算法实验 动态规划上机

合集下载

动态规划实验报告心得

动态规划实验报告心得

一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。

本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。

二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。

动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。

2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。

通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。

3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。

在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。

4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。

在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。

三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。

动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。

这种思维方式有助于我们更好地理解和解决实际问题。

2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。

它描述了子问题之间的关系,是求解问题的关键。

通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

西安交通大学算法上机实验报告

西安交通大学算法上机实验报告

《计算机算法设计与分析》上机实验报告姓名:班级:学号:日期:2016年12月23日算法实现题3-14 最少费用购物问题★问题描述:商店中每种商品都有标价。

例如,一朵花的价格是2元,一个花瓶的价格是5元。

为了吸引顾客,商店提供了一组优惠商品价。

优惠商品是把一种或多种商品分成一组,并降价销售。

例如,3朵花的价格不是6元而是5元。

2个花瓶加1朵花的优惠价格是10元。

试设计一个算法,计算出某一顾客所购商品应付的最少费用。

★算法设计:对于给定欲购商品的价格和数量,以及优惠价格,计算所购商品应付的最少费用。

★数据输入:由文件input.txt提供欲购商品数据。

文件的第1行中有1个整数B(0≤B≤5),表示所购商品种类数。

在接下来的B行中,每行有3个数C,K和P。

C表示商品的编码(每种商品有唯一编码),1≤C≤999;K表示购买该种商品总数,1≤K≤5;P是该种商品的正常单价(每件商品的价格),1≤P≤999。

请注意,一次最多可购买5*5=25件商品。

由文件offer.txt提供优惠商品价数据。

文件的第1行中有1个整数S(0≤S≤99),表示共有S种优惠商品组合。

接下来的S行,每行的第1个数描述优惠商品组合中商品的种类数j。

接着是j个数字对(C,K),其中C是商品编码,1≤C≤999;K表示该种商品在此组合中的数量,1≤K≤5。

每行最后一个数字P (1≤P≤9999)表示此商品组合的优惠价。

★结果输出:将计算出的所购商品应付的最少费用输出到文件output.txt。

输入文件示例输出文件示例Input.txt offer.txt output.txt2 2 147 3 2 1 7 3 58 2 5 2 7 1 8 2 10解:设cost(a,b,c,d,e)表示购买商品组合(a,b,c,d,e)需要的最少费用。

A[k],B[k],C[k],D[k],E[k]表示第k种优惠方案的商品组合。

offer (m)是第m种优惠方案的价格。

矩阵连乘算法

矩阵连乘算法

福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(2)i<=k<j,则:m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj。

由于在计算是并不知道断开点k的位置,所以k还未定。

不过k的位置只有j-i个可能。

因此,k是这j-i个位置使计算量达到最小的那个位置。

综上,有递推关系如下:若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。

s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。

从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]] )。

同理可以确定A[s[1][n]+1:n]的最优加括号方式在s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

3、动态规划迭代算法设计:用动态规划迭代方式解决此问题,可依据其递归式自底向上的方式进行计算。

在计算过程中,保存已解决的子问题的答案。

每个子问题只计算一次,而在后面需要时只需简单检查一下,从而避免了大量的重复计算,最终得到多项式时间的算法。

4、算法代码:1.//3d1-2 矩阵连乘动态规划迭代实现2.//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*253.//p[0-6]={30,35,15,5,10,20,25}4.#include "stdafx.h"5.#include <iostream>ing namespace std;7.8.const int L = 7;9.10.int MatrixChain(int n,int **m,int **s,int *p);11.void Traceback(int i,int j,int **s);//构造最优解12.13.int main()14.{15.int p[L]={30,35,15,5,10,20,25};16.17.int **s = new int *[L];18.int **m = new int *[L];19.for(int i=0;i<L;i++)20. {21. s[i] = new int[L];22. m[i] = new int[L];23. }24.25. cout<<"矩阵的最少计算次数为:"<<MatrixChain(6,m,s,p)<<endl;26. cout<<"矩阵最优计算次序为:"<<endl;27. Traceback(1,6,s);28.return 0;29.}30.31.int MatrixChain(int n,int **m,int **s,int *p)32.{33.for(int i=1; i<=n; i++)34. {35. m[i][i] = 0;36. }37.for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)38. {39.for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界40. {41.int j = i+r-1;//计算前边界为r,链长为r的链的后边界42.43. m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链ij划分为A(i) * ( A[i+1:j] )44.45. s[i][j] = i;46.47.for(int k=i+1; k<j; k++)48. {49.//将链ij划分为( A[i:k] )* (A[k+1:j])50.int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];51.if(t<m[i][j])52. {53. m[i][j] = t;54. s[i][j] = k;55. }56. }57. }58. }59.return m[1][L-1];60.}61.62.void Traceback(int i,int j,int **s)63.{64.if(i==j) return;65. Traceback(i,s[i][j],s);66. Traceback(s[i][j]+1,j,s);67. cout<<"Multiply A"<<i<<","<<s[i][j];68. cout<<" and A"<<(s[i][j]+1)<<","<<j<<endl;69.}上述迭代算法的运行过程如下图所示:当R=2时,先迭代计算出: m[1:2]=m[1:1]+m[2:2}+p[0]*p[1]*p[2];m[2:3]=m[2:2]+m[3:3]+p[1]*p[2]*p[3];。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。

有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。

这类问题的解决是多阶段的决策过程。

在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。

对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。

最优子结构性质:原问题的最优解包含了其子问题的最优解。

子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。

问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。

2.理解分段决策Bellman 方程。

每一点最优都是上一点最优加上这段长度。

即当前最优只与上一步有关。

U s 初始值,u j 第j 段的最优值。

⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。

步骤1-3是动态规划算法的基本步骤。

在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。

二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。

2.图的数据结构采用邻接表。

3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。

4.验证算法的时间复杂性。

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书

计算机算法设计与分析实验指导书本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。

上机实验一般应包括以下几个步骤:(1)准备好上机所需的程序。

手编程序应书写整齐,并经人工检查无误后才能上机。

(2)上机输入和调试自己所编的程序。

一人一组,独立上机调试,上机时出现的问题,最好独立解决。

(3)上机结束后,整理出实验报告。

实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析。

本书共分阶段6个实验,其具体要求和步骤如下:实验一分治算法(2学时)一、实验目的与要求1、熟悉二分搜索算法;2、初步掌握分治算法;二、实验题设a[0:n-1]是一个已排好序的数组。

请改写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

三、实验提示用i,j做参数,且采用传递引用或指针的形式带回值。

bool BinarySearch(int a[],int n,int x,int& i,int& j){int left=0;int right=n-1;while(left<right){int mid=(left+right)/2;if(x==a[mid]){i=j=mid;return true;}if(x>a[mid])left=mid+1;elseright=mid-1;}i=right;j=left;return false;}实验二动态规划算法(2学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。

实验二最长公共子序列(动态规划算法)

实验二最长公共子序列(动态规划算法)

实验二最长公共子序列(动态规划算法)班级:08计算机科学与技术(1)班学号:E08620113 姓名:戴斌江机器号:实验二最长公共子序列问题一、实验目的:1、理解动态规划算法的概念;2、掌握动态规划算法的基本要素;3、掌握设计动态规划算法的步骤;4、通过应用范例学习动态规划算法的设计技巧与策略;二、实验内容及要求:1、使用动态规划算法解决最长公共子序列问题:给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。

2、通过上机实验进行算法实现。

3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。

三、实验原理:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

算法总体思想:1)动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

2)与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。

子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想。

3)用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。

在计算过程中,保存已解决的子问题的答案。

每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。

西电算法导论上机实验报告

西电算法导论上机实验报告

算法导论上机实验报告册班级:xxxxxx学号:xxxxxxx 姓名:xxxx 教师:xxxxxx目录实验一排序算法 (1)题目一: (1)1、题目描述: (1)2、所用算法: (1)3、算法分析: (1)4、结果截图: (1)5、总结: (2)题目二: (3)1、题目描述: (3)2、所用算法: (3)3、算法分析: (3)4、结果截图: (3)5、总结: (4)题目三: (4)1、题目描述: (4)2、所用算法: (4)3、算法分析: (5)4、结果截图: (5)5、总结: (5)题目四: (6)1、题目描述: (6)3、算法分析: (6)4、结果截图: (6)5、总结: (7)实验二动态规划 (7)题目一: (7)1、题目描述: (7)2、所用策略: (7)3、算法分析: (7)4、结果截图: (8)5、总结: (8)题目二: (9)1、题目描述: (9)2、所用策略: (9)3、算法分析: (9)4、结果截图: (9)5、总结: (10)题目三: (10)1、题目描述: (10)2、所用策略: (10)3、算法分析: (10)4、结果截图: (11)题目四: (12)1、题目描述: (12)2、所用策略: (12)3、算法分析: (12)4、结果截图: (12)5、总结: (13)题目五: (13)1、题目描述: (13)2、所用策略: (13)3、算法分析: (13)4、结果截图: (14)5、总结: (14)实验三贪心算法 (14)题目一: (14)1、题目描述: (14)2、所用策略: (14)3、算法分析: (14)4、结果截图: (15)5、总结: (16)题目二: (16)1、题目描述: (16)3、算法分析: (16)4、结果截图: (17)5、总结: (17)题目三: (17)1、题目描述: (17)2、所用算法: (18)3、算法分析: (18)4、结果截图: (18)5、总结: (19)题目四: (19)1、题目描述: (19)2、所用算法: (19)3、算法分析: (19)实验四回溯法 (19)题目一: (19)1、题目描述: (20)2、所用策略: (20)3、算法分析: (20)题目二: (21)1、题目描述: (21)2、所用策略: (21)实验一排序算法题目一:1、题目描述:描述一个运行时间为θ(nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好为x的元素。

《算法设计与分析》上机实验报告(2)

《算法设计与分析》上机实验报告(2)

福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(2)4.根据计算最优值时得到的信息,构造最优解3.算法正确性证明对于矩阵连乘积的最优计算次序问题,设计算A[ i : j ],1<=i<=j<=n,所需的最少数乘次数为m[ i ][ j ],则原问题的最优值为m[ 1 ][ n]。

当i=j时,A[ i ; j ]=Ai,为单一矩阵,无需计算,因此m[ i ][ i ]=0。

当i < j时,可以利用最优子结构的性质来计算m[ i ][ j ]。

事实上,若计算A[ i : j ]的最优次序在Ak和Ak+1之间断开,i<=k<j,则m[ i ][ j ]=m[ i ][ k ]+m[k+1][ j ]+Pi-1*Pk*Pj。

其中Pi表示第i个矩阵的列数,也是第i-1个矩阵的行数,P0表示第一个矩阵的行数。

由于在计算时并不知道断开点k的位置,所以k还未定。

不过k的位置只有j-i个可能。

从而m[ i ][ j ]可以递归地定义为当i=j m[ i ][ j ] = 0当i<j m[ i ][ j ] = min{ m[ i ][ k ]+m[ k+1 ][ j ]+Pi-1*Pk*Pj }m[ i ][ j ]给出了最优值,即计算A[ i : j ]所需的最少数乘次数。

同时还确定了计算A[ i : j ]的最优次序中的断开位置k,也就是说,对于这个k有m[ i ][ j ]=m[ i [ k ]+m[ k+1 ][ j] + Pi-1*Pk*Pj若将对应于m[ i ][ j ]的断开位置k记为s[ i ][ j ],在计算最优值m[ i ][ j ]后,可以递归地有s[ i ][ j ]构造出相应的最优解。

根据计算m[ i ][ j ]的递归式,容易写一个递归算法计算m[ 1 ][ n ]。

但是简单地递归将好费指数计算时间。

在递归计算时,许多子问题被重复计算多次。

动态规划算法—租用游艇问题

动态规划算法—租用游艇问题

动态规划算法——租用游艇问题(一)实验目的:理解动态规划思想,掌握用动态规划设计算法的方法来解决游艇租用问题。

(二)实验内容:长江游艇俱乐部在长江上设置了n个游艇出租站1,2,…,n。

游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。

游艇出租站i到游艇出租站j之间的租金为r(i,j).设计一个算法,计算出从游艇出租站1到游艇出租站n所需要的最少租金。

(三)实验要求:对于给定的游艇出租站i到游艇出租站j之间的租金为r(i,j),编程计算从游艇出租站1到游艇出租站n所需要的最少租金。

上机调试并测试,记录调试和测试的情况,结合程序进行分析。

(四)实验环境:Vc++编译环境(五)实验主要源代码:(1)用dyna()函数计算最少租金void dyna(int &n,int f[N][N]){for(int k=2;k<n;k++)for(int i=0;i<n-k;i++){int j=i+k;for(int p=i+1;p<j;p++){int tmp=f[i][p]+f[p][j];if(f[i][j]>tmp)f[i][j]=tmp;}}}(2)在主函数中实现输出结果。

int main(){ifstream fin("050501103in.txt");ofstream fout("050501103out.txt");if (fin.fail()) {cout<<"fin(\"050501103in.txt\")文件出错!请先建立050501103in文本!"<<endl;return 1;}if (fout.fail()) {cout<<"fout(\"050501103out.txt\")文件出错!";return 2;}int f[N][N];int n;int i,j;fin>>n;if(n<=0){ cout<<"请在050501103in文本的第一行中输入游艇出租站的个数:"<<endl;cout<<"请在050501103in文本的第二行开始输入n(n-1)/2个站与站之间的租金数:"<<endl;}else if(n>N){cout<<"请修改N的值,使N大于n:"<<endl;}else {for(i=0;i<n;i++)for(j=0;j<n;j++)if(j>i)fin>>f[i][j];cout<<"请在050501103out文本中看输出结果(从出租站1到n的最少租金):"<<endl;dyna(n,f);fout<<f[0][n-1]<<endl;}}(六)实验结果:050501103in.txt 050501103out.txt3 125 157(七)实验总结:此程序的设计思想:利用dyna()函数计算最少租金。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

算法设计与分析——流水作业调度(动态规划)

算法设计与分析——流水作业调度(动态规划)

算法设计与分析——流⽔作业调度(动态规划)⼀、问题描述N个作业{1,2,………,n}要在由两台机器M1和M2组成的流⽔线上完成加⼯。

每个作业加⼯的顺序都是先在M1上加⼯,然后在M2上加⼯。

M1和M2加⼯作业i所需的时间分别为ai和bi,1≤i≤n。

流⽔作业⾼度问题要求确定这n个作业的最优加⼯顺序,使得从第⼀个作业在机器M1上开始加⼯,到最后⼀个作业在机器M2上加⼯完成所需的时间最少。

⼆、算法思路直观上,⼀个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。

在⼀般情况下,机器M2上会有机器空闲和作业积压2种情况。

最优调度应该是:1. 使M1上的加⼯是⽆间断的。

即M1上的加⼯时间是所有ai之和,但M2上不⼀定是bi之和。

2. 使作业在两台机器上的加⼯次序是完全相同的。

则得结论:仅需考虑在两台机上加⼯次序完全相同的调度。

设全部作业的集合为N={1,2,…,n}。

S是N的作业⼦集。

在⼀般情况下,机器M1开始加⼯S中作业时,机器M2还在加⼯其他作业,要等时间t后才可利⽤。

将这种情况下完成S中作业所需的最短时间记为T(S,t)。

流⽔作业调度问题的最优值为T(N,0)。

这个T(S,t)该如何理解?举个例⼦就好搞了(⽤ipad pencil写的...没贴类纸膜,太滑,凑合看吧)1、最优⼦结构T(N,0)=min{ai + T(N-{i}, bi)}, i∈N。

ai:选⼀个作业i先加⼯,在M1的加⼯时间。

T(N-{i},bi}:剩下的作业要等bi时间后才能在M2上加⼯。

注意这⾥函数的定义,因为⼀开始⼯作i是随机取的,M1加⼯完了ai之后,要开始加⼯bi了,这⾥M1是空闲的可以开始加⼯剩下的N-i个作业了,但此时M2开始加⼯bi,所以要等bi时间之后才能重新利⽤,对应到上⾯函数T(s,t)的定义的话,这⾥就应该表⽰成T(N-{i},bi), 所以最优解可表⽰为T(N,0)=min{ai + T(N-{i}, bi)}, i∈N,即我们要枚举所有的⼯作i,使这个式⼦取到最⼩值。

动态规划算法实验报告

动态规划算法实验报告

实验标题1、矩阵连乘2、最长公共子序列3、最大子段和4、凸多边形最优三角剖分5、流水作业调度6、0-1背包问题7、最优二叉搜索树实验目的掌握动态规划法的基本思想和算法设计的基本步骤。

实验内容与源码1、矩阵连乘#include<iostream>#include<cstdlib>using namespace std;const int size=4;//ra,ca和rb,cb分别表示矩阵A和B的行数和列数void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) {if(ca!=rb) cerr<<"矩阵不可乘";for(int i=0;i<ra;i++)for(int j=0;j<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<ca;k++)sum+=a[i][k]*b[k][j];c[i][j]=sum;}}void MatrixChain(int *p,int n,int m[][4],int s[][4]){for(int i=1;i<=n;i++) m[i][i]=0;//对角线for(int r=2;r<=n;r++)//外维for(int i=1;i<=n-r+1;i++)//上三角{int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}void Traceback(int i,int j,int s[][4]){if(i == j){cout<<"A"<<i;}else if(i+1 == j){cout<<"(A"<<i<<"A"<<j<<")";}else{cout<<"(";Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<")";}}int main(){int w;cout<<"矩阵个数:";cin>>w;int p[w],s[w][w];cout<<"输入矩阵A1维数:";cin>>p[0]>>p[1];for(int i=2 ; i<=w ; i++){int m = p[i-1];cout<<"输入矩阵A"<<i<<"维数:";cin>>p[i-1]>>p[i];if(p[i-1] != m){cout<<endl<<"维数不对,矩阵不可乘!"<<endl;exit(1);}}Traceback(1,w,s);return 0;}运行结果2、最长公共子序列#include<cstring>#include<iostream>#define N 100using namespace std;//str1存储字符串x,str2存储字符串ychar str1[N],str2[N];//lcs存储最长公共子序列char lcs[N];//c[i][j]存储str1[1...i]与str2[1...j]的最长公共子序列的长度int c[N][N];//flag[i][j]==0为str1[i]==str2[j]//flag[i][j]==1为c[i-1][j]>=s[i][j-1]//flag[i][j]==-1为c[i-1][j]<s[i][j-1]int flag[N][N];//求长度int LCSLength(char *x, char *y){int i,j;//分别取得x,y的长度int m = strlen(x);int n = strlen(y);for(i=1;i<=m;i++)c[i][0] = 0;for(i=0;i<=n;i++)c[0][i] = 0;for(i=1;i<=m;i++)for(j=1;j<=n;j++){if(x[i-1]==y[j-1]){c[i][j] = c[i-1][j-1] +1;flag[i][j] = 0;}else if(c[i-1][j]>=c[i][j-1]){c[i][j] = c[i-1][j];flag[i][j] = 1;}else{c[i][j] = c[i][j-1];flag[i][j] = -1;}}return c[m][n];}//求出最长公共子序列char* getLCS(char *x, char *y,int len,char *lcs) {int i = strlen(x);int j = strlen(y);while(i&&j){if(flag[i][j]==0){lcs[--len] = x[i-1];i--;j--;}else if(flag[i][j]==1)i--;elsej--;}return lcs;}int main(){int i;cout<<"请输入字符串x:"<<endl;cin>>str1;cout<<"请输入字符串y:"<<endl;cin>>str2;int lcsLen = LCSLength(str1,str2);cout<<"最长公共子序列长度:"<<lcsLen<<endl;char *p = getLCS(str1,str2,lcsLen,lcs);cout<<"最长公共子序列为:";for(i=0;i<lcsLen;i++)cout<<lcs[i]<<" ";return 0;}运行结果3、最大子段和//分治法求最大子段和#include<iostream>using namespace std;int MaxSubSum(int *a,int left,int right){int sum=0;if(left==right) sum=a[left]>0?a[left]:0;else{int center = (left+right)/2;//最大子段和在左边int leftsum=MaxSubSum(a,left,center);//最大子段和在右边int rightsum=MaxSubSum(a,center+1,right);//最大子段和在中间int s1=0;int lefts=0;for(int i=center;i>=left;i--){lefts+=a[i];if(lefts>s1) s1=lefts;}int s2=0;int rights=0;for(int i=center+1;i<=right;i++){rights+=a[i];if(rights>s2) s2=rights;}sum=s1+s2;//前后子段和相加//判断最大子段和if(sum>leftsum)sum=leftsum;if(sum>rightsum) sum=rightsum;}return sum;}int MaxSum(int *a,int n){return MaxSubSum(a,1,n-1);}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}//动态规划法#include<iostream>using namespace std;int MaxSum(int *a,int n){int sum=0,b=0;for(int i=1;i<n;i++)//此处不能=n,{if(b>0) b+=a[i];else b=a[i];if(b>sum) sum=b;}return sum;}int main(){int a[8]={2,-3,-5,4,1,7,1,-5};cout<<"最大子段和为:"<<MaxSum(a,8);return 0;}运行结果4、凸多边形最优三角剖分#include<iostream>#include<cmath>#include<cstdlib>#define N 50using namespace std;struct point{int x;int y;};int distance(point X, point Y)//两点距离{int dis = (Y.x-X.x)*(Y.x-X.x) + (Y.y-X.y)*(Y.y-X.y);return (int)sqrt(dis);}int w(point a, point b, point c)//权值{return distance(a,b) + distance(b,c) + distance(a,c);}bool JudgeInput()//判断是否能构成凸多边形{point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int m,a,b,c;cout<<"请输入凸多边形顶点个数:";cin>>m;int M = m-1;for(int i=0 ; i<m ; i++){cout<<"输入顶点v"<<i<<"的坐标:";cin>>v[i].x>>v[i].y;}//根据顶点坐标判断是否能构成一个凸多边形for(int j=0 ; j<m ; j++){int p = 0;int q = 0;if(m-1 == j){a = v[m-1].y - v[0].y;b = v[m-1].x - v[0].y;c = b * v[m-1].y - a * v[m-1].x;}else{a = v[j].y - v[j+1].y;b = v[j].x - v[j+1].x;c = b * v[j].y - a * v[j].x;}for(int k=0 ; k<m ; k++){total[k] = a * v[k].x - b * v[k].y + c;if(total[k] > 0){p = p+1;}else if(total[k] < 0){q = q+1;}}if((p>0 && q>0) || (p==0 && q==0)){cout<<"无法构成凸多边形!"<<endl;exit(1);}}}bool minWeightTriangulation()//计算最优值算法{int M;int **t, **s;point *v;for(int i=1 ; i<=M ; i++)t[i][i] = 0;for(int r=2 ; r<=M ; r++)for(int i=1 ; i<=M-r+1 ; i++){int j = i+r-1;t[i][j] = t[i+1][j] + w(v[i-1],v[i],v[j]);s[i][j] = i;for(int k=i+1 ; k<i+r-1 ; k++){int u = t[i][k] + t[k+1][j] + w(v[i-1],v[k],v[j]);if(u < t[i][j]){t[i][j] = u;s[i][j] = k;}}}return true;}void Traceback(int i, int j, int **s){if(i == j)return;Traceback(i,s[i][j],s);Traceback(s[i][j]+1,j,s);cout<<"三角形:v"<<i-1<<"v"<<s[i][j]<<"v"<<j<<endl;}int main(){int **s; //记录最优三角剖分中所有三角形信息int **t; //记录最优三角剖分所对应的权函数值point *v; //记录凸多边形各顶点坐标int *total; //记录坐标在直线方程中的值int M=0;t = new int *[N];s = new int *[N];for(int i=0 ; i<N ; i++){t[i] = new int[N];s[i] = new int[N];}v = new point[N];total = new int[N];if(JudgeInput()){if(minWeightTriangulation()){Traceback(1,M,s);cout<<endl;cout<<"最优权值之和为:"<<t[1][M]<<endl;}}return 0;}运行结果:5、流水作业调度#include<iostream>#define N 100using namespace std;class Jobtype{public:/* int operator<=(Jobtype a)const{return(key<=a.key);}*/int key;int index;bool job;};void sort(Jobtype *d,int n){int i,j;Jobtype temp;bool exchange; //交换标志for(i = 0;i < n;i ++){ //最多做n-1趟排序exchange = false; //本趟排序开始前,交换标志应为假for(j = n - 1;j >= i;j --)if(d[j+1].key < d[j].key){temp = d[j+1];d[j+1] = d[j];d[j] = temp;exchange=true; //发生了交换,故将交换标志置为真}if(!exchange) //本趟排序未发生交换,提前终止算法return;}}int FlowShop(int n,int *a,int *b,int *c){Jobtype *d = new Jobtype[n];for(int i=0;i<n;i++)//初始化{d[i].key=a[i]>b[i]?b[i]:a[i];// 执行时间d[i].job=a[i]<=b[i];// 作业组d[i].index=i;//作业序号}sort(d,n);;int j=0;int k=n-1;for(int i=0;i<n;i++)//最优调度{if(d[i].job){c[j++]=d[i].index;}else{c[k--]=d[i].index;}}j=a[c[0]];k=j+b[c[0]];for(int i=1;i<n;i++){j+=a[c[i]];k=j<k?k+b[c[i]]:j+b[c[i]];}delete d;//回收空间return k;//返回调度时间}int main(){int n,*a,*b,*c;cout<<"作业数:";cin>>n;Jobtype *d = new Jobtype[N];a=new int[N];b=new int[N];c=new int[N];cout<<"请输入作业号和时间:";for(int i=0;i<n;i++){cin>>d[i].index>>d[i].key;}cout << endl;int k=FlowShop(n,a,b,c);cout<<"\n调度时间:"<<k<<endl;cout<<"最优调度序列:";for (int i = 0; i < n; i++) // 输出最优调度序列{cout << c[i] << " ";}return 0;}运行结果:6、0-1背包问题#include <iostream>#include <iomanip>using namespace std;const int C=10;//容量const int N=5;//个数int max(const int a,const int b){return a>b?a:b;}int min(const int a,const int b){return a<b?a:b;}/*m为记录数组m[i][j]代表在剩有j容量的条件下,从i开始往后的物品中可以取得的最大价值w为重量数组,v为价值数组n为物品个数,c为开始容量则m[1][c]即此背包能剩下的最大价值*/void knapsack(int **m,int n, int c,int *w, int *v){int jMax = min(w[n]-1,c);//前n-1个物品for(int j=0;j<=jMax;j++)m[n][j]=0;for(int j=w[n];j<=c;j++)m[n][j]=v[n];for(int i=n-1;i>1;i--){jMax=min(w[i]-1,c);for(int j=0;j<=jMax;j++)m[i][j] = m[i+1][j];for(int j=w[i];j<=c;j++)m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1])m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}//找出最优解,0表示不能装,1表示能装void traceback(int **m,int n,int c,int *x,int *w){for(int i=1;i<n;i++){if(m[i][c]==m[i+1][c]) x[i]=0;else{x[i]=1;c-=w[i];}}x[n]=(m[n][c]==0)?0:1;}int main(){int *v=new int[N+1];int *w=new int[N+1];int **m=new int* [N+1];int *x=new int [N+1];for(int i=0;i<N+1;i++){m[i]=new int[C+1];}cout<<"输入重量序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>w[i];cout<<"输入价值序列,"<<N<<"个"<<endl;for(int i=1;i<=N;i++)cin>>v[i];knapsack(m,N,C,w,v);traceback(m,N,C,x,w);cout<<"最优值:"<<m[1][C]<<endl;cout<<"是否装入背包的情况:";for(int i=1;i<=N;i++){cout<<x[i];}for(int i=0;i<N+1;i++){delete m[i];}delete []m;return 0;}运行结果7、最优二叉搜索树#include<iostream>#include<cmath>#include<limits>#define N 100using namespace std;const double MAX = numeric_limits<double>::max(); //double的最大值//a[i]为结点i被访问的概率//b[i]为“虚结点”i被访问的概率//m[i][j]用来存放子树(i,j)的期望代价//w[i][j]用来存放子树(i,j)的所有结点(包括虚结点)的a,b概率之和//s[i][j]用来跟踪root的void OptimalBinarySearchTree(double *a,double *b,int n){int s[N][N];double m[N][N];double w[N][N];int i,j,l,r;for(i=1; i<=n+1; i++){m[i][i-1] = b[i-1];w[i][i-1] = b[i-1];}for(l=1; l<=n; l++){for(i=1; i<=n-l+1; i++){j = l+i-1;m[i][j] = MAX;w[i][j] = w[i][j-1] + a[j] +b[j];for(r=i; r<=j; r++){double k = m[i][r-1] + w[i][j] + m[r+1][j];if(k<m[i][j]){m[i][j] = k;s[i][j] = k;}}}}cout<<m[1][n];}int main(){double a[N],b[N];int n;double sum = 0;int i,j,l;cout<<"请输入关键字的个数:"<<endl;cin>>n;cout<<"请输入每个关键字的概率:"<<endl;for(i=1; i<=n; i++){cin>>a[i];sum += a[i];}cout<<"请输入每个虚拟键的概率:"<<endl;for(i=0; i<=n; i++){cin>>b[i];sum += b[i];}if(abs(sum-1)>0.01){cout<<"输入的概率和不为1,请重新输入"<<endl;}cout<<"最优二叉查找树的期望搜索代价为:";OptimalBinarySearchTree(a,b,n);return 0;}运行结果:实验总结通过实现动态规划的这个题目,对动态规划算法有了进一步的了解。

实验报告动态规划背包问题

实验报告动态规划背包问题

实验报告动态规划背包问题
XXXX⼤学计算机学院实验报告
计算机学院 2017 级软件⼯程专业 5 班指导教师学号姓名 2019年 10 ⽉ 21 ⽇成绩
上机调试程序、程
序运⾏结果

int n = ;包问题的算法思想:将前i个物品放⼊容量为w的背包中的最⼤价值。

有如下两种情况:
①若当前物品的重量⼩于当前可放⼊的重量,便可考虑是否要将本件物品放⼊背包中或者将背包中的某些物品拿出来再将当前物品放进去;放进去前需要⽐较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最⾼价值),如果超过之前的价值,可以直接放进去,反之不放。

②若当前物品的重量⼤于当前可放⼊的重量,则不放⼊
背包问题利⽤动态规划的思路可以这样理解:阶段是“物品的件数”,状态就是“背包剩下的容量”,f[i,v]表⽰设从前i件物品中选择放⼊容量为V的背包的最⼤价值。

那么状态转移的⽅法为:
f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}
这个⽅程可以理解为:只考虑⼦问题“将前i个物品放⼊容量为v的背包中的最⼤价值”那么可以考虑不放⼊i,最⼤价值就和i⽆关,就是f[i-1][v],如果放⼊第i个物品,价值就是
f[i-1][v-w[i]]+value[i],只取最⼤值即可。

动态规划应用动态规划解决问题的思路与技巧

动态规划应用动态规划解决问题的思路与技巧

动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。

通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。

本文将介绍动态规划的应用,并提供一些思路与技巧。

一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。

2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。

3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。

4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。

5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。

二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。

滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。

2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。

例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。

3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。

4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。

5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。

三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。

算法设计与分析实验报告

算法设计与分析实验报告

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

12动态规划上机

12动态规划上机

商品 A B C
数量 (件) 600 1000 800
每件重量 每件体积 运价 (M2/件) (吨) (元/件) 8 10 1000 6 5 5 7 700 600

资源分配问题

某公司拟将5万元资金投放下属的A、B、C三个企业, 各企业在获得资金后的收益如表所示。求总收益自 大的投资分配方案(投放资金为整数) 投放资金(万元) 0 A企业 0 B企业 C企业 0 0 1 2 0 1 2 2 1 2 3 3 2 3 4 3 4 4 5 3 7 5
(2)其他条件不变,星期一早上的存量为8袋。
某公司从两个产地A1,A2将物品运往三个销地B1, B2,B3,各销地的销售量和各产地运往各销地每件物 品的运费如下表所示。问应如何调运,才能使得总运 费最小?

A1 A2
B1 13 11 53
B2 15 29 36
B3 12 22 65
产量 78 45
生产存储问题

某皮鞋公司根据市场需求分析预测明年的需求:一 季度3000双,二季度4000双,三季度8000双,四 季度7000双。企业每个季度最多可以生产6000双皮 鞋。为了满足所有的预测需求,前两个季度必须有 一定的库存才能满足后两季度的需求。已知每双皮 鞋的利润为20元,每个季度的库存成本为8元。请 确定该公司明年每个季度的生产计划,使公司的年 利润最大。
现有一面粉加工厂,每星期上五天班,生产成 本和需求量如表所示: 星期 需求量 单位生产成本 一 二 三 10 20 25 8 6 9 四 30 12 五 30 10
每袋面粉的存储费为0.5元,按天缴费,分别求以 下两种方案的最小成本
(1)星期一早上和星期五晚上的存储量为零,不 允徐缺货,仓库容量为40袋;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3动态规划上机
[实验目的]
1.掌握动态规划的基本思想和效率分析方法;
2.掌握使用动态规划算法的基本步骤;
3.学会利用动态规划解决实际问题。

[实验要求]
按以下实验内容完成题目,并把编译、运行过程中出现的问题以及解决方法填入实验报告中,按时上交。

[实验学时] 2学时。

[实验内容]
一、实验内容
利用动态规划算法编程求解多段图问题,要求读入多段图,考虑多段图的排序方式,求源点到汇点的最小成本路径。

并请对自己的程序进行复杂性分析。

二、算法描述
先输入点的个数和路径数以及每段路径的起点、长度、终点,再计算所有路径的值大小,比较输出后最小值。

三、源程序
#define N 2147483647
#include<stdio.h>
#include<iostream.h>
void main()
{
int i,pointnum,j;
cout<<"输入图中点的个数:"<<endl;
cin>>pointnum;
int **array; //array数组描述多段图
int *array2; //array2记录距离起点的最小路径
int *array3; //array3记录上一点编号
array=new int*[pointnum];
array2=new int[pointnum+1];
array3=new int[pointnum+1];
for(i=0;i<pointnum;i++)
{
array[i]=new int[pointnum];
array2[i]=N;
array3[i]=N;
}
array2[pointnum]=N;
array3[pointnum]=N;
for(i=0;i<pointnum;i++)
{
for(j=0;j<pointnum;j++)
{
array[i][j]=N;
}
}
cout<<"输入多段图中路径条数"<<endl;
int pathnum;
cin>>pathnum;
int a,k;
cout<<"依次输入图中每段路径"<<endl<<"起点,长度,终点"<<endl;
array2[1]=0;
array3[1]=0;
for(k=0;k<pathnum;k++)
{
cin>>i;
cin>>a;
cin>>j;
array[i][j]=a;
if(array2[j]>(a+array2[i]))
{
array3[j]=i;
array2[j]=a+array2[i];
}
// cout<<array3[j]<<" "<<array2[j]<<endl;
}
k=0;
i=pointnum;
for(;;)
{
if(array3[i]!=0)
{
k++;
i=array3[i];
}
else
break;
}
// cout<<k;
int *array4;
array4=new int[k+1];
i=pointnum;
for(j=k;j>=0;j--)
{
array4[j]=i;
i=array3[i];
if(i==0)
break;
}
i=pointnum;
cout<<endl<<"最短路径"<<endl<<array2[i];
cout<<endl<<"[ ";
for(j=0;j<=k;j++)
{
cout<<array4[j]<<" ";
}
cout<<"]"<<endl;
}
四、程序的复杂度分析
O(n)= n²=16
五、程序运行结果及截图。

相关文档
最新文档