21世纪化学发展的四大难题

合集下载

化学与其他的学科之间的交叉

化学与其他的学科之间的交叉

化学与其他的学科之间的交叉1.学科交叉的概念及由来交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。

其宽泛的含义也包括:边缘学科、综合学科、横断学科等在。

交叉学科既是一个学科概念,同时一又是一个历史畴。

从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。

新学科在经历一段时一期的发展之后,将成为成熟的学科,进而有可能再与其他学科交叉作用发展而产生新的交叉学科。

20 世纪下半叶,各类交叉学科的应用和兴起为科学发展带来了一股新风,许多科学前沿问题和多年悬而未决的问题在交叉学科的联合攻关中都取得了可喜的进展。

随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实,交叉学科在科学领域中的生命力都得到了充分的证明。

交叉学科起源于现代科学高度、精度发展的时代,现代科学技术活动一端深入到生产领域,扎根于经济建设,另一端则直接涉及上层建筑,与社会发展等交织在一起,并相互作用、相互影响。

复杂的问题又多居于学科的交叉地带,学科的交叉自然而然地形成和成熟。

当科学技术累计到现代文明的高度,科学研究所要解决的问题的形式发生了深刻的变化,科学研究已由主要解决单个的互不相关的问题过渡到研究问题群,并进而发展为以研究问题堆为主要研究模式。

这样,研究行为就必然由局限于一个学科或一学科的某个分支领域发展到涉及一学科的多个分支,或邻近学科空间,进而扩展到多学科之间。

当社会经济发展到一定时期,社会科学、生命科学、机电工程、物理化学等等各个领域的问题变得越来越复杂,问题间的部联系更为盘根错节,每类问题得出的不同视角的结论似乎都有新的发现,但又难以集结为系统的依据,这样的情形正是产生新的交叉学科的动力,从而在交叉学科重新规划和完善方法和体制的系统,发现解决问题的理论和方法。

这就是说,只要社会发展不停止,就会不断有产生交叉学科的需求。

2.化学与其他学科的交叉2.1材料化学材料科学的发展离不开化学。

化学技术中遇到的常见挑战及解决方案

化学技术中遇到的常见挑战及解决方案

化学技术中遇到的常见挑战及解决方案在现代社会中,化学技术扮演着重要的角色,促进了许多行业的发展和进步。

然而,随着科技的不断发展,化学技术也面临着各种挑战。

下面我们将探讨一些常见的挑战,并提出解决方案。

首先,化学技术遇到的一个挑战是环境污染。

许多化学过程会产生有害的废物和气体,对环境造成威胁。

为了解决这个问题,科学家们开发了许多环保型的化学技术。

例如,通过改进催化剂的设计和使用可再生能源,可以减少有害物质的产生。

此外,使用先进的废物处理技术,如垃圾焚烧和气体处理装置,可以有效地处理和减少污染物的释放。

其次,化学技术中常见的挑战之一是原材料的供应。

由于化学反应所需的原材料有限,并且市场需求不断增加,原材料的供应成为一个严重的问题。

科学家们通过改进合成方法和利用替代原料来解决这个问题。

例如,利用生物质资源作为替代原料,可以减少对有限资源的依赖。

此外,发展循环经济和回收利用技术,可以有效地再利用废弃物,并减少对原材料的需求。

另一个常见的挑战是化学技术的安全性。

很多化学物质在生产和使用过程中具有一定的风险。

为了确保化学技术的安全性,需要严格的安全措施和规范。

科学家们通过改进工艺流程和使用更安全的替代品来解决这个问题。

此外,加强员工培训和提高安全意识也是非常关键的。

此外,在化学技术中,还有一些特殊的挑战需要面对,如高能量消耗、高成本和低产率。

为了解决这些问题,科学家们不断探索新的技术和方法。

例如,开发高效的催化剂,可以提高反应的速率和产率,并降低能量消耗。

此外,改进反应条件和控制系统,可以减少废品的生成和提高产品的质量。

综上所述,化学技术面临着诸多挑战,但科学家们通过不断的研究和创新,提出了许多解决方案。

这些方案包括环保型化学技术、替代原料的利用、安全控制以及改进生产流程等。

通过这些努力,我们可以更好地应对化学技术带来的挑战,推动行业的可持续发展。

化学四大难题

化学四大难题

5.21世纪化学的四大难题(l)化学的第一根本规律(第一个世纪难题):建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论。

化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。

19世纪C.M.古尔德贝格和P.瓦格提出的质量作用定律,是最重要的化学定律之一,但它是经验的、宏观的定律。

H.艾林的绝对反应速度理论是建筑在过渡态、活化能和统计力学基础上的半经验理论。

过渡态、活化能和势能面等都是根据不含时间的薛定愕第一方程来计算的。

所谓反应途径是按照势能面的最低点来描绘的。

这一理论和提出的新概念虽然非常有用,但却是不彻底的半经验理论。

近年来发展了含时Hartree-Fock方法,含时密度泛函理论方法,以酉群相干态为基础的电子-原子核运动方程理论,波包动力学理论等。

但目前这些理论方法对描述复杂化学体系还有困难。

所以建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径?等等,是21世纪化学应该解决的第一个难题。

(2)化学的第二个世纪难题:分子结构及其和性能的定量关系。

这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等。

虽然W.Kohn从理论上证明一个分子的电子云密度可以决定它的所有性质,但实际计算困难很多,现在对结构和性能的定量关系的了解,还远远不够。

要大力发展密度泛函理论和其他计算方法。

这是21世纪化学的第二个重大难题。

例如:①如何设计合成具有人们期望的某种性能的材料?②如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个数量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的。

21世纪化学工程发展面临的挑战

21世纪化学工程发展面临的挑战

21世纪化学⼯程发展⾯临的挑战2019-10-17摘要:本⽂论述了化学⼯程发展过程及发展过程中⾯临的挑战,我国经济⽔平的稳步提升,促进了化学⼯业⽣产技术的多样化发展。

当前,我国⼤部分化⼯企业⾯临着两⼤挑战,⼀是环境的可持续发展对化学⼯程的严峻要求,⼆是化学⼯程⾯临的科技创新的挑战。

关键词:化学⼯程;可持续发展;科技创新;挑战化学⼯程是研究化学⼯业及其相关产业⽣产过程中所进⾏的化学过程、物理过程及其所⽤设备的设计与操作和优化的共同规律的⼀门⼯程学科。

化学⼯程领域涉及⼯艺开发、产品研制、过程设计、装备强化、系统模拟、环境保护、⽣产管理、操作控制等内容。

该领域包含⽆机与有机化⼯、精细化⼯、⽯油化⼯与煤炭化⼯、冶⾦化⼯、⽣物化⼯、环境化⼯、材料化⼯等⾏业。

在社会发展与国民经济建设中,化学⼯程领域具有重要作⽤,且化学⼯程与信息、材料、⽣物、能源、资源、航天、海洋等⾼新技术领域相互渗透,共同推动⾼新科技的发展。

1我国化学⼯程的发展历程化学⼯程在发展的过程中经历了三个阶段。

第⼀个发展阶段称为“单元操作”[1],该阶段的化学⼯程是⼀门共性化学⼯程学科,以各⼯业种类所需的单元设备或操作的共性规律为基础;第⼆个发展阶段称为“传递原理和反应⼯程”[2],该阶段总结出了不同的单元设备和操作中的共性现象———流动、传热、传递和反应,即“三传⼀反”,第⼆阶段是在第⼀阶段基础上进⼀步的知识深化;第⼆阶段中,化学⼯程吸收了当时相关科学技术发展的新成果,强化了解决⼯业问题的能⼒,形成了模型化的⽅法论,进⼀步推动了化学⼯程在其他⼯业领域中的应⽤,第⼆阶段“三传⼀反”的相关研究引领了化学⼯程近半个世纪的发展。

伴随社会经济的持续发展和⼯业技术的⾼速发展,化学⼯程的需求也在快速增长,特别是资源、能源利⽤与环境破坏问题的挑战,使得化学⼯程的重要性进⼀步凸显。

然⽽,⼀⽅⾯化学⼯程的现有理论与⽅法已经愈发⽆法满⾜当前⼯业⼯程应⽤与发展的需求;另⼀⽅⾯,⼀些⾼新技术的发展如纳⽶科学、⽣命科学技术等也为化学⼯程未来深层次的发展创造了新的机遇。

21世纪化学的内涵、四大难题和突破口

21世纪化学的内涵、四大难题和突破口

21世纪化学的内涵、四大难题和突破口的报告,600字
21世纪的化学都将在以下几个方面发展:
一、内涵:21世纪化学子学科建立在传统化学基础上,重点
在于利用计算机技术、生物技术、物理和其他诸多数学手段,弥补化学分析与合成的不足,开发新的化学规律和理论。

它的发展可以归结为三大方面:首先是进行微观分子级的研究,并探讨其结构与性质之间的关系;其次是研究纳米尺度上的晶体结构及材料特性;最后是研究大分子行为,旨在发掘其复杂性与功能特性。

二、四大难题:
1.高效合成:如何对结构极其复杂的有机分子进行高效的合成?
2.绿色制造:如何让工业生产不受环境的影响?
3.动态化学:如何去探索分子在不同时间尺度上的动态变化?
4.客观测试:如何发展出可以模拟真实样本的仪器和技术?
三、突破口:
1.采用先进的计算机技术,开发新的化学规律和理论,以便更
好地理解分子行为。

2.利用纳米技术开发更具活性与性能的新型材料。

3.采用分子传感器和生物技术,提高分析检测的准确性。

4.开发出可以模拟实际样本的仿真仪器和技术,以进一步深入研究分子行为。

总之,21世纪的化学将把综合性的科学方法应用在分子级的研究与开发,使得传统的化学技术得到更大的发展,从而推动未来的科学发现。

化学技术的常见问题与解决方法

化学技术的常见问题与解决方法

化学技术的常见问题与解决方法化学技术在现代社会中起着重要的作用,从工业生产到日常生活中的各种应用,都离不开化学技术。

然而,由于化学技术的特殊性,常常会遇到一些问题。

本文将针对化学技术中常见的问题进行探讨,并提供相应的解决方法,以帮助读者更好地解决遇到的困惑。

一、化学反应的速率问题化学反应速率是一个重要的指标,在实际应用中,有时需要控制反应速率以达到预期的效果。

一般来说,反应速率与反应物浓度、温度和催化剂等因素有关。

如果反应速率过快,可能会导致副产物的生成增加,反应条件无法控制。

而如果反应速率过慢,则会影响工业生产的效率。

对于反应速率过快的问题,我们可以考虑通过降低反应物浓度、降低温度或使用催化剂等方法来控制反应速率。

反应物浓度的降低可以通过稀释反应物的方法来实现,从而减缓反应速率。

降低温度可以使分子的热运动减弱,从而降低反应速率。

催化剂的使用可以提高反应速率,通过改变反应物的活化能来加速反应。

如果反应速率过慢,我们则可以考虑提高反应物浓度、提高温度或寻找更有效的催化剂等方法来加快反应速率。

提高反应物浓度可以增加有效碰撞的机会,从而增加反应速率。

提高温度可以增加反应物的热运动速度,使分子之间更容易发生碰撞,从而加快反应速率。

寻找更有效的催化剂可以提高反应的速率常数,使反应更快进行。

二、化学废物的处理问题化学过程中常常会产生大量的废物,如果这些废物没有得到妥善处理,可能会对环境造成严重的污染。

因此,在化学技术中,废物的处理是一个很重要的问题。

对于化学废物的处理,一种常用的方法是进行物理或化学处理。

物理处理可以通过过滤、沉淀、蒸馏等操作来分离废物中的杂质,从而减少废物对环境的影响。

化学处理可以通过化学反应来将废物转化为无害的物质,例如将有害物质氧化为无害的氧化物。

此外,为了减少废物的产生,可以通过改进化学过程来降低产废量。

例如,可以优化反应条件,减少副反应的生成;可以设计高效的催化剂,提高反应的选择性;还可以将废物进行再利用,减少资源的浪费。

化学十大难题

化学十大难题

Scientific American:化学十大难题博主按:这是Scientific American科普杂志为国际化学年推出的专题。

化学一直声称自己是中心学科,是因为化学其实也就是分子科学,而无论物理还是生命科学,研究到最后,还是要在分子机制这个层面才能解决问题。

下面列出的化学十大难题,其实值得所有科学家关注,大家都能在这个舞台里一显身手,但是,化学家或许能在里面找到最好的切入点,从而找到解决问题的关键!1. How Did Life Begin? 生命从何而来?2. How Do Molecules Form? 分子如何形成?3. How Does the Environment Influence Our Genes? 环境如何影响人类基因?4. How Does the Brain Think and Form Memories? 大脑如何思考,并形成记忆?5. How Many Elements Exist? 到底存在多少种元素?6. Can Computers Be Made Out of Carbon? 我们能用碳元素制造出电脑吗?7. How Do We Tap More Solar Energy? 如何捕获更多太阳能?8 What Is the Best Way to Make Biofuels? 制造生物燃料的最佳途径是什么?9. Can We Devise New Ways to Create Drugs? 我们能研制出全新类型的药物吗?10. Can We Continuously Monitor Our Own Chemistry? 我们能实时监测自身的化学变化吗?CHEMISTRY:The 10 Unsolved MysteriesMany of the most profound scientific questions—and some of humanity’s most urgent problems—pertain to the science of atoms and moleculesBy Philip BallPhilip Ball has a Ph.D. in physics from the University of Bristol in England and was an editor at Nature for more than 20 years. He is the award-winning author of 15 books, including The Music Instinct: How Music Works, and Why We Can’t Do without It.1 How Did Life Begin?the moment when the first living beings arose from inanimate matter almost four billion years ago is still shrouded in mystery. How did relatively simple molecules in the primordial broth give rise to more and more complex compounds? And how did some of those compounds begin to process energy and replicate(two of the defining characteristics of life)? At the molecular level, all of those steps are, of course, chemical reactions,which makes the question of how life beganone of chemistry.The challenge for chemists is no longer to come up with vaguely plausible scenarios,of which there are plenty. For example, researchers have speculated about minerals such as clay acting as catalysts for the formation of the first self-replicating polymers(molecules that, like DNA or proteins, are long chains of smaller units); about chemical complexity fueled by the energy of deep-sea hydrothermal vents; and about an "RNA world," in which DNA’s cousin RNA—which can act as an enzyme and catalyze reactions the way proteins do—would have been a universal molecule, before DNA and proteins appeared. No, the game is to figure out how to test these ideas in reactions coddled in the test tube. Researchers have shown, for example, that certain relatively simple chemicals can spontaneously react to form the more complex building blocks of living systems, such as amino acids and nucleotides, the basic units of DNA and RNA. In 2009 a team led by John Sutherland, now at the MRC Laboratory of Molecular Biology in Cambridge, England, was able to demonstrate the formation of nucleotides from molecules likely to have existed in the primordial broth.Other researchers have focused on the ability of some RNA strands to act as enzymes,providing evidence in support of the RNA world hypothesis. Through such steps, scientists may progressively bridge the gap from inanimate matter to selfreplicating, self-sustaining systems. Now that scientists have a better view of strange and potentially fertile environments in our solar system—the occasional flows of water on Mars, the petrochemical seas of Saturn’s moon Titan, and the cold, salty oceans that seem to lurk under the ice of Jupiter’s moons Europa and Ganymede—the origin of terrestrial life seems only a part of grander questions: Under what circumstances can life arise? And how widely can its chemical basis vary? That issue is made richer still by the discovery, over the past 16 years, of more than 500 extrasolar planets orbiting other stars—worlds of bewildering variety.These discoveries have pushed chemists to broaden their imagination about the possible chemistries of life. For instance, NASA has long pursued the view that liquid water is a prerequisite, but now scientists are not so sure. How about liquid ammonia, formamide, an oily solvent like liquid methane or supercritical hydrogen on Jupiter? And why should life restrict itself to DNA, RNA and proteins? After all, severalartificial chemical systems have now been made that exhibit a kind of replication from the component parts without relying on nucleic acids. All you need, it seems, is a molecular system that can serve as a template for making a copy and then detach itself. Looking at life on Earth, says chemist Steven Benner of the Foundation for Applied Molecular Evolution in Gainesville,Fla.,―we have no way to decide whether the similarities [such as the use of DNA and proteins] reflect common ancestry or the needs of life universally.‖But if we retreat into saying that we have to stick with what we know, he says,―we have no fun.‖2 How Do Molecules Form?molecular structures may be a mainstay of high school science classes,but the familiar picture of balls and sticks representing atoms and the bonds among them is largely a conventional fiction.The trouble is that scientists disagree on what a more accurate representation of molecules should look like. In the 1920s physicists Walter Heitler and Fritz London showed how to describe a chemical bond using the equations of then nascent quantum theory, and the great American chemist Linus Pauling proposed that bonds form when the electron orbitals of different atoms overlap in space.A competing theory by Robert Mulliken and Friedrich Hund suggested that bonds are the result of atomic orbitals merging into―molecular orbitals‖that extend over more than one atom. Theoretical chemistry seemed about to become a branch of physics. Nearly 100 years later the molecularorbital picture has become the most common one, but there is still no consensus among chemists that it is always the best way to look at molecules. The reason is that this model of molecules and all others are based on simplifying assumptions and are thus approximate, partial descriptions. In reality, a molecule is a bunch of atomic nuclei in a cloud of electrons, with opposing electrostatic forces fighting a constant tug-of-war with one another, and all components constantly moving and reshuffling. Existing models of the molecule usually try to crystallize such a dynamic entity into a static one and may capture some of its salient properties but neglect others.Quantum theory is unable to supply a unique definition of chemical bonds that accords with the intuition of chemists whose daily business is to make and break them. There are now many ways of describing molecules as atoms joined by bonds. According to quantum chemist Dominik Marx of Ruhr University Bochum in Germany, pretty much all such descriptions―are useful in some cases but fail in others.‖Computer simulations can now calculate the structures and properties of molecules from quantum first principles with great accuracy—as long as the number of electrons is relatively small. ―Computational chemistry can be pushed to the level of utmost realism and complexity,‖Marx says. As a result, computer calculations can increasingly be regarded as a kind of virtual experiment that predicts the course of a reaction. Once the reaction to be simulated involves more than a few dozen electrons, however, the calculations quickly begin to overwhelm even the most powerful supercomputer, so the challenge will be to see whether the simulations can scaleup—whether, for example, complicated biomolecular processes in the cell or sophisticated materials can be modeled this way.3 How Does the Environment Influence Our Genes?the old idea of biology was that who you are is a matter of which genes you have. It is now clear that an equally important issue is which genes you use. Like all of biology, this issue has chemistry at its core. The cells of the early embryo can develop into any tissue type. But as the embryo grows, these so-called pluripotent stem cells differentiate, acquiring specific roles (such as blood, muscle or nerve cells) that remain fixed in their progeny. The formation of the human body is a matter of chemically modifying the stem cells’ chro mosomes in ways that alter the arrays of genes that are turned on and off. One of the revolutionary discoveries in research on cloning and stem cells, however, is that this modification is reversible and can be influenced by the body’s experiences. Cells d o not permanently disable genes during differentiation, retaining only those they need in a ―ready to work‖ state. Rather the genes that get switched off retain a latent ability to work—to give rise to the proteins they encode—and can be reactivated, for instance, by exposure to certain chemicals taken in from the environment.What is particularly exciting and challenging for chemists is that the control of gene activity seems to involve chemical events happening at size scales greater thanthose of atoms and molecules—at the so-called mesoscale—with large molecular groups and assemblies interacting. Chromatin, the mixture of DNA and proteins that makes up chromosomes, has a hierarchical structure. The double helix is wound around cylindrical particles made from proteins called histones, and this string of beads is then bundled up into higher-order structures that are poorly understood [see illustration on opposite page]. Cells exercise great control over this packing—how and where a gene is packed into chromatin may determine whether it is active or not.Cells have specialized enzymes for reshaping chromatin structure, and these enzymes have a central role in cell differentiation. Chromatin in embryonic stem cells seems to have a much looser, open structure: as some genes fall inactive, the chromatin becomes increasingly lumpy and organized. ―The chromatin seems to fix and maintain or stabilize the cells’ state,‖ says pathologist Bradley Bernstein of Massachusetts General Hospital. What is more, such chromatin sculpting is accompanied by chemical modification of both DNA and histones. Small molecules attached to them act as labels that tell the cellular machinery to silence genes or, conversely, free them for action. This labeling is called ―epigenetic‖ because it does not alter the information carried by the genes themselves.The question of the extent to which mature cells can be returned to pluripotency—whether they are as good as true stem cells, which is a vital issue for their use in regenerative medicine—seems to hinge largely on how far the epigenetic marking can be reset.It is now clear that beyond the genetic code that spells out many of the cells’ key instructions, cells speak in an entirely separate chemical language of genetics—that of epigenetics. ―People can have a genetic predisposition to many diseases, including cancer, but whether or not the disease manifests itself will often depend on environmental factors operating through these epigenetic pathways,‖ says geneticist Bryan Turner of the University of Birmingham in England.4 How Does the Brain Think and Form Memories?the brain is a chemical computer. Interactions between the neurons that form its circuitry are mediated by molecules: specifically, neurotransmitters that pass across the synapses, the contact points where one neural cell wires up to another. This chemistry of the mind is perhaps at its most impressive in the operation of memory, in which abstract principles and concepts—a telephone number, say, or an emotional association—are imprinted in states of the neural network by sustained chemical signals. How does chemistry create a memory that is both persistent and dynamic, as well as able to recall, revise and forget?We now know parts of the answer. A cascade of biochemical processes, leading to a change in the amounts of neurotransmitter molecules in the synapse, triggers learning for habitual reflexes. But even this simple aspect of learning has short and long-term stages. Meanwhile more complex so-called declarative memory (of people, places, and so on) has a different mechanism and location in the brain, involving the activation of a protein called the NMDA receptor on certain neurons. Blocking thisreceptor with drugs prevents the retention of many types of declarative memory.Our everyday declarative memories are often encoded through a process called long-term potentiation, which involves NMDA receptors and is accompanied by an enlargement of the neuronal region that forms a synapse. As the synapse grows, so does the ―strength‖of its connection with neighbors—the voltage induced at the synaptic junction by arriving nerve impulses. The biochemistry of this process has been clarified in the past several years. It involves the formation of filaments within the neuron made from the protein actin—part of the basic scaffolding of the cell and the material that determines its size and shape. But that process can be undone during a short period before the change is consolidated if biochemical agents prevent the newly formed filaments from stabilizing. Once encoded, long-term memory for both simple and complex learning is actively maintained by switching on genes that give rise to particular proteins. It now appears that this process can involve a type of molecule called a prion. Prions are proteins that can switch between two different conformations. One of the conformations is soluble, whereas the other is insoluble and acts as a catalyst to switch other molecules like it to the insoluble state, leading these molecules to aggregate. Prions were first discovered for their role in neurodegenerative conditions such as mad cow disease, but prion mechanisms have now been found to have beneficial functions, too: the formation of a prion aggregate marks a particular synapse to retain a memory.There are still big gaps in the story of how memory works, many of which await filling with the chemical details. How, for example, is memory recalled once it has been stored? ―This is a deep problem whose analysis is just beginning,‖ says neuroscientist and Nobel laureate Eric Kandel of Columbia University.Coming to grips with the chemistry of memory offers the enticing and controversial prospect of pharmacological enhancement. Some memory-boosting substances are already known, including sex hormones and synthetic chemicals that act on receptors for nicotine, glutamate, serotonin and other neurotransmitters. In fact, according to neurobiologist Gary Lynch of the University of California, Irvine, the complex sequence of steps leading to long-term learning and memory means that there are many potential targets for such memory drugs.5 How Many Elements Exist?the periodic tables that adorn the walls of classrooms have to be constantly revised, because the number of elements keeps growing. Using particle accelerators to crash atomic nuclei together, scientists can create new ―superheavy‖ elements, which have more protons and neutrons in their nuclei than do the 92 or so elements found in nature. These engorged nuclei are not very stable—they decay radioactively, often within a tiny fraction of a second. But while they exist, the new synthetic elements such as seaborgium (element 106) and hassium (element 108) are like any other insofar as they have well-defined chemical properties. In dazzling experiments, researchers have investigated some of those properties in a handful of elusive seaborgium and hassium atoms during the brief instants before they fell apart.Such studies probe not just the physical but also the conceptual limits of the periodic table: Do superheavy elements continue to display the trends and regularities in chemical behavior that make the table periodic in the first place? The answer is thatsome do, and some do not. In particular, such massive nuclei hold on to the atoms’ innermost electrons so tightly that the electrons move at close to the speed of light. Then the effects of special relativity increase the electrons’ mass and may play havoc with the quantum energy states on which their chemistry—and thus the table’s periodicity—depends. Because nuclei are thought to be stabilized by particular ―magic numbers‖ of protons and neutrons, some researchers hope to find what they call the island of stability, a region a little beyond the current capabilities of element synthesis in which superheavies live longer. Yet is there any fundamental limit to their size? A simple calculation suggests that relativity prohibits electrons from being bound to nuclei of more than 137 protons.More sophisticated calculations defy that limit. ―The periodic system will not end at 137; in fact, it will never end,‖ insists nuclear physicist Walter Greiner of the Johann Wolfgang Goethe University Frankfurt in Germany. The experimental test of that claim remains a long way off.6 Can Computers Be Made Out of Carbon?computer chips made out of graphene—a web of carbon atoms—could potentially be faster and more powerful than silicon-based ones. The discovery of graphene garnered the 2010 Nobel Prize in Physics, but the success of this and other forms of carbon nanotechnol ogy might ultimately depend on chemists’ ability to create structures with atomic precision. The discovery of buckyballs—hollow, cagelike molecules made entirely of carbon atoms—in 1985 was the start of something literally much bigger. Six years later tubes of carbon atoms arranged in a chicken wire–shaped, hexagonal pattern like that in the carbon sheets of graphite made their debut. Being hollow, extremely strong and stiff, and electrically conducting, these carbon nanotubes promised applications ranging from high-strength carbon composites to tiny wires and electronic devices, miniature molecular capsules, and water-filtration membranes.For all their promise, carbon nanotubes have not resulted in a lot of commercial applications. For instance, researchers have not been able to solve the problem of how to connect tubes into complicated electronic circuits. More recently, graphite has moved to center stage because of the discovery that it can be separated into individual chicken wire–like sheets, called graphene, that could supply the fabric for ultraminiaturized, cheap and robust electronic circuitry. The hope is that the computer industry can use narrow ribbons and networks of graphene, made to measure with atomic precision, to build chips with better performance than silicon-based ones. “Graphene can be patterned so that the interconnect and placement problems of carbon nanotubes are overcome,‖ says carbon specialist Walt de Heer of the Georgia Institute of Technology. Methods such as etching, however, are too crude for patterning graphene circuits down to the single atom, de Heer points out, and as a result, he fears that graphene technology currently owes more to hype than hard science. Using the techniques of organic chemistry to build up graphene circuits from the bottom up—linking together“polyaromatic‖ molecules containing several hexagonal carbon rings, like little fragments of a graphene sheet—might be the key tosuch precise atomicscale engineering and thus to unlocking the future of graphene electronics.7 How Do We Tap More Solar Energy?with every sunrise comes a reminder that we currently tap only a pitiful fraction of the vast clean-energy resource that is the sun. The main problem is cost: the expense of conventional photovoltaic panels made of silicon still restricts their use. Yet life on Earth, almost all of which is ultimately solar-powered by photosynthesis, shows that solar cells do not have to be terribly efficient if, like leaves, they can be made abundantly and cheaply enough.“One of the holy grails of solar-energy research is using sunlight to produce fuels,‖ says Devens Gust of Arizona State University. The easiest way to make fuel from solar energy is to split water to produce hydrogen and oxygen gas. Nathan S. Lewis and his collaborators at Caltech are developing an artificial leaf that would do just that [see illustration on opposite page] using silicon nanowires.Earlier this year Daniel Nocera of the Massachusetts Institute of Technology and his co-workers unveiled a silicon-based membrane in which a cobalt-based photocatalyst does the water splitting. Nocera estimates that a gallon of water would provide enough fuel to power a home in developing countries for a day. ―Our goal is to make each home its own power station,‖ he says.Splitting water with catalysts is still tough. ―Cobalt catalysts such as the one that Nocera uses and newly discovered catalysts based on other common metals are promising,‖ Gust says, but no one has yet found an ideal inexpensive catalyst.“We don’t know h ow the natural photosynthetic catalyst, which is based on four manganese atoms and a calcium atom, works,‖ Gust adds.Gust and his colleagues have been looking into making molecular assemblies for artificial photosynthesis that more closely mimic their biological inspiration, and his team has managed to synthesize some of the elements that could go into such an assembly. Still, a lot more work is needed on this front. Organic molecules such as the ones nature uses tend to break down quickly. Whereas plants continually produce new proteins to replace broken ones, artificial leaves do not (yet) have the full chemical synthesis machinery of a living cell at their disposal.8 What Is the Best Way to Make Biofuels?instead of making fuels by capturing the rays of the sun, how about we let plants store the sun’s energy for us and then turn plant matter into fuels? Biofuels such as ethanol made from corn and biodiesel made from seeds have already found a place in the energy markets, but they threaten to displace food crops, particularly in developing countries where selling biofuels abroad can be more lucrative than feeding people at home. The numbers are daunting: meeting current oil demand would mean requisitioning huge areas of arable land.Turning food into energy, then, may not be the best approach. One answer could be to exploit other, less vital forms of biomass. The U.S. produces enough agricultural and forest residue to supply nearly a third of the annual consumption of gasoline and diesel for transportation. Converting this low-grade biomass into fuel requires breaking down hardy molecules such as lignin and cellulose, the main building blocks of plants. Chemists already know how to do that, but the existing methods tend to be too expensive, inefficient or difficult to scale up for the enormous quantities of fuel that the economy needs.One of the challenges of breaking down lignin—cracking open the carbon-oxygen bonds that link ―aromatic,‖ or benzenetype, rings of carbon atoms—was recently met by John Hartwig and Alexey Sergeev, both at the Universityof Illinois. They found a nickel-based catalyst able to do it. Hartwig points out that ifbiomass is to supply nonfossil-fuel chemical feedstocks as well as fuels, chemists will also need to extract aromatic compounds (those having a backbone of aromatic rings) from it. Lignin is the only major potential source of such aromatics in biomass.To be practical, such conversion of biomass will, moreover, need to work with mostly solid biomass and convert it into liquid fuels for easy transportation along pipelines. Liquefaction would need to happen on-site, where the plant is harvested. One of the difficulties for catalytic conversion is the extreme impurity of the raw material—classical chemical synthesis does not usually deal with messy materials such as wood. ―There’s no consensus on how all this will be done in the end,‖ Hartwig says. What is certain is that an awful lot of any solution lies with the chemistry, especially with finding the right catalysts. ―Almost e very industrial reaction on a large scale has a catalyst associated‖ with it, Hartwig points out.9 Can We Devise New Ways to Create Drugs?the core business of chemistry is a practical, creative one: making molecules, a key to creating everything from new materials to new antibiotics that can outstrip the rise of resistant bacteria. In the 1990s one big hope was combinatorial chemistry, in which thousands of new molecules are made by a random assembly of building blocks and then screened to identify those that do a job well. Once hailed as the future of medicinal chemistry, ―combi-chem‖ fell from favor because it produced little of any use.But combinatorial chemistry could enjoy a brighter second phase. It seems likely to work only if you can make a wide enough range of molecules and find good ways of picking out the minuscule amounts of successful ones. Biotechnology might help here—for example, each molecule could be linked to a DNA-based“bar code‖ that both identifies it and aids its extraction. Or researchers can progressively refine the library of candidate molecules by using a kind of Darwinian evolution in the test tube. They can encode potential protein-based drug molecules in DNA and then use error-prone replication to generate new variants of the successful ones, thereby finding improvements with each round of replication and selection. Other new techniques draw on nature’s mastery at uniting molecular fragments in prescribed arrangements. Proteins, for example, have a precise sequence of amino acids because that sequence is spelled out by the genes that encode the proteins. Using this model, future chemists might program molecules to assemble autonomously. The approach has the advantage of being ―green‖ in that it reduces the unwanted by-products typical of traditional chemical manufacturing and the associated waste of energy and materials.David Liu of Harvard University and his co-workers are pursuing this approach. They tagged the building blocks with short DNA strands that program the linker’s structure. They also created a molecule that walks along that DNA, reading its codes and sequentially attaching small molecules to the building block to make the linker—a process analogous to protein synthesis in cells. Liu’s method could be a handy way to tailor new drugs.“Many molecular life scientists believe that macromolecules will play an increasingly central, if not dominant, role in the future of therapeutics,‖ Liu says.10 Can We Continuously Monitor Our Own Chemistry?increasingly, chemists do not want to just make molecules but also to communicate with them: to make chemistry an information technology that will interface with anything from living cells to conventional computers and fiber-optic telecommunications.In part, it is an old idea: biosensors in which chemical reactions are used to report on concentrations of glucose in the blood date back to the 1960s, although only recently has their use for monitoring diabetes been cheap, portable and widespread. Chemical sensing could have countless applications—to detect contaminants in food and water at very low concentrations, for instance, or to monitor pollutants and trace gases present in the atmosphere. Faster, cheaper, more sensitive and more ubiquitous chemical sensing would yield progress in all of those areas.It is in biomedicine, though, that new kinds of chemical sensors would have the most dramatic potential. For instance, some of the products of cancer genes circulate in the bloodstream long before the condition becomes apparent to regular clinical tests. Detecting these chemicals early might make prognoses more timely and accurate. Rapid genomic profiling would enable drug regimens to be tailored to individual patients, thereby reducing risks of side effects and allowing some medicines to be used that today are hampered by their dangers to a genetic minority.Some chemists foresee continuous, unobtrusive monitoring of all manner of biochemical markers of health and disease, perhaps providing real-time information to surgeons during operations or to automated systems for delivering remedial drug treatments. This futuristic vision depends on developing chemical methods for selectively sensing particular substances and signaling about them even when the targets occur in only very low concentrations.MORE TO EXPLOREBeyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. National Research Council. National Academies Press, 2003.Beyond the Bond. Philip Ball in Nature, Vol. 469, pages 26–28; January 6, 2011.Let’s Get Practical. George M. Whitesides and John Deutch in Nature, Vol. 469, pages 21–22; January 6, 2011.。

化学工业的难题与解决办法

化学工业的难题与解决办法

化学工业的难题与解决办法一、引言化学工业是现代产业中不可或缺的一部分,它涵盖了各个领域,从能源生产到日常用品制造。

然而,在迅猛发展的背后,我们也面临着一些挑战和难题。

本文将探讨化学工业面临的主要难题,并提出相应的解决办法。

二、环境污染与治理1. 难题:化学工业在生产过程中会释放大量废气、废水和固体废弃物,对环境造成污染。

2. 解决办法:采取有效的治理手段来减少污染物排放和处理排放物。

例如,建立完善的废弃物处理系统,开发高效的废水处理技术以及推广节能减排措施。

此外,还可以通过利用循环经济模式实现资源的最大化利用和废物的最小化排放。

三、安全问题与风险管理1. 难题:许多化学工业过程中涉及危险性较高的原料和操作步骤,存在潜在安全隐患。

2. 解决办法:要加强对化学工业过程的安全管理,包括建立健全的安全规章制度、组织培训和演练,并使用最先进的监测和控制设备来确保操作安全。

此外,还需要制定应急预案和提高危险品运输和存储的标准。

四、能源消耗与节能减排1. 难题:化学工业是能源密集型产业,高耗能是一大难题,并且会导致二氧化碳等温室气体排放增加。

2. 解决办法:通过推动技术创新和引进先进设备,提高能源利用效率;发展可再生能源替代传统能源;实施清洁生产技术,在生产过程中尽可能减少温室气体的排放量。

五、资源稀缺与可持续发展1. 难题:化学工业对诸多原材料的需求量不断增加,有限资源面临枯竭风险。

2. 解决办法:开展绿色化学研究,优化合成路线以及替代原材料;促进废弃物资源化利用,推动循环经济发展;创新科技手段实现从大规模生产到定制化生产的转变,减少浪费和资源使用。

六、创新技术的推广与应用1. 难题:化学工业需要不断引入新技术和创新产品,但推广困难。

2. 解决办法:鼓励科研机构与企业合作,加强技术转移和共享平台建设;加强知识产权保护,提供激励措施;完善政策环境和市场机制,降低新技术应用的门槛。

此外,还可以通过国际合作与交流来促进全球范围内的行业创新。

化学培训心得体会(精选6篇)

化学培训心得体会(精选6篇)

化学培训心得体会(精选6篇)化学培训心得体会(精选6篇)有了一些收获以后,心得体会是很好的记录方式,这样可以帮助我们分析出现问题的原因,从而找出解决问题的办法。

那么如何写心得体会才能更有感染力呢?以下是小编为大家收集的化学培训心得体会(精选6篇),希望能够帮助到大家。

化学培训心得体会1认真听了专家讲座、优秀教师示范课,观摩了优秀教师就初中化学疑难实验的操作和改进说明,通过自己动手操作,与同行进了交流探讨,觉得本次培训具有针对性和实效性,获益匪浅:教育观念得到了洗礼,教育科学理论学习得到了升华,课堂实验教学获得了新感悟,许多教学中的困惑、迷茫得到了启发解决。

收获最大、感受最深的是观摩了优秀教师就初中化学疑难实验的操作和改进说明,化学是一门综合性学科,同时又是一门实验性学科,平时注重实验教学对于培养学生学习化学兴趣、提高化学成绩是至关重要的,因此作为一名化学教师,除了具有渊博的知识外,还应掌握熟练的实验操作技能,良好的思维品质。

对照自己平时教学,虽然也比较注重实验教学,但对于部分实验因为种种原因出现现象不明显或实验不成功等结果,教学中倍感困惑。

这次培训恰好解决这些问题,真是对症下药,参加培训教师一致认为这次培训有效性。

通过培训不仅为青年教师快速成长搭建了平台,而且为实验有效性改进创设了极佳途径,我觉得这样的培训具有针对性的、有实效性的,符合化学教学实际。

通过本次培训我还体会到:在新的课程理念下,化学教师应树立全新的实验教学资源观,在教学中创造性地开发和利用一切有效的实验教学资源,丰富化学课堂教学信息,真正落实化学新课程的实施要求,使化学教学呈现出创新活力和勃勃生机!1、以实验室为阵地,开发和利用条件性资源化学实验室是化学实验教学的主要阵地,也是重要的条件性资源。

学校应重视实验室建设,保障常规实验教学的顺利开展。

同时,也要鼓励师生进行实验改进,自制微型化、环保型教具,发挥废弃生活用品在化学实验中的替代作用,如用饮料瓶、注射器、易拉罐做反应容器、集气瓶等。

化学学科的前沿方向与优先领域

化学学科的前沿方向与优先领域

化学学科的前沿方向与优先领域基础学科在整个自然科学体系中占有十分重要的地位和作用。

由基础科学研究产生的大量新思想、新理论、新效应等为应用科学提供了理论基础,对现代技术的发展有巨大的推动作用。

国内外大量事实说明,"科学理论不仅更多地走在技术和生产的前面,而且为技术、生产的发展开辟着各种可能的途径"。

基础研究是社会与科学发展的基础,而基础学科的建设与发展,是基础科学研究的基础。

化学和其它科学一样,是认识世界和改造世界重要学科。

它与物理科学、生命科学等相互渗透,不断形成新的交叉学科。

学科的前沿方向与优先领域为:(1)合成化学;(2)化学反应动态学;(3)分子聚集体化学;(4)理论化学;(5)分析化学测试原理和检测技术新方法建立;(6)生命体系中的化学过程;(7)绿色化学与环境化学中的基本化学问题;(8)材料科学中的基本化学问题;(9)能源中的基本化学问题;(10)化学工程的发展与化学基础。

今日化学何去何从今日化学何去何从?对于这个问题有两种回答:第一种回答:化学已有200余年的历史,是一门成熟的老科学,现在发展的前途不大了;21世纪的化学没有什么可搞了,将在物理学与生物学的夹缝中逐渐消微。

第二种回答:20世纪的化学取得了辉煌的成就,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。

本文主张第二种回答。

1. 20世纪化学取得的空前辉煌成就并未获得社会应有的认同在20世纪的100年中,化学与化工取得了空前辉煌的成就。

这个“空前辉煌”可以用一个数字来表达,就是2 285万。

1900年在Chemical Abstracts(CA)上登录的从天然产物中分离出来的和人工合成的已知化合物只有55万种。

经过45年翻了一番,到1945年达到110万种。

再经过25年,又翻一番,到1970年为236.7万种。

以后新化合物增长的速度大大加快,每隔10年翻一番,到1999年12月31日已达2 340万种。

结束语海洋化学21世纪的五大难题

结束语海洋化学21世纪的五大难题

第14章结束语——海洋化学21世纪的五大难题教材与一般专著不同,它不仅给读者以知识,而且要给读者以智慧,培养学生的科学创新精神和能力。

让学生听课后有绕梁九日之余音,读后有回味无穷的乐趣,还要让读者阅后有进一步思索和探讨的欲望,对科学发展充满信心和希望。

为此,最后本书愿意谈谈海洋化学21世纪的发展将面临的五大海洋化学难题。

科学研究起始于问题的提出,科学地论证和确认问题,及最后解决问题是科学发展的真正动力。

20世纪最伟大的数学家Hibert在1900年提出23个数学难题,每个难题的解决就诞生一位世界级著名的数学家。

对21世纪,世界数学家协会提出七个数学难题。

21世纪物理难题五个,其中包括四种作用力场的统一问题,相对论和量子力学的统一问题,等等。

21世纪的生物学的重大难题四个,即后基因组学,蛋白质组学,脑科学和生命起源。

21世纪化学的四大难题是:(1)化学反应理论和定律是化学的第一根本定律,但至今是不彻底的半经验理论。

人们希望建立真正的化学反应理论,即建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论,能预示反应是否发生?预示反应生成何种分子?如何控制化学反应?如何计算反应速率?如何确定化学反应途径?等等。

(2)精确的预计结构和性能定量关系。

这是解决分子设计和实用问题的关键。

(3)纳米尺度分子和材料的结构和性能的基本规律问题。

(4)人类和生物体内活分子(living molecules)运动的基本规律问题,即揭示生命现象的化学理论。

后两难题也是海洋化学难题所共同的。

因为海洋化学过程涉及化学、生物学、地球科学和物理学等诸学科,所以碰到的难题就更多更复杂一点。

下面尝试提出21世纪五大海洋化学难题,供大家一起探讨。

1、关于海洋化学反应的理论之探讨。

例如:20世纪60年代,以Sillén教授为代表的物理化学家把化学平衡原理引入海洋,解决了一系列重大化学问题。

但是海水体系十分复杂,又受生物的控制、人类的影响,海洋不是真正的热力学平衡体系。

化学概论绪论

化学概论绪论
- 5 / 32-
第1章 绪论
学科介绍
化学的第三难题——纳米尺度的基本规律
尺度的不同,常常引起相互作用的不同,导致物质 性能及其运动规律和原理的质的区别,尺度效应至关重 要。例如金的熔点为1063℃,纳米金的熔点为330℃; 银的熔点为960.3℃,而纳米银的熔点为100℃;纳米铂 黑催化剂可使乙烯催化反应的温度从600℃降至室温等。 纳米材料的发现是人类从宏观到微观,认识层次的一次飞跃
- 9 / 32-
第1章 绪论 学科介绍
中国科学院资深院士 南开大学化学学院
申泮文教授
化学是解决人类社会可持续发展的核心科学 诺贝尔自然科学奖是科学技术大发展的推动力!
- 10 / 32-
第1章 绪论
1998年诺贝尔化学奖
科恩发展了量子化学中的电子密度 泛函理论(DFT),波普发展了量 子化学计算方法。
如此平整的碳元素在量子物理学中所具有的杰出性能。
- 8 / 32-
第1章 绪论 学科介绍
化学的第四难题——生命活分子的基本规律
充分认识和彻底了解人类和生物体内活分子的运动规律,如 (1)配体小分子和受体生物大分子的相互作用,是药物设计的基 础。(2)植物光合作用中,作为催化剂的活分子叶绿素是怎样起 作用的?植物的根瘤菌能固氮,再进一步合成蛋白质和核酸。这 两个伟大的催化反应能否在化学工厂中、温和条件下实现?(3) 牛羊等食草动物胃内的酶分子如何能把植物纤维分解为小分子? 这将为充分利用自然界中丰富的植物纤维资源打下基础。(4)人 类的大脑是用泛分子组装成的最精巧的计算机,如何彻底了解大 脑的结构和功能?如何实现从生物分子到分子生物的飞跃?如何 跨越从化学进化到生物进化的鸿沟?等等。
第1章 绪论 学科介绍
“化学是通过探索那些肉眼看不见的粒子——原 子、分子的特征和行为,引导着人们认识整个物质 世界。”

说说21世纪的四大化学难题3个

说说21世纪的四大化学难题3个

说说21世纪的四大化学难题原创:徐光宪催化开天地2017-03-15到了21世纪,数学界、物理学界和生物学界都相继提出了各自领域的重大难题或奋斗目标。

对这一问题,提出21世纪的四大化学难题供大家一起探讨。

在回答下面难题以前,先要说说物质之间的作用力是电磁力,原子之间、原子核与电子之间的作用力还是电磁力,而且是变化的电磁力,电磁力分为引力和斥力。

原子核周围、电子周围、任何物质周围都有电磁场,电磁场同样分为引力场和斥力场,只是大小不同,电磁场同样是变化的。

不同元素的原子电磁场是不同的。

物质在一般情况下,引力是大于斥力的。

在某一时刻,原子之间电磁力大小基本是不变的,不同的时刻电磁力的大小是变化的,也就是引力和斥力是变化的,基本平衡的。

原子是带电的,并不是中性。

原子核也不是带正电的,而是高电位,电子也不是带负电的,而是低电位,原子核和电子的电荷更不会抵消,因为电荷是一种物质,物质是不灭的,只会转换。

在一个变化的系统中,质能是不会变化的,物质质量与能量能相互转换。

摩擦使振动增大,噪音增大,新物质变化增多,电磁场、电磁力变化增大,发热量增多。

当然引力、斥力变化增大。

引力大原子之间的距离减小,原子聚集,形成新的物质,斥力大原子之间的距离增大,分裂物质,同样有新的物质产生。

目前人类的一切活动都在地球上面,或者说在宇宙中,地球、宇宙、物体都是电磁场,人类的活动当然要受到地球、宇宙电磁场的影响。

同时地球是一个带电体,受到地球、宇宙电磁力的影响,而且都是变化的。

1. 如何建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论?化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。

应该说,目前的一些理论方法对描述复杂化学体系还有困难。

因此,建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等,是21世纪化学应该解决的第一个难题。

21世纪理论化学的挑战与机遇77页PPT

21世纪理论化学的挑战与机遇77页PPT

by David Adam In the melting pot of modern science, chemistry's cutting edge is being rebranded as biology or nanotechnology.
David Adam wonders if false modesty is leaving chemists to pick up the crumbs from their own periodic table.
21世纪理论化学的挑战和机遇
徐光宪
化学与理论化学在20世纪都取得了辉煌 的成就,但未获得社会应有的认可。北 大化学系学生会对本科生的调研显示, 有75%的同学认为化学是成熟的老科学, 发展前途不大,理论化学尤其不受重视。
我们要分析原因采取对策,积极主动争 取社会的认同。对于21世纪理论化学的 发展,要采取“侵略性”的战略,既要 大力加强量子化学的基础研究,又要扩 充我们的研究领域。国与国之间要和平 共处,但学科与学科之间要互相“侵 略”,渗透交叉,才能推动学科的发展。 所以Theoretical chemists in the 21st century should be more aggressive.
这样化学这门重要的中心科学(Central science)反而被社会看作是伴娘科学 (Bridesmaid science)而不受重视(参 见前引Nature社论),化学家居然不喊 不叫也不抱怨。化学家的谦虚本是美德,
但因此而在社会上造成化学是落日科学 (Sunset science)的印象,吸引不到优 秀的年轻学生,这个问题就大了。
§理论化学在现代化学的发展中起了 非常重要的作用
2019年,诺贝尔化学奖授予量子化学家科恩 和玻普耳。陈敏伯教授在《科学》(上海科 技出版社)发表的的文章中提到:瑞典皇家 科学院2019年,诺贝尔化学奖授予量子化学 家科恩和玻普耳。陈敏伯在颁奖公报中说: (1)“量子化学已经发展成为广大化学家 所使用的工具,将化学带入一个新时代,在 这个新时代里实验和理论能够共同协力探讨 分子体系的性质。化学不再是纯实验科学 了”。(2)“当接近90年代快结束的时候, 我们看到化学理论和计算的研究有了很大的 进展 ,其结果使整个化学正在经历着一场革 命性的变化”。

化学技术使用中的难点与解决方法

化学技术使用中的难点与解决方法

化学技术使用中的难点与解决方法在当今社会,化学技术被广泛应用于各个领域,为人类的生活和工业发展带来了许多便利。

然而,化学技术使用中也存在着许多难点,这些难点在一定程度上制约了化学技术的进一步发展。

本文将讨论化学技术使用中的难点及其解决方法。

难点一:环境污染化学技术在生产过程中会产生大量的废气、废水和固体废弃物,对环境造成严重污染。

如何有效控制和处理这些污染物成为了化学技术使用中的一大难点。

解决方法:首先,可以采用精细化学工程技术,通过优化生产流程和反应条件,减少废物产生。

其次,可以使用先进的污染治理技术,如催化氧化、生物降解等,对废气、废水和固体废弃物进行处理和清洁化。

另外,还可以将绿色化学原则应用于化学工艺设计中,选择环境友好的反应剂和催化剂,并推广循环经济理念,实现资源的高效利用和废物的减量化。

难点二:安全隐患化学技术使用过程中存在着一定的安全风险,一些危险化学物质的不慎泄漏或失控可能导致事故发生,对人员和环境带来严重威胁。

解决方法:为了降低安全隐患,首先需要建立完善的安全管理体系,包括严格的生产安全规程和操作规范,安全教育和培训,以及安全设备的使用和维护。

其次,应加强设备监控和事故预防措施,如安装仪器仪表监测系统,提前发现异常情况并及时采取措施。

另外,加强与应急救援部门的合作,制定应急预案和演练,提高事故应急处理能力。

难点三:高能耗化学技术的生产过程通常需要耗费大量的能源,而能源资源的稀缺性和环境问题亟待解决。

解决方法:为了降低能耗,可以采用能源高效利用技术,如余热回收、蒸汽联供等,最大限度地利用能源,减少浪费。

此外,开发和推广新型的低能耗反应器和工艺,如微型化学反应器、催化剂等,可以提高反应效率,降低能耗。

还可以利用可再生能源替代传统能源,如太阳能、风能等,实现绿色化学生产。

难点四:产品质量控制化学技术生产的产品质量对于安全、可靠的应用至关重要,但由于反应条件的复杂性和原料的多变性,产品质量控制成为一大难点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21世纪化学发展的四大难题
化学是一门承上启下的中心科学;化学是一门与我们的衣、食、住、行都有密切联系、社会迫切需要的中心科学;化学是与信息、生命、材料、环境、能源、地球、空间和核科学等都有紧密联系、交叉和渗透的中心科学。

化学是20世纪发明的七大技术中排序第一的技术,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。

然而,21世纪化学却面临着四大难题:
一.建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论
化学反应理论和定律是化学的第一根本规律。

建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等。

二.分子结构及其和性能的定量关系
这里的“结构”包含构型、构象、手性、粒度、形状和形貌等,而“性能”则包含物理、化学和功能性质以及生物和生理活性等。

虽然从理论上证明一个分子的电子云密度可以决定它的所有性质,但实际计算困难很多,现在对结构和性能的定量关系的了解,还远远不够。

因而,大力发展密度泛函理论和其他计算方法,是21世纪化学的第二个重大难题。

三.生命现象中的化学机理问题
充分认识和彻底了解人类和生物体内分子的运动规律。

例如:研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础、光合作用的机理、生物固氮作用的机理、人类的大脑是用“泛分子”组装成的最精巧的计算机、蛋白质和DNA的理论研究等。

四.纳米尺度的基本规律
当尺度在十分之几到10nm的量级,正处于量子尺度和经典尺度的模糊边界中,有许多新的奇异特性和新的效应,新的规律和重要应用,值得理论化学家去探索研究。

如:热力学性质与粒子尺度的关系、纳米粒子表面积引起性质的不同变化等。

1。

相关文档
最新文档