,41,,,,.4基底下的分解式:,试写出下列向量在此,选择基底,如果上的点,且三边分别是三角形如图,已知=====A BCDE F AP NCMB平面向量基本定理讲授学案一、知识回顾:1.向量的平行四边形法则2.平行向量基本定理 二、知识讲解引例:如教材中图2-34,设1e ,2e 是两个不平行的向量,用向量1e ,2e 表示图中向量?平面向量基本定理如果1e ,2e 是一平面内的两个 的向量,那么该平面内的 向量a ,存在 的一对实数21,a a 使a = .把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组 . 反思小结三、例题分析例1?M MD MC MB MA b a b AD a AB ABCD 、、、表示、,用 ,且,的两条对角线相交于点如图所示,平行四边形== C.,,,,,AD AB d c d AN c AM BC DC N M ABCD 表示,试用已知的中点分别是中,拓展:在平行四边形==MC NBA D小结:例2四、课堂小结五、课后作业1. 课后练习A 1、22. 预习向量的正交分解与向量的直角坐标运算{}.)1(:,.上一定在并且,满足上式的点的分解式为,使关于基底,存在实数上任一点求证:对直线外一点是上任意两点,点是直线,已知:l P OB t OA t OP OB OA t P l l O l B A +-= ABOP1.1.0.1.(),),,(,,=+=-=+-=++=n m D n m C n m B n m A n m c b a c b a b n a m c 需满足的条件是,有公共的起点设终点在一条直线上要使的拓展:已知。
平面向量的数量积学案
平面向量的数量积学案一、学案背景平面向量的数量积是数学中的一个重要概念,通过数量积可以研究向量之间的夹角关系、向量的投影以及向量的模长等问题。
掌握了平面向量的数量积的性质和应用,可以帮助我们更好地理解和解决实际问题。
二、学习目标1. 了解平面向量的数量积的定义。
2. 掌握平面向量的数量积的计算方法和性质。
3. 理解平面向量的数量积与向量的夹角、投影和模长之间的关系。
4. 能够应用平面向量的数量积解决实际问题。
三、学习内容1. 平面向量的数量积的定义:平面向量a = (x1, y1) 和 b = (x2, y2) 的数量积(又称点积、内积)定义为 a · b = x1 * x2 + y1 * y2。
2. 平面向量的数量积的性质:a. a · b = b · a(数量积的交换律)。
b. a · (b + c) = a · b + a · c(数量积的分配律)。
c. k(a · b) = (ka) · b = a · (kb) = k(a · b)(数量积的结合律,其中k为实数)。
3. 平面向量的数量积与向量的夹角的关系:a. 如果 a · b = 0,则向量a和b垂直(夹角为90°)。
b. 如果 a · b > 0,则向量a和b夹角锐角。
c. 如果 a · b < 0,则向量a和b夹角钝角。
4. 平面向量的数量积与向量的投影的关系:a. 向量a在向量b上的投影p的长度为 |p| = |a| * cosθ,其中θ为a和b的夹角。
b. a · b = |a| * |b| * cosθ。
5. 平面向量的数量积与向量的模长的关系:a. a · a = |a|^2,其中|a|表示向量a的模长。
b. |a| = √(a · a)。
四、学习方法1. 技巧讲解与练习:通过教师的讲解,学习平面向量的数量积的定义、计算方法和性质。
平面向量的概念及线性运算(优秀导学案)
§5.1平面向量的概念及线性运算考试要求 1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法a-b=a+(-b)数乘|λa|=|λ||a|,当λ>0时,λa的方向与a的方向相同;λ(μa)=(λμ)a;当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0(λ+μ)a =λa +μa ; λ(a +b )=λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa . 常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12(OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则P A →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1. 5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)|a |与|b |是否相等,与a ,b 的方向无关.( √ ) (2)若向量a 与b 同向,且|a |>|b |,则a >b .( × )(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (4)起点不同,但方向相同且模相等的向量是相等向量.( √ ) 教材改编题1.(多选)下列命题中,正确的是( ) A .若a 与b 都是单位向量,则a =b B .直角坐标平面上的x 轴、y 轴都是向量C .若用有向线段表示的向量AM →与AN →不相等,则点M 与N 不重合 D .海拔、温度、角度都不是向量 答案 CD解析 A 错误,由于单位向量长度相等,但是方向不确定;B 错误,由于只有方向,没有大小,故x 轴、y 轴不是向量;C 正确,由于向量起点相同,但长度不相等,所以终点不同;D正确,海拔、温度、角度只有大小,没有方向,故不是向量.2.下列各式化简结果正确的是( ) A.AB →+AC →=BC →B.AM →+MB →+BO →+OM →=AM →C.AB →+BC →-AC →=0D.AB →-AD →-DC →=BC → 答案 B3.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由题意知存在k ∈R , 使得a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎨⎧k =13,λ=-13.题型一 向量的基本概念例1 (1)(多选)给出下列命题,不正确的有( ) A .若两个向量相等,则它们的起点相同,终点相同B .若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形 C .a =b 的充要条件是|a |=|b |且a ∥bD .已知λ,μ为实数,若λa =μb ,则a 与b 共线 答案 ACD解析 A 错误,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. (2)如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →答案 D 教师备选(多选)下列命题为真命题的是( )A .若a 与b 为非零向量,且a ∥b ,则a +b 必与a 或b 平行B .若e 为单位向量,且a ∥e ,则a =|a |eC .两个非零向量a ,b ,若|a -b |=|a |+|b |,则a 与b 共线且反向D .“两个向量平行”是“这两个向量相等”的必要不充分条件 答案 ACD思维升华 平行向量有关概念的四个关注点 (1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量. (4)a|a |是与a 同方向的单位向量. 跟踪训练1 (1)(多选)下列命题正确的是( ) A .零向量是唯一没有方向的向量 B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a =b ,b =c ,则a =c 答案 BCD解析 A 项,零向量是有方向的,其方向是任意的,故A 错误; B 项,由零向量的定义知,零向量的长度为0,故B 正确;C 项,因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 是反向共线时才成立,故C 正确;D 项,由向量相等的定义知D 正确.(2)对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a +b =0,则a =-b ,则a ∥b ,即充分性成立;若a ∥b ,则a =-b 不一定成立,即必要性不成立, 即“a +b =0”是“a ∥b ”的充分不必要条件. 题型二 平面向量的线性运算 命题点1 向量加、减法的几何意义例2 (2022·济南模拟)已知单位向量e 1,e 2,…,e 2 023,则|e 1+e 2+…+e 2 023|的最大值是________,最小值是________. 答案 2 023 0解析 当单位向量e 1,e 2,…,e 2 023方向相同时, |e 1+e 2+…+e 2 023|取得最大值,|e 1+e 2+…+e 2 023|=|e 1|+|e 2|+…+|e 2 023|=2 023; 当单位向量e 1,e 2,…,e 2 023首尾相连时, e 1+e 2+…+e 2 023=0,所以|e 1+e 2+…+e 2 023|的最小值为0. 命题点2 向量的线性运算例3 (多选)如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD ,E 是BC 边上一点,且BC →=3EC →,F 是AE 的中点,则下列关系式正确的是( )A.BC →=-12AB →+AD →B.AF →=13AB →+13AD →C.BF →=-13AB →+23AD →D.CF →=-16AB →-23AD →答案 ABD解析 因为BC →=BA →+AD →+DC →=-AB →+AD →+12AB →=-12AB →+AD →,所以选项A 正确; 因为AF →=12AE →=12(AB →+BE →)=12⎝⎛⎭⎫AB →+23BC →, 而BC →=-12AB →+AD →,代入可得AF →=13AB →+13AD →,所以选项B 正确; 因为BF →=AF →-AB →, 而AF →=13AB →+13AD →,代入得BF →=-23AB →+13AD →,所以选项C 不正确; 因为CF →=CD →+DA →+AF →=-12AB →-AD →+AF →,而AF →=13AB →+13AD →,代入得CF →=-16AB →-23AD →,所以选项D 正确.命题点3 根据向量线性运算求参数例4 (2022·青岛模拟)已知平面四边形ABCD 满足AD →=14BC →,平面内点E 满足BE →=3CE →,CD与AE 交于点M ,若BM →=xAB →+yAD →,则x +y 等于( ) A.52 B .-52C.43 D .-43答案 C解析 如图所示,易知BC =4AD , CE =2AD , BM →=AM →-AB → =13AE →-AB → =13(AB →+BE →)-AB → =13(AB →+6AD →)-AB → =-23AB →+2AD →,∴x +y =43.教师备选1.(2022·太原模拟)在△ABC 中,AD 为BC 边上的中线,若点O 满足AO →=2OD →,则OC →等于( ) A.-13AB →+23AC →B.23AB →-13AC →C.13AB →-23AC →D.-23AB →+13AC →答案 A解析 如图所示,∵D 为BC 的中点, ∴AD →=12(AB →+AC →),∵AO →=2OD →,∴AO →=23AD →=13AB →+13AC →,∴OC →=AC →-AO →=AC →-⎝⎛⎭⎫13AB →+13AC → =-13AB →+23AC →.2.(2022·长春调研)在△ABC 中,延长BC 至点M 使得BC =2CM ,连接AM ,点N 为AM 上一点且AN →=13AM →,若AN →=λAB →+μAC →,则λ+μ等于( )A.13B.12 C .-12D .-13答案 A解析 由题意,知AN →=13AM →=13(AB →+BM →)=13AB →+13×32BC →=13AB →+12(AC →-AB →) =-16AB →+12AC →,又AN →=λAB →+μAC →,所以λ=-16,μ=12,则λ+μ=13.思维升华 平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义. (2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练2 (1)点G 为△ABC 的重心,设BG →=a ,GC →=b ,则AB →等于( ) A .b -2a B.32a -12b C.32a +12b D .2a +b答案 A解析 如图所示,由题意可知 12AB →+BG →=12GC →, 故AB →=GC →-2BG →=b -2a .(2)(2022·大连模拟)在△ABC 中,AD →=2DB →,AE →=2EC →,P 为线段DE 上的动点,若AP →=λAB →+μAC →,λ,μ∈R ,则λ+μ等于( ) A .1 B.23 C.32 D .2答案 B解析 如图所示,由题意知, AE →=23AC →,AD →=23AB →,设DP →=xDE →,所以AP →=AD →+DP →=AD →+xDE → =AD →+x (AE →-AD →) =xAE →+(1-x )AD → =23xAC →+23(1-x )AB →, 所以μ=23x ,λ=23(1-x ),所以λ+μ=23x +23(1-x )=23.题型三 共线定理及其应用 例5 设两向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线, 又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1. 教师备选1.已知P 是△ABC 所在平面内一点,且满足P A →+PB →+PC →=2AB →,若S △ABC =6,则△P AB 的面积为( ) A .2 B .3 C .4 D .8答案 A解析 ∵P A →+PB →+PC →=2AB →=2(PB →-P A →), ∴3P A →=PB →-PC →=CB →, ∴P A →∥CB →,且两向量方向相同,∴S △ABC S △P AB =BC AP =|CB →||P A →|=3, 又S △ABC =6,∴S △P AB =63=2.2.设两个非零向量a 与b 不共线,若a 与b 的起点相同,且a ,t b ,13(a +b )的终点在同一条直线上,则实数t 的值为________. 答案 12解析 ∵a ,t b ,13(a +b )的终点在同一条直线上,且a 与b 的起点相同,∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝⎛⎭⎫23a -13b , 又a ,b 为两个不共线的非零向量,∴⎩⎨⎧ 1=23λ,t =13λ,解得⎩⎨⎧λ=32,t =12.思维升华 利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据. (2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.跟踪训练3 (1)若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k 等于( ) A .-1 B .1 C.32 D .2答案 B解析 由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,故存在实数λ, 使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.(2)如图,已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案 B解析 因为线段CO 与线段AB 交于点D , 所以O ,C ,D 三点共线, 所以OC →与OD →共线, 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 可得OD →=λm OA →+μm OB →,因为A ,B ,D 三点共线, 所以λm +μm =1,可得λ+μ=m >1,所以λ+μ的取值范围是(1,+∞).课时精练1.(多选)下列选项中的式子,结果为零向量的是( ) A.AB →+BC →+CA → B.AB →+MB →+BO →+OM → C.OA →+OB →+BO →+CO → D.AB →-AC →+BD →-CD → 答案 AD解析 利用向量运算,易知A ,D 中的式子结果为零向量. 2.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B 解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件. 3.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是( ) A .a ∥b B .a +b =a C .a +b =b D .|a +b |=|a |+|b |答案 B解析 由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b 成立,所以A 正确;由a +b =b ,所以B 不正确,C 正确;由|a +b |=|b |,|a |+|b |=|b |, 所以|a +b |=|a |+|b |,所以D 正确.4.(2022·汕头模拟)下列命题中正确的是( ) A .若a ∥b ,则存在唯一的实数λ使得a =λb B .若a ∥b ,b ∥c ,则a ∥cC .若a·b =0,则a =0或b =0D .|a |-|b |≤|a +b |≤|a |+|b | 答案 D解析 若a ∥b ,且b =0,则可有无数个实数λ使得a =λb ,故A 错误; 若a ∥b ,b ∥c (b ≠0),则a ∥c ,若b =0, 则a ,c 不一定平行,故B 错误; 若a·b =0,也可以为a ⊥b ,故C 错误;根据向量加法的三角形法则和向量减法的几何意义知, |a |-|b |≤|a +b |≤|a |+|b |成立,故D 正确.5.在平行四边形ABCD 中,AC →与BD →交于点O ,E 是线段OD 的中点.若AC →=a ,BD →=b ,则AE →等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b 答案 C解析 如图所示,∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12a +12b , ∴AE →=AD →-ED →=12a +12b -14b =12a +14b .6.下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .向量a 与b 平行,则a 与b 的方向相同或相反D .向量的模是一个正实数 答案 A解析 A 项,AB →与BA →的长度相等,方向相反,正确;B 项,两个有共同起点且长度相等的向量,若方向也相同,则它们的终点相同,故错误;C 项,向量a 与b 平行时,若a 或b 为零向量,不满足条件,故错误;D 项,向量的模是一个非负实数,故错误.7.如图,在平行四边形ABCD 中,E 为BC 的中点,F 为DE 的中点,若AF →=xAB →+34AD →,则x 等于( )A.34B.23C.12D.14答案 C解析 连接AE (图略),因为F 为DE 的中点, 所以AF →=12(AD →+AE →),而AE →=AB →+BE →=AB →+12BC →=AB →+12AD →,所以AF →=12(AD →+AE →)=12⎝⎛⎭⎫AD →+AB →+12AD → =12AB →+34AD →, 又AF →=xAB →+34AD →,所以x =12.8.(多选)已知4AB →-3AD →=AC →,则下列结论正确的是( ) A .A ,B ,C ,D 四点共线 B .C ,B ,D 三点共线 C .|AC →|=|DB →| D .|BC →|=3|DB →|答案 BD解析 因为4AB →-3AD →=AC →, 所以3AB →-3AD →=AC →-AB →, 所以3DB →=BC →,因为DB →,BC →有公共端点B ,所以C ,B ,D 三点共线,且|BC →|=3|DB →|, 所以B ,D 正确,A 错误; 由4AB →-3AD →=AC →,得AC →=3AB →-3AD →+AB →=3DB →+AB →, 所以|AC →|≠|DB →|,所以C 错误.9.(2022·太原模拟)已知不共线向量a ,b ,AB →=t a -b (t ∈R ),AC →=2a +3b ,若A ,B ,C 三点共线,则实数t =__________. 答案 -23解析 因为A ,B ,C 三点共线,所以存在实数k ,使得AB →=kAC →, 所以t a -b =k (2a +3b )=2k a +3k b , 即(t -2k )a =(3k +1)b .因为a ,b 不共线,所以⎩⎪⎨⎪⎧t -2k =0,3k +1=0,解得⎩⎨⎧k =-13,t =-23.10.已知△ABC 的重心为G ,经过点G 的直线交AB 于D ,交AC 于E ,若AD →=λAB →,AE →=μAC →,则1λ+1μ=________. 答案 3解析 如图,设F 为BC 的中点,则AG →=23AF →=13(AB →+AC →),又AB →=1λAD →,AC →=1μAE →,∴AG →=13λAD →+13μAE →,又G ,D ,E 三点共线, ∴13λ+13μ=1,即1λ+1μ=3. 11.若正六边形ABCDEF 的边长为2,中心为O ,则|EB →+OD →+CA →|=________. 答案 2 3解析 正六边形ABCDEF 中,EB →+OD →+CA →=EO →+DC →+OD →+CA →=ED →+DA →=EA →, 在△AEF 中,∠AFE =120°,AF =EF =2, ∴|EA →|=22+22-2×2×2×cos 120°=23,即|EB →+OD →+CA →|=2 3.12.在平行四边形ABCD 中,点M 为BC 边的中点,AC →=λAM →+μBD →,则λ+μ=________. 答案 53解析 AC →=λ⎝⎛⎭⎫AB →+12AD →+μ(AD →-AB →) =(λ-μ)AB →+⎝⎛⎭⎫λ2+μAD →, 又因为AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,λ2+μ=1,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.13.(多选)点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 不可能是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 AD解析 因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2P A →|=0, 所以|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AB →+AC →|, 所以|AB →-AC →|=|AC →+AB →|, 等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.14.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD →=14AC →+λAB →(λ∈R ),则λ=________,AD 的长为________. 答案 343 3解析 ∵B ,D ,C 三点共线, ∴14+λ=1,解得λ=34. 如图,过D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N , 则AN →=14AC →,AM →=34AB →,∵在△ABC 中,∠A =60°,∠A 的平分线交BC 于D , ∴四边形AMDN 是菱形,∵AB =4,∴AN =AM =3, ∴AD =3 3.15.(2022·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为( ) A. 3 B .2 3 C .3 3 D .4 3答案 B解析 设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →. 由AB →+PB →+PC →=0, 得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点, 所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点, 又D 为BC 的中点,所以四边形CPBM 为平行四边形. 又|AB →|=|PB →|=|PC →|=2, 所以|MC →|=|BP →|=2,则|AC →|=4, 且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°, 则S △ABC =12×2×4×32=2 3.16.若2OA →+OB →+3OC →=0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC ∶S △ABC =________. 答案 1∶6解析 若2OA →+OB →+3OC →=0, 设OA ′——→=2OA →,OC ′——→=3OC →, 可得O 为△A ′BC ′的重心,如图,设S △AOB =x ,S △BOC =y ,S △AOC =z , 则S △A ′OB =2x ,S △BOC ′=3y ,S △A ′OC ′=6z , 由2x =3y =6z ,可得S △AOC ∶S △ABC =z ∶(x +y +z )=1∶6.。
平面向量基本定理学案
必修4 2.3.1 平面向量基本定理【学习目标】1.能举例说明平面向量基本定理,能理解平面里的任何一个向量都可以用两个不共线的向量来表示;2.能够在具体问题中适当地选取基底,使其它向量都能够用该基底来表达;3.通过实际作图体会平面向量基底的不唯一性,体会数学中辩证唯物主义思想,初步 掌握应用向量解决实际问题的重要思想方法;【学习重点】平面向量基本定理.【难点提示】平面向量基本定理的理解与灵活运用.【学法提示】1.请同学们课前将学案与教材9394P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一、学习准备前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白或横线处,同时思考下列问题: 1.向量的数乘的定义及其规定 、 、 、 ;2.向量数乘的运算律 、 、 ;3.平行向量与共线向量的区别与联系 ;4.向量共线定理 ;5.如图已知两个不共线的单位向量a 、b ,请作出向量 2a 、3b 、23a b +、2a b -,感悟向量a 、b 、23a b +、2a b -有怎样的关系?它们在同一平面吗?6.在初中,“角”的概念是 ,ab 图2.3.1-1两条直线间有角相关的概念吗?那么,我们现在研究的向量中任意两个向量之间有角度的问题吗?以上5、6提出的问题就是本节课我们要探究的问题!二、学习探究 1.平面向量基本定理●思考阅读 请同学们对“学习准备”中的问题5进行发挥发散思维,大胆探究: 若向量C 是向量a 、b 所在平面中的任意一个向量,则向量C 能表示为C a b λμ=+,其中λμ、是待定的实数?若能,请作图与解释!继续探究:若将“学习准备”中的单位向量等换成向量 21,e e 和a ,其中21,e e 是同一平面内的两个任意不共线向量, a 是同一平面的任意向量(如图2.3.1-2),那么我们可否用 21,e e 这两个向量将a 表示出来?即:12(,)a e e R λμλη=+∈若能,请作图验证、或用相关知识阐述你判定的正确性!若不能,也请说明理由.请同学们深入思考或展开讨论上面提出的问题,或阅读教材P93-94页再归纳结论. 归纳概括 平面向量基本定理:如果21,e e 是同一平面内的两个____________向量,那么对于这一平面内的任一向量a ,___________一对实数λ1,λ2使_______ _____.我们把不共线向量21,e e 叫做表示这一平面内所有向量的一组_________.快乐体验 1.给出下面三种说法,其中正确的说法是( )(1)一个平面内只有一对不共线的非零向量可作为表示该平面所有向量的基底;(2)一个平面内有无数多对不共线非零向量可作为表示该平面所有向量的基底;(3)零向量是不可作为基底的向量.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)2.已知21,e e 是表示平面内所有向量的一组基底,那么下面四组向量中不能作为一组基底的是( ) A.1e 和1e +2e ; B.1e -22e 和2e -21e ;C.1e -22e 和42e -21e ;D.1e +2e 和1e -2e .同学们通过探究与体验后,对向量共线条件有哪些感悟,能对此进行挖掘拓展吗? 挖掘拓展 (1)你能用几种语言来描述平面向量基本定理?为什么叫“基本定理”?(2)“基本定理”的本质是什么?生活中有现实意义吗?(3)该定理中有没有“关键词”?有没有容易混淆与出错的地方?(链接1)(4)你怎样理解“基底”这个概念、及概念中的“所有向量”? (5)一平面内平面向量的基底是否只有一对?平面向量基底21,e e是任意不共线的两个 向量?还是只能是预先指定的不变的两个不共线向量?基底21,e e 向量除有不共线的要求,还与它们的位置有无关系呢?(6)若基底选取不同,则表示同一向量的实数λ1,λ2 是否相同? (7)若a =0,则21,λλ分别等于多少时,可使22110e e λλ+=?2.向量的夹角 在“学习准备”的6问中提到“角”、以及两直线的角的相关问题.从前图2.3.1-2面的学习中我们不难想到,在向量中,任意两个向量除了共线与不共线的问题、模的大小问题,向量还有一个重要元素就是“方向”,既然有方向,两者之间就有角度的问题,特别是不共线向量的位置关系更需要角度来刻画.请同学们在同一平面中任作一些向量进行观察,并思考看如何定义向量之间的夹角呢?范围确定在什么范围最恰当?请同学们深入思考或展开讨论这里提出的问题,或阅读教材P94页再归纳结论. 归纳概括 已知两个 向量a 和b ,如图2.3.1-3,作OA a =,OB b =,则(0180)AOB θθ∠=≤≤叫做向量a 和b 的夹角.挖掘拓展 1.概念中,为什么要指明是两个“非零向量”? 2.为什么要将两个向量的夹角限制为0180θ≤≤? 3.三个重要的特殊位置,即:两个非零向量a 和b 同向、反向、垂直时的夹角分别为 、 、 .(链接2)三、典例赏析 例1. 如图2.3.1-4,已知向量21,e e ,求作向量-2.51e +32e .(本例是教材P94页例1,请同学们先独立完成后在看教材的解答.解:解后反思 该题的题型怎样?你的作法与教材一致吗?还有其它作法吗? 变式练习例 2. 如图2.3.1-5三角形ABC 中,若D ,E ,F 依次是则以1,CB e =2CA e =为基底时,用21,e e 表示 解:解后反思 该题题型怎样?求解时运用了哪些知识与思想方法?求解的关键点、难点在哪里?有易错点吗?变式练习 如图2.3.1-6,已知OA 和OB 是不共线向量,()R t AB t AP ∈=,试用OA 和OB 表示OP .解:四、学习反思 1.本节课我们学习了哪些数学知识、数学思想方法,你提问了吗?我们的学习目标达到了吗?如:平面向量基本定理是什么?能够成为平面内一组基底的两向量有怎样的要求?向量夹角的概念是怎样的?都理解与掌握了吗? 图1e 图2.3.1-42.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?五、学习评价 1.已知向量212e e a -= ,212e e b +=,其中21,e e 不共线,则b a +与2126e e c -= 的关系 ( )A .不共线B .共线C .相等D .无法确定2.已知向量21,e e 不共线,实数x 、y 满足(3x-4y) 1e +(2x-3y) 2e =2136e e +,则x-y 的值等于( )A .3B .-3C .0D .23.若21,e e是平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的是( )A .122e e -和122e e + ;B .1e 与23e ;C .1223e e +和1246e e -- ;D .12e e +与1e . 4.已知b a ,不共线,且b a c 21λλ+= (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,21,e e 是一组基底,且2211e e a λλ+=,则a 与1e _____,a 与2e _________(填共线或不共线). 6.若21,e e 是平面内所有向量的一组基底,那么下列结论成立的是 ( )A .若实数21,λλ使02211 =+e e λλ,则021==λλB .空间任意向量都可以表示为2211e e a λλ+=,其中21,λλ∈RC .2211e e λλ+21,λλ∈R 不一定表示平面内一个向量D .对于这一平面内的任一向量a ,使2211e e a λλ+=的实数对21,λλ有无数对 7.设21,e e 是平面 的一组基底,如果 121232,4,AB e e BC e e CD =-=+=1289e e -,求证:A 、B 、D 三点共线证明:8.如图2.3.1-7,M 是ABC ∆内一点,且满足条件 230AM BM CM ++=,延长CM 交AB 与N ,令CM a =, 使用a 表示CN . 解:【学习链接】链接1.该定理中有几处关键词,如:“不共线向量”、“任意向量”、“有且只有”、“所有向量”等,同时这些也是易错点、易混点;链接2.学习向量夹角有何作用以及如何判定两个非零向量垂直?等,在后面的学习中会回答这些问题!图2.3.1-7 NBC A M。
平面向量 高一学案3
(七)向量的坐标表示与坐标运算 【知识回顾】1、复习向量相等的概念OA =BC2.平面向量的基本定理(基底) a=λ11e +λ22e其实质:同一平面内任一向量都可以表示为两个不共线向量的线性组合。
【新知探究】(1)平面向量的坐标表示1.在坐标系下,平面上任何一点都可用一对实数(坐标)来表示取x 轴、y 轴上两个单位向量, 作基底,则平面内作一向量a=x +y ,记作:a =(x, y) 称作向量a的坐标如:a=OA =(2, 2) i =(1, 0)b==(2, -1) =(0, 1)==(1, -5) =(0, 0)2.注意:1︒每一平面向量的坐标表示是唯一的; 2︒设A(x 1, y 1) B(x 2, y 2) 则AB =(x 2-x 1, y 2-y 1) 3︒两个向量相等等价于两个向量坐标相等。
(2)平面向量的坐标运算 ①已知a (x 1, y 1) b (x 2, y 2) 求a +b ,a -b的坐标 ②已知a (x, y)和实数λ, 求λa的坐标解:a +b=(x 1i +y 1)+( x 2i +y 2)=(x 1+ x 2) i + (y 1+y 2)即:a +b=(x 1+ x 2, y 1+y 2) 同理:a -b=(x 1- x 2, y 1-y 2)OaBC A xyOB CAx y a b c3.结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
用减法法则:∵=-=( x 2, y 2) - (x 1, y 1)= (x 2- x 1, y 2- y 1)4.实数与向量积的坐标运算:已知a=(x, y) 实数λ 则λa=λ(x +y )=λx +λy∴λa=(λx, λy )结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
例1、已知b a b a b a b a 43,,),4,3(),1,2(+-+-==求的坐标。
高三数学一轮复习平面向量复习教案和学案
1、向量的概念及运算 一、考纲要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义;二、知识梳理:1.向量的概念①向量既有大小又有方向的量。
向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB .几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的大小即向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行.零向量a =0 ⇔|a|=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量长度相等且方向相同的向量.相等向量经过平移后总可以重合,记为b a =。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。
平面向量基本定理学案(学生版)
高一数学必修四
新授学案
使用时间:
编号:05
学科组长审核:
学校领导审核:
班级:
小组:
姓名:
《平面向量的基本定理》学案
【学法指导】 1.认真阅读学习目标,明确学习目标。
(3)夹角:已知两个
a 和 b ,作 OA a , OB b ,则 AOB 叫做向量
A、 e1 —2 e 2 和 e1 +2 e 2 B 、 e1 与 3 e 2 C、2 e1 +3 e 2 和 - 4 e1 —6 e 2 D、 e1 + e 2 与 e1 2.在矩形 ABCD 中,O 为对角线交点, BC = 5e1 , DC = 3e 2 ,则 OC 等于 ( )
)
ቤተ መጻሕፍቲ ባይዱ
1 2 1 C. (3e 2 5e1) 2
A. a
B.-4 b
C. c
D. a b
e2
装
课本 P92 第 11 题(画图解答)
讨论二 :如图 ABCD 的两条对角线交于点 M,且 AB = a , AD = b ,用 a ,b 表示 MA , MB ,
订
2.知识预学 .如果 e1 , e 2 是一平面内的两个 存在 的一对实数 a1 , a 2 使 a = 的向量,那么该平面内的 向量 a ,
,则称 a 与 b 垂直,记作
。
【小组讨论】
订
【学习目标】 1.了解平面向量基本定理及其意义。 2.了解两个平面向量夹角和垂直概念。 【固学预学】
讨论一 :已知向量 e1 , e 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y
o A
B 2.3.3 平面向量的坐标运算学案 2.3.4平面向量共线的坐标表示学案
2. 掌握两个平面向量共线的条件及坐标
课前准备:(预习教材P 96~ P 100,找出疑惑之处) ※ 预习探究 探究任务:
1.已知),(),,(2211y x b y x a ==,你能得出a b a b a λ,,-+的坐标吗?
结论:(1)已知向量),(),,(2211y x b y x a ==和实数λ,那么
=
+;=-;
这就是:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差) (2)=a λ。
这就是:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
2.如图,已知),(),,(2211y x B y x A ,求的坐标。
你能在图中标出坐标为),(1212y y x x --的P 点吗?
结论:已知),(),,(2211y x B y x A ,则=-=,
即一个向量的坐标等于表示此向量的 有向线段的__________的坐标减去__________的坐标.
3.如何用坐标表示两个共线向量?如:),(),,(2211y x y x ==,若a 与b 共线,它们的坐标满足什么条件? 结论:
若),(),,(2211y x b y x a ==,0≠b ,则a ∥b 当且仅当____________________.
※ 预习检测 1.),(),,(222111y x P y x P 则21P P 的中点P 的坐标为________________________. 2.已知)4,3(),1,2(-==b a ,则=
+b a ;=
-b a ;=
+b a 43
3.已知)6(),24(y b a ,,
==,∥,则=y 。
4.已知)35(),31(),40(),12(-,,,,D C B A ,判断与CD 是否共线?如果共线,它们的方向相同还是相反?
※ 典型例题
例1 如
图,已知平行四边形ABCD 的三个顶点)43(),31(),12(,,,C B A --,求顶点D 的坐标。
反馈训练:
1.已知)43(),13(),42(----,,,C B A 且CM →=3CA →,CN →=2CB →,试求点M ,N 和MN →
的坐标.
例2 已知
)5,2(),3,1(),11(C B A -,-,试判断C B A ,,三点的位置关系。
例3
设点P 是线段
21P P 上的一点,已知)
()(5,2,4,321P P -, (1)当点P 是线段21P P 上的中点时,求点P 的坐标; (2)当点P 是线段21P P 的一个三等分点时,求点P 的坐标。
反馈训练:
2.已知点)00(,O ,向量)32(,=OA ,)36(-=,OB , (1) 点P 是线段AB 的中点,求点P 的坐标;
(2)点P 是线段AB 的三等分点,求点P 的坐标;
例
4
)2,3(),2,1(-==,当k 为何值时,
k +与3-平行?平行时它们是同向还是反向?
1.设平面向量()()3,5,2,1a b ==-r
,则2a b -=r r ( )
(A)()7,3 (B)()7,7 (C)()1,7 (D)()1,3
2.已知向量a r =(4,2),向量b r =(x ,3),且a r //b r
,则x =( )
(A )9 (B)6 (C)5 (D)3
3.已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r
,则顶点D 的坐标为( )
A .722⎛⎫ ⎪⎝⎭
,
B .122⎛⎫- ⎪⎝⎭
,
C .(32),
D .(13),
4.已知平面向量),2(),2,1(m b a -==,且∥,则32+=( )
A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10)
5.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知)6,8(),8,6(),0,2(C B A -,则D 点的坐标为________.
6.已知向量)7,(),3,1(),1,3(k ===,若)(-∥,则=k 。
7.已知)2,1(),1,3(),0,1(C B A --,并且AE →=13AC →,BF →=13
BC →.求证:EF →∥AB →
.
8. 已知平面内三个向量:)1,4(),2,1(),2,3(=-==.
(1)求满足c n b m a +=的实数m 、n ; (2)若)(k +∥)2(-,求实数k 。
9.若点)5,(),31(),11(x C B A ,,--三点共线,则使λ=成立的实数λ= ; 10.已知向量)4,9(),2,1(),3,2(==-=p b a ,若b n a m p +=,则=
=n m ,。