第8章 代数方程和常微分方程求解
常微分方程的解法
常微分方程的解法什么是常微分方程?在数学中,常微分方程是描述自变量与一个或多个函数的导数之间关系的方程。
常微分方程是许多科学和工程问题的数学模型的基础,因此对其解法的研究具有重要意义。
常微分方程的分类常微分方程可以根据阶数、线性性质、系数类型等进行分类,主要包括一阶常微分方程、二阶常微分方程、线性常微分方程、非线性常微分方程等。
不同类型的微分方程需要采用不同的解法进行求解。
常微分方程的解法1. 分离变量法当常微分方程可以化为变量分离后,可以采用分离变量法进行求解。
这种方法适用于一阶可分离变量的常微分方程,基本思想是将未知函数的导数与自变量分离到不同的方程两边,通过积分来求解。
2. 特征方程法特征方程法适用于线性常系数齐次微分方程,通过找到相应的特征方程并求得特征根,再根据特征根的不同情况得到通解形式。
特征方程法是解决二阶及以上线性齐次微分方程最常用的方法之一。
3. 变易参数法对于二阶非齐次线性微分方程,可以采用变易参数法求解。
该方法通过猜测一个特解形式,并代入原微分方程得到特解,再加上对应齐次线性微分方程的通解得到原非齐次微分方程的通解。
4. 拉普拉斯变换法拉普拉斯变换法主要适用于线性时不变系统稳态和暂态响应问题,通过将微分方程转化为代数方程,从而得到更容易求解的结果。
常微分方程的应用常微分方程广泛应用于物理、生物、经济、工程等领域。
例如,弹簧振动系统、放射性衰变过程、人口增长模型等都可以用常微分方程进行建模和求解,因此对常微分方程的深入理解及其解法的掌握对于实际问题具有重要意义。
总结通过本文简要介绍了常微分方程及其分类,并详细讨论了常微分方程的几种常用解法。
同时也指出了常微分方程在现实生活中的重要应用。
在实际问题中,掌握不同类型常微分方程的解法,并能灵活运用于实际问题中,对于深化对其理论和应用的理解具有重要意义。
希望本文对读者进一步理解和掌握常微分方程及其解法有所帮助。
常微分方程常见形式及解法
常微分方程常依其阶数分类,阶数是指自变数导数的 最高阶数,最常见的二种为一阶微分方程及二阶微分 方程。例如以下的贝塞尔方程:
2021/10/10
(其中y为应变数)为二阶微分方程,其解为贝塞尔
函数。
常微分方程毕文彬
2
2021/10/10
常见例子
以下是常微分方程的一些例子,其中u为未知的函数,自变 数为x,c及ω均为常数。
2021/10/10
常微分方程毕文彬
4
简易微分方程的求解方法
01
一阶线性常微分方程
02
二阶常系数齐次常微分方程
2021/10/10
常微分方程毕文彬
5
01 一阶线性常微分方程
l对于一阶线性常微分方程,常用的方法是常数 变易法: l对于方程:
l可知其通解:
l然后将这个通解代回到原式中,即可求出C(x) 的值
2021/10/10
常微分方程毕文彬
6
02 二阶常系数齐次常微分方程
l对于二阶常系数齐次常微分方程,常用 方法是求出其特征方程的解 l对于方程: l可知其通解: l其特征方程: l根据其特征方程,判断根的分布情况, 然后得到方程的通解 l一般的通解形式为(在r1=r2的情况下):
l(在的r1≠r2情况下): l(在共轭复数根的情况下):
l 非齐次一阶常系数线性微分方程:
l 齐次二阶线性微分方程:
l 描述谐振子的齐次二阶常系数线性微分方程:
l 非齐次一阶非线性微分方程:
l 描述长度为L的单摆的二阶非线性微分方程:
常微分方程毕文彬
3
微分方程的解
l微分方程的解通常是一个函数表达式(含一个 或多个待定常数,由初始条件确定)。例如: ldy/dx=sinx, l的解是 ly=-cosx+C, l其中C是待定常数; l例如,如果知道 l y=f(π)=2, l则可推出 l C=1, l而可知 ly=-cosx+1,
第8章 代数方程和常微分方程求解
8.2 常微分方程求解
求解微分方程必须事先对自变量的某些值规定出 函数或是导数的值。 若在自变量为零的点上,给出初始条件,称为初 值问题,最普遍的自变量是“时间”。例如,弹 性系统的自由振动,若以时间为零来限定位移和 速度,这是一个初值问题。 若在自变量为非零的点上,给出边界条件,称为 边值问题,最普遍的自变量是“位移”。例如, 描述梁弯曲变形的微分方程,边界条件总是规定 在梁的两端。
当 x 0 2 和 y 0 0 条件下的特解。 在此问题中,两个微分方程的MATLAB表达式为: e1:Dx+2*x-Dy=10*cos(t) e2:Dx+Dy+2*y=4*exp(-2*t) 初值条件表达式为: C1:x(0)=2 C2:y(0)=0
8.1 代数方程求解
8.1.1 代数方程图解法
符号绘图函数fplot()和ezplot()也可以用于图解 法求代数方程的根,它适用于求解维数较少的一 维方程或二维方程组。 对于一维方程图解,其解就是函数曲线与x轴交点 所对应的变量数值。如果有多个交点,则表示该 方程有多个解;如果没有交点,则表示该方程没 有解。 例如,在例5-3使用符号绘图函数绘制代数方程的 图形(图5-3左图)中可见,函数在区间[-5,5]内 与x轴有3个交点,因此该代数方程该区间内有3个 实根。
M文件运行结果: 采用矩阵左除或矩阵求逆求出线性方程组的解: xx (zx)= 1.0000 2.0000 3.0000 -1.0000 计算残量: r = 1.0e-014 * 0.0888 0.2220 -0.4441 0.1776 计算残量的模: R = 5.3475e-015
常微分方程解法总结
常微分方程解法总结引言在数学领域中,常微分方程是一类以函数与其导数之间关系为描述对象的方程。
它广泛应用于物理、化学、生物等自然科学的建模和解决问题中。
常微分方程的求解有许多方法,本文将对其中一些常见的解法进行总结和讨论。
一、分离变量法分离变量法是求解常微分方程中常用的一种方法。
它的基本思想是将方程中的变量分离,将含有未知函数的项移到方程的一侧,含有自变量的项移到方程的另一侧,然后对两边同时积分,从而得到最终的解析解。
例如,考虑一阶常微分方程dy/dx = f(x)g(y),可以将此方程改写为1/g(y)dy = f(x)dx,然后对两边同时积分得到∫1/g(y)dy =∫f(x)dx。
在对两边积分后,通过求解不定积分得到y的解析表达式。
二、常系数线性齐次微分方程常系数线性齐次微分方程是另一类常见的常微分方程。
它具有形如dy/dx + ay = 0的标准形式,其中a为常数。
这类方程的解法基于线性代数中的特征值和特征向量理论。
对于形如dy/dx + ay = 0的一阶常微分方程,可以假设其解具有形式y = e^(rx),其中r为待定常数。
带入方程,解得a的值为r,于是解的通解即为y = Ce^(rx),其中C为任意常数。
通过特定的初值条件,可以确定常数C的值,得到方程的特解。
三、变量分离法变量分离法是一种适用于某些特殊形式常微分方程的解法。
其基本思想是将方程中的变量进行适当的变换,从而将方程化为分离变量的形式。
例如,考虑一阶非齐次线性微分方程dy/dx = f(x)/g(y),其中f(x)和g(y)为已知函数。
通常情况下,变量分离法需要对方程变形,将含有未知函数和自变量的项进行合并处理。
假设存在一个新的变量z(x) = g(y),则dy/dx = (dy/dz)*(dz/dx) = (1/g'(y))*(dz/dx)。
将dy/dx和f(x)分别代入原方程,进而可以求得dz/dx。
对dz/dx进行积分后,可以得到z(x)的解析表达式。
微分方程求解方法
微分方程求解方法微分方程是数学中的一个重要概念,广泛应用于物理学、工程学、经济学等领域。
微分方程求解是通过已知条件找到满足方程的未知函数的过程。
根据方程的类型和性质,有多种解法可供选择。
一、可分离变量的微分方程可分离变量的微分方程形式为dy/dx = f(x)g(y),可以通过变量的分离和积分的方法进行求解。
具体步骤如下:1. 将方程变形为dy/g(y) = f(x)dx。
2. 对两边同时积分,得到∫(1/g(y))dy = ∫f(x)dx。
3.求出积分的表达式,然后求解原方程。
二、一阶线性微分方程一阶线性微分方程的一般形式为dy/dx + P(x)y = Q(x),可通过线性变换和积分的方法进行求解。
具体步骤如下:1. 通过线性变换将方程变为dy/dx + yP(x) = Q(x)P(x)。
2. 确定积分因子μ(x) = e∫P(x)dx。
3. 将原方程两边同时乘以μ(x),并进行化简得到d(yμ(x))/dx = Q(x)μ(x)。
4. 对等式两边同时积分得到∫d(yμ(x))/dx dx = ∫Q(x)μ(x)dx。
5.求出积分的表达式,然后求解原方程。
三、二阶线性齐次微分方程二阶线性齐次微分方程的一般形式为d²y/dx² + p(x)dy/dx + q(x)y = 0,可以通过特征根法求解。
具体步骤如下:1. 假设解的形式为y = e^(mx)。
2. 将形式代入原方程,得到特征方程m² + pm + q = 0。
3.求解特征方程得到特征根m₁和m₂。
4.根据特征根的情况,得到相应的通解。
四、二阶线性非齐次微分方程二阶线性非齐次微分方程的一般形式为d²y/dx² + p(x)dy/dx +q(x)y = f(x),可以通过常数变易法求解。
具体步骤如下:1.假设原方程的特解为y=u(x),将其代入原方程,得到关于u和它的导数的代数方程。
2.根据原方程的非齐次项f(x)的形式,设定特解的形式。
微分方程几种求解方法
微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。
求解微分方程是数学和工程中的常见问题。
根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。
1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。
它的基本思想是将微分方程中的变量分离,然后进行积分。
具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。
这种方法适用于一阶常微分方程,如y'=f(x)。
2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。
对于齐次方程可以使用变量代换法进行求解。
具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。
然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。
这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。
3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。
线性方程可以使用常数变易法或者待定系数法来进行求解。
常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。
待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。
这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。
4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。
它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。
具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。
常微分方程的常见解法
实例解析
实例1
求解一阶线性常微分方程 $y' + p(x)y = q(x)$,通过引入参数 $lambda$,可以将方程转化为 $lambda y = q(x)$,从而简化求解过程。
实例2
求解二阶常微分方程 $y'' + y' + y = 0$,通过引入参数 $lambda$,可以将方程转化为 $lambda^2 + lambda + 1 = 0$,从而求解出 $lambda$ 的值,进一步得到原方程的解。
当 (M(x)) 和 (N(x)) 均为非零函数时,该方法适用。
实例解析
1. 确定积分因子
选择积分因子为 (e^x)
5. 解出原方程
将 (e^x y = frac{1}{3} e^{3x} + C) 代入 原方程,解得 (y = frac{1}{3} x^2 + Ce^{-x})
4. 解方程
对两边积分,得到 (e^x y = frac{1}{3} e^{3x} + C)
04 积分因子法
定义与特点
定义
积分因子法是一种通过引入一个因子来简化微分方程的方法。
特点
通过乘以一个适当的因子,可以将微分方程转化为可分离变量的形式,从而简化求解过程。
适用范围
适用于形如 (M(x)y' + N(x)y = f(x)) 的线性微分方程,其中 (M(x)) 和 (N(x)) 是 已知函数,(f(x)) 是给定的函数。
实例2
考虑一阶常微分方程 (dy/dx = xy),其中 (x > 0) 且 (y > 0)。通过分离变量法, 我们可以得到 (dy/y = xdx),进一步求解得到 (ln|y| = frac{1}{2}x^2 + C),其 中 (C) 是积分常数。
数学常微分方程的定解问题求解
数学常微分方程的定解问题求解数学常微分方程是数学中非常重要的一个分支,它涉及到许多实际问题的建模与求解。
在解常微分方程的过程中,我们常常遇到定解问题,即在给定初始条件和边界条件下,求解出满足条件的函数解。
本文将探讨常微分方程的定解问题求解方法及其应用。
一、常微分方程的定义和分类常微分方程是指未知函数的导数与它本身之间的关系式。
一般形式为:其中 x 是自变量, y 是未知函数, f 是已知函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程两类。
一阶常微分方程涉及到未知函数 y 的一阶导数,高阶常微分方程涉及到多阶导数。
二、常微分方程的定解问题常微分方程的定解问题是指在给定初始条件和边界条件下,求解出函数 y 满足方程,并满足给定条件。
常微分方程的初值问题是其中一种常见的定解问题,给定初始条件 y(x0) = y0 和导数条件 y'(x0) = y'0,求解出满足条件的函数 y。
三、常微分方程的求解方法常微分方程的求解方法有很多种,常见的方法有分离变量法、齐次方程法、一阶线性方程法、常数变易法等。
1. 分离变量法对于可分离变量的一阶常微分方程,变量可以通过代数方法分离,然后分别求解。
例如对于方程 dy/dx = f(x)g(y),我们可以将 f(x) 和 g(y) 分别移到方程的两边,然后对两边分别积分得到解。
2. 齐次方程法对于一阶齐次方程 dy/dx = f(y/x),我们可以通过变量替换得到一个新的常微分方程 u' = f(u)-1/u,并且可以通过变量分离法等方法进一步求解。
3. 一阶线性方程法对于一阶线性方程 dy/dx + P(x)y = Q(x),我们可以通过积分因子的方法将其转化为可解的形式。
通过选择适当的积分因子,可以将原方程变换为(e^∫P(x)dx)y' + (e^∫P(x)dx)P(x)y = (e^∫P(x)dx)Q(x),然后可以通过变量分离法等方法求解。
常微分方程拉氏变换法求解常微分方程课件
求解得到的代数方程,得到$F(s)$的表达式。
解出常微分方程的解
要点一
反变换求解
通过反拉氏变换将$F(s)$还原为$f(t)$,从而得到常微分方 程的解。
要点二
验证解的正确性
将得到的解代入原常微分方程进行验证,确保解的正确性。
06
总结与展望
总结
拉氏变换法的优势
拉氏变换法在求解常微分方程时 具有明显的优势,它可以将复杂 的微分方程转化为代数方程,大 大简化了求解过程。
通过逐一求解一阶常微分方程,拉氏变换法可以应用于高阶微分方程的求解。
拉氏变换法的缺点
计算量大
在应用拉氏变换法求解常微分方程时,需要进行复 杂的积分和代数运算,计算量较大。
对初值条件敏感
对于某些常微分方程,初值条件的微小变化可能导 致拉氏变换法的失效。
不易理解
拉氏变换法的概念较为抽象,不易被初学者理解。
与其他方法的结合
可以考虑将拉氏变换法与其他数值方法或解析方法结合,以更有效 地求解各种类型的微分方程。
实际应用价值
随着科学技术的不断发展,常微分方程在各个领域的应用越来越广 泛,因此拉氏变换法在实际应用中也将发挥更大的作用。
感谢观 看
THANKS
信号处理中,拉氏变换法可以用于分析信号的滤波、调制 和解调等过程,优化信号处理效果。
04
拉氏变换法的优缺点
拉氏变换法的优点
求解过程简化
拉氏变换法可以将复杂的常微分方程转化为简 单的代数方程,从而简化了求解过程。
适用于多种初值条件
拉氏变换法可以处理多种初值条件,使得该方 法具有更广泛的适用性。
可应用于高阶微分方程
拉氏变换法求解一阶常微分方程
常微分方程解法
常微分方程[教学基本要求] 微积分1.理解微分方程的概念,了解微分方程的阶、通解、特解、初始条件等概念。
2.掌握一阶微分方程可分离变量型、齐次型、一阶线性微分方程的解法。
3.掌握降阶法解三种特殊二阶方程,及二阶常系数线性齐次、非齐次微分方程的解法。
4.了解一些简单的经济问题的微分方程模型;高等数学增加:掌握一阶全微分方程;会建立一阶常微分方程数学模型,解决一些简单的应用问题。
[知识要点]1. 以前我们遇到的是代数方程,求解的是一个或几个具体的未知量。
常微分方程是含有未知一元函数的导数(或微分)的等式,目的是求出这个未知函数。
通常用不定积分解出方程的解:含有任意常数(个数= 阶数)的通解或满足初始条件的特解(不含任意常数)。
2. 求解的第一步是判定方程的类型:首先是阶数,然后注意常系数还是变系数,线性还是非线性,齐次还是非齐次,根据类型选用适当方法求解。
3. 一阶微分方程可划分的类型及求解的基本方法: ·可分离变量型:)()(y g x f y =' 分离,积分⎰⎰=dx x f y g dy)()(·齐次型:)(x y f y =' 换元)(u f u x u y xyu ='+='⇒=,分离变量解)(x u 再求y 。
·线性方程:)()(x Q y x P y =+' 先解0)(=+'y x P y 然后可以用常数变易法求通解。
对线性方程的标准形式可直接用公式求通解⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()(; 若是常系数,可用特征方程求相应齐方程通解y ,待定系数法求非齐次方程的一个特解*y 。
记住非齐次方程的通解结构: y = y +*y·全微分方程:0),(),(=+dy y x Q dx y x P 应该恰是函数),(y x u u ==C 的全微分。
常微分方程与解法
常微分方程与解法常微分方程是数学中的一门重要的分支,广泛应用于自然科学、工程、经济等领域。
它描述了物理系统中的变化规律,具有很高的实用价值和理论意义。
本文将介绍常微分方程的基本概念、分类以及解法。
一、常微分方程的概念和分类常微分方程是指一个或多个未知函数及其导数之间的关系式,一般形式为 dy/dx = f(x)、d²y/dx² = f(x)、dy/dt = f(x, y)、d²y/dt² = f(x, y) 等。
其中,y 是要求解的未知函数,x 或 t 是自变量,f 是已知的函数。
根据常微分方程中未知函数的阶数,可将其分为一阶、二阶、高阶等不同类型。
1. 一阶常微分方程:形式为 dy/dx = f(x)。
一阶常微分方程只涉及到未知函数的一阶导数,是最简单的类型,通常以一阶线性常微分方程和一阶非线性常微分方程为代表。
2. 二阶常微分方程:形式为 d²y/dx² = f(x)。
二阶常微分方程是一阶导数和二阶导数相结合的方程,常见的包括二阶线性常微分方程和二阶非线性常微分方程。
3. 高阶常微分方程:形式为dⁿy/dxⁿ = f(x)。
高阶常微分方程是一阶导数、二阶导数及更高阶导数共同参与的方程,其解法相对更加复杂。
二、常微分方程的解法常微分方程的解法可以分为解析解法和数值解法两大类。
解析解法是指通过代数和函数的性质直接求得解析表达式,而数值解法则是通过数值计算近似得到数值解。
1. 解析解法解析解法是常微分方程求解的理论基础,它可以给出问题的精确解,常用的解析解法包括分离变量法、齐次方程法、常数变易法、常数变异法、拉普拉斯变换法等。
- 分离变量法:对于一阶常微分方程 dy/dx = f(x) ,可以通过将变量分离得到与 y 和 x 有关的微分方程,进而对其进行求解。
- 齐次方程法:对于一阶常微分方程 dy/dx = f(x,y)/g(x,y) ,若 f(x,y)和 g(x,y) 是关于 x 和 y 的同次多项式,可以通过引入新变量 z=y/x 来转化为齐次方程,再通过变量代换求解得到解析解。
常微分方程拉氏变换法求解常微分方程全文
拉普拉斯变换法用于求解常微分方程的基本思路:
对常微分方程进行拉氏变换法,得代数方程,求解 再反变换获取原方程的解
问题: 1. 什么是拉氏变换 2. 拉氏变换的基本性质 3. 什么是拉氏逆变换 4. 如何用拉氏变换求解微分方程
2
1拉普拉斯变换定义(简称拉氏变换)
对于在 [0, ) 上有定义的函数 f (t)
sx0(n2)
x (n1) 0
16
x(n) a1x(n1) an1x an x f (t)
给(4.32)两端施行Laplace Transform
sn
X
(s)
s n1 x0
sn2 x0
sx0(n2)
x (n1) 0
a1[s n1 X
(s)
sn2 x0
s n3 x0
x (n2) 0
]
an1[sX (s) x0 ] an X (s) F (s)
F (s) test f (t)dt
0
F (n) (s) (1)n t nest f (t)dt
0
F (n) (s) (1)n L[tn f (t)]
10
§3 拉普拉斯逆变换 已知象函数,求原函数
L1[F (s)] f (t)
也具有线性性质
L1[c1F1(s) c2F2 (s)] c1L1[F1(s)] c2L1[F2 (s)]
(sn a1sn1 an1s an ) X (s) F (s) B(s)
X (s) F(s) B(s) A(s)
x(t) L1[ X (s)] L1[ F (s) B(s)] A(s)
17
用拉氏变换求微分方程实例
例5 求 dx x e2t 满足初始条件 x(0) 0的特解
常系数线性微分方程的求解
2(#
,(#
.
! 11(+))]*($&1")+那么右端为:5*(4(+))%[0(+)./0"+&1(+)012"+]*$+所以#%%&1", 32+.(2 2(#
%0(+)(11(+),仍是求如(4)的特解。如果由方程(4)求得的特解为"*(+),对应的方程(3)的特解
是:"(+)%5*("*(+)*($&1")+)。
" %(7’./0!+&7!012!+)*+&5*("*)
%(7’./0!+&7!012!+)*+&’+,[!((+&’)./0!+&($+&))012!+]*+。
(’!)
利用通常的比较系数法要求出通解(’!)是相当困难的,作变量代换后把求解方程(’#)的问题
变得得容易了。
参考文献:
[’] 王高雄等8常微分方程8北京:高等教育出版社,!###
"& (%( ((%($
"& ! &$$! "$! ! &$
)(()" (( (%( ((%( ,)$!(&)" ! ! & " ! & & ,
#(( & (%(%
#! & !% #! $! !%
" (!*()(%(
$((%( ((%($
第8章--常微分方程边值问题的数值解法
第8章 常微分方程边值问题的数值解法8.1 引 言推论 若线性边值问题()()()()()(),,(),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤⎧⎨==⎩ (8.1.2) 满足(1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。
求边值问题的近似解,有三类基本方法:(1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解;(2) 有限元法(finite element method);(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。
8.2 差分法8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法设二阶线性常微分方程的边值问题为(8.2.1)(8.2.2)()()()(),,(),(),y x q x y x f x a x b y a y b αβ''-=<<⎧⎨==⎩其中(),()q x f x 在[,]a b 上连续,且()0q x ≥.用差分法解微分方程边值问题的过程是:(i) 把求解区间[,]a b 分成若干个等距或不等距的小区间,称之为单元;(ii) 构造逼近微分方程边值问题的差分格式. 构造差分格式的方法有差分法, 积分插值法及变分插值法;本节采用差分法构造差分格式;(iii) 讨论差分解存在的唯一性、收敛性及稳定性;最后求解差分方程. 现在来建立相应于二阶线性常微分方程的边值问题(8.2.1), (8.2.2)的差分方程. ( i ) 把区间[,]I a b =N 等分,即得到区间[,]I a b =的一个网格剖分:011N N a x x x x b -=<<<<=,其中分点(0,1,,)i x a ih i N =+=,并称之为网格节点(grid nodes);步长b a Nh -=. ( ii ) 将二阶常微分方程(8.2.2)在节点i x 处离散化:在内部节点(1,2,,1)i x i N =-处用数值微分公式2(4)1112()2()()()(),12i i i i i i i i y x y x y x h y x y x x h ξξ+---+''=-<< (8.2.3)代替方程(8.2.2)中()i y x '',得112()2()()()()()()i i i i i i i y x y x y x q x y x f x R x h +--+-=+,(8.2.4) 其中2(4)()()12i i h R x y ξ=. 当h 充分小时,略去式(8.2.4)中的()i R x ,便得到方程(8.2.1)的近似方程1122i i i i i i y y y q y f h +--+-=,(8.2.5)其中(),()i i i i q q x f f x ==, 11,,i i i y y y +-分别是11(),(),()i i i y x y x y x +-的近似值, 称式(8.2.5)为差分方程(difference equation),而()i R x 称为差分方程(8.2.5)逼近方程(8.2.2)的截断误差(truncation error). 边界条件(8.7.2)写成0,.N y y αβ==(8.2.6)于是方程(8.2.5), (8.2.6)合在一起就是关于1N +个未知量01,,,N y y y ,以及1N +个方程式的线性方程组:2211212211222111(2),(2),1,2,,1,(2).i i i i i N N N N q h y y h f y q h y y h f i N y q h y h f αβ-+----⎧-++=-⎪-++==-⎨⎪-+=-⎩(8.2.7)这个方程组就称为逼近边值问题(8.2.1), (8.2.2)的差分方程组(system of difference equations)或差分格式(difference scheme),写成矩阵形式2211122222223332222222111(2)11(2)11(2)11(2)11(2)N N N N N N y q h h f y q h h f y q h h f y q h h f y q h h f αβ------⎡⎤⎡⎤-+-⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. (8.2.8)用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.7)或(8.2.8), 其解01,,,N y y y 称为边值问题(8.2.1), (8.2.2)的差分解(difference solution). 由于(8.2.5)是用二阶中心差商代替方程(8.2.1)中的二阶微商得到的,所以也称式(8.2.7)为中心差分格式(centered-difference scheme).( iii ) 讨论差分方程组(8.2.7)或(8.2.8)的解是否收敛到边值问题(8.2.1), (8.2.2)的解,估计误差.对于差分方程组(8.2.7),我们自然关心它是否有唯一解;此外,当网格无限加密,或当0h →时,差分解i y 是否收敛到微分方程的解()i y x . 为此介绍下列极值原理:定理8.2.1 (极值原理) 设01,,,N y y y 是给定的一组不全相等的数,设1122(),0,1,2,,i i i i i i i y y y l y q y q i N h +--+=-≥=.(8.2.9)(1) 若()0,1,2,,i l y i N ≥=, 则{}0Ni i y =中非负的最大值只能是0y 或N y ; (2) 若()0,1,2,,i l y i N ≤=, 则{}0Ni i y =中非正的最小值只能是0y 或N y .证 只证(1) ()0i l y ≥的情形,而(2) ()0i l y ≤的情形可类似证明. 用反证法. 记{}0max i i NM y ≤≤=,假设0M ≥, 且在121,,,N y y y -中达到. 因为i y 不全相等,所以总可以找到某个00(11)i i N ≤≤-,使0i y M =,而01i y -和01i y +中至少有一个是小于M 的. 此时0000000011222()2.i i i i i i i i y y y l y q y h M M M q M q M h +--+=--+<-=-因为00,0i q M ≥≥,所以0()0i l y <, 这与假设矛盾,故M 只能是0y 或N y . 证毕!推论 差分方程组(8.2.7)或(8.2.8)的解存在且唯一. 证明 只要证明齐次方程组11202()0,0,1,2,,1,0,0i i i i i i i N y y y l y q y q i N h y y +--+⎧=-=≥=-⎪⎨⎪==⎩ (8.2.10)只有零解就可以了. 由定理8.7.1知,上述齐次方程组的解01,,,N y y y 的非负的最大值和非正的最小值只能是0y 或N y . 而00,0N y y ==,于是0,1,2,,.i y i N == 证毕!利用定理8.2.1还可以证明差分解的收敛性及误差估计. 这里只给出结果: 定理8.2.2 设i y 是差分方程组(8.2.7)的解,而()i y x 是边值问题(8.2.1), (8.2.2)的解()y x 在i x 上的值,其中0,1,,i N =. 则有224()(),96i i i M h y x y b a ε=-≤-(8.2.11)其中(4)4max ()a x bM yx ≤≤=.显然当0h →时,()0i i i y x y ε=-→. 这表明当0h →时,差分方程组(8.2.7)或(8.2.8)的解收敛到原边值问题(8.7.1), (8.7.2)的解.例8.2.1 取步长0.1h =,用差分法解边值问题43,01,(0)(1)0,y y x x y y ''-=≤≤⎧⎨==⎩并将结果与精确解()()2222()3434x xy x e e ee x --=---进行比较.解 因为110N h ==,()4,()3q x f x x ==, 由式(8.2.7)得差分格式221222112289(240.1)30.10.1,(240.1)30.1,2,3,,8,(240.1)30.10.9,i i i i y y y y y x i y y -+⎧-+⨯+=⨯⨯⎪-+⨯+=⨯=⎨⎪-+⨯=⨯⨯⎩0100y y ==, 00.1,1,2,,9i x ih i i =+==, 其结果列于表8.2.1.从表8.2.1可以看出, 差分方法的计算结果的精度还是比较高的. 若要得到更精确的数值解,可用缩小步长h 的方法来实现.8.2.2 一般二阶线性常微分方程边值问题的差分法对一般的二阶微分方程边值问题1212()()()()()(),,()(),()(),y x p x y x q x y x f x a x b y a y a y b y b αααβββ'''++=<<⎧⎪'+=⎨⎪'+=⎩ (8.2.12) 假定其解存在唯一.为求解的近似值,类似于前面的做法,( i ) 把区间[,]I a b =N 等分,即得到区间[,]I a b =的一个网格剖分:011N N a x x x x b -=<<<<=,其中分点(0,1,,)i x a ih i N =+=,步长b a Nh -=. ( ii ) 对式(8.2.12)中的二阶导数仍用数值微分公式2(4)1112()2()()()(),12i i i i i i i iy x y x y x h y x y x x h ξξ+---+''=-<<代替,而对一阶导数,为了保证略去的逼近误差为2()O h ,则用3点数值微分公式;另外为了保证内插,在2个端点所用的3点数值微分公式与内网格点所用的公式不同,即21112012000022212()()()(),,1,2,,1,263()4()()()(),,23()4()3()()(),.23i i i i i i i N N N N N N N N y x y x h y x y x x i N h y x y x y x h y x y x x h y x y x y x h y x y x x h ξξξξξξ+-----⎧-''''=-<<=-⎪⎪-+-⎪''''=+<<⎨⎪⎪-+''''=+<<⎪⎩(8.2.13) 略去误差,并用()i y x 的近似值i y 代替()i y x ,(),(),()i i i i i i p p x q q x f f x ===,便得到差分方程组1111221001221211(2)(),1,2,,1,2(34),2(43),2i i i i i i i i i N N N N p y y y y y q y f i N h hy y y y h y y y y h αααβββ-++---⎧-++-+==-⎪⎪⎪+-+-=⎨⎪⎪+-+=⎪⎩(8.2.14)其中(),(),(),1,2,,1i i i i i i q q x p p x f f x i N ====-, i y 是()i y x 的近似值. 整理得12021222211222121(23)42,(2)2(2)(2)2,1,2,,1,4(32)2.i i i i i i i N N N h y y y h hp y h q y hp y h f i N y y h y h αααααβββββ-+---+-=⎧⎪---++==-⎨⎪-++=⎩ (8.2.15)解差分方程组(8.2.15),便得边值问题(8.2.12)的差分解01,,,N y y y .特别地, 若12121,0,1,0ααββ====,则式(8.2.12)中的边界条件是第一类边值条件:(),();y a y b αβ==此时方程组(7.7.16)为221112112211221211112(2)(2)2(2),(2)2(2)(2)2,2,3,,2,(2)2(2)2(2).i i i i i i i N N N N N N h q y hp y h f hp hp y h q y hp y h f i N hp y h q y h f hp αβ-+------⎧--++=--⎪---++==-⎨⎪---=-+⎩(8.2.16) 方程组(8.2.16)是三对角方程组,用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.16),便得边值问题(8.2.12)的差分解01,,,N y y y .( iii ) 讨论差分方程组(8.2.16)的解是否收敛到微分方程的解,估计误差. 这里就不再详细介绍.例8.2.2取步长/16h π=,用差分法求下列边值问题的近似解,并将结果与精确解进行比较.精确解是1()(sin 3cos )10y x x x =-+. 解 因为(20)8N h π=-=,()1,()2,()cos p x q x f x x =-=-=, 由式(8.2.17)得差分格式()()()()()()()()()()()()()2122211222122216(2)216(1)216cos 16216(1)(0.3),216(1)2216(2)216(1)216cos 16,2,3,,6,216(1)2216(2)216cos 7i i i N N y yy y y i i y y πππππππππππππ-+--⎡⎤--⨯-++⨯-⎡⎤⎣⎦⎣⎦=--⨯-⨯-⎡⎤⎣⎦⎡⎤-⨯---⨯-++⨯-⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦==⎡⎤-⨯---⨯-⎡⎤⎣⎦⎣⎦=()()16216(1)(0.1),ππ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪-+⨯-⨯-⎡⎤⎣⎦⎩080.3,0.1y y =-=-, 00.1,1,2,,9i x ih i i =+==, 其结果列于表8.2.2.8.3 有限元法有限元法(finite element method)是求解微分方程定解问题的有效方法之一,它特别适用在几何、物理上比较复杂的问题. 有限元法首先成功地应用于结构力学和固体力学,以后又应用于流体力学、物理学和其他工程科学. 为简明起见,本节以线性两点边值问题为例介绍有限元法.考虑线性两点边值问题()(8.3.1)(8.3.2)()()()()(),,(),(),Ly p x y x q x y x f x a x b y a y b αβ⎧''⎪=-+=≤≤⎨==⎪⎩其中1()0,()0,C [,]p x q x p a b >≥∈, ,C[,]q f a b ∈.此微分方程描述了长度为b a -的可变交叉截面(表示为()q x )的横梁在应力()p x 和()f x 下的偏差()y x .8.3.1 等价性定理记{}221C [,]()C [,],(),()a b y y y x a b y a y b αβ==∈==, 引进积分()22()()[()]()()2()()d baI y p x y x q x y x f x y x x '=+-⎰. (8.3.3)任取21()C [,]y y x a b =∈,就有一个积分值()I y 与之对应,因此()I y 是一个泛函(functional),即函数的函数. 因为这里是,y y '的二次函数,因此称()I y 为二次泛函.对泛函(8.3.3)有如下变分问题(variation problem):求函数21C [,]y a b ∈,使得对任意21C [,]y a b ∈, 均有()()I y I y ≥, (8.3.4)即()I y 在y 处达到极小, 并称y 为变分问题(8.3.4)的解.可以证明:定理8.3.1(等价性定理) y 是边值问题(8.3.1), (8.3.2)的解的充分必要条件是y 使泛函()I y 在21C [,]a b 上达到极小,即y 是变分问题(8.3.4)在21C [,]a b 上的解. 证 (充分性) 设21C [,]y a b ∈是变分问题()I y 的解;即y 使泛函()I y 在21C [,]a b 上达到极小,证明y 必是边值问题(8.3.1), (8.3.2)的解.设()x η是2C [,]a b 任意一个满足()()0a b ηη==的函数,则函数21()()()C [,]y x y x x a b αη=+∈,其中α为参数. 因为y 使得()I y 达到极小,所以()()I y I y αη+≥,即积分()22()()[()()]()[()()]2()[()()]baI y p x y x x q x y x x f x y x x dxαηαηαηαη''+=+++-+⎰作为α的函数,在0α=处取极小值()I y ,故d()0d I y ααηα=+=. (8.3.5) 计算上式,得()()()()()022(8.d()d d ()[()()]()[()()]2()[()()]d d 2()[()()]()2()[()()]()2()()d 2()()()()()()()()d .bab abaI y p x y x x q x y x x f x y x x x p x y x x x q x y x x x f x x x p x y x x q x y x x f x x x ααααηααηαηαηααηηαηηηηηη===+''=+++-+'''=+++-''=+-⎰⎰⎰3.6)利用分部积分法计算积分[][]()()()d ()()d ()()()()()()()d ()()()d ,bbaab ba abap x y x x x p x y x x p x y x x x p x y x x x p x y x x ηηηηη'''='''=-''=-⎰⎰⎰⎰代入式(8.3.6),得()0(8.3.7)d()2()()()()()()d 0.d b a I y p x y x q x y x f x x x ααηηα'=⎡⎤⎣⎦'+=-+-=⎰因为()x η是任意函数,所以必有()()()()()()0p x y x q x y x f x ''-+-≡. (8.3.8)否则,若在[,]a b 上某点0x 处有()00000()()()()()0p x y x q x y x f x ''-+-≠,不妨设()00000()()()()()0p x y x q x y x f x ''-+->,则由函数的连续性知,在包含0x 的某一区间00[,]a b 上有()()()()()()0p x y x q x y x f x ''-+->.作002200000,[,]\[,],()()(),.x a b a b x x a x b a x b η∈⎧⎪=⎨--≤≤⎪⎩ 显然2()C [,]x a b η∈,且()()0a b ηη==,但()()()()()()()d ba p x y x q x y x f x x x η⎡⎤''-+-⎢⎥⎣⎦⎰ ()00()()()()()()d 0b a p x y x q x y x f x x x η⎡⎤''=-+->⎢⎥⎣⎦⎰,这与式(8.3.7)矛盾. 于是式(8.3.8)成立,即变分问题(8.3.4)的解y 满足微分方程(8.3.1), 且(),()y a y b αβ==故它是边值问题(8.3.1), (8.3.2)的解.(必要性) 设()y y x =是边值问题(8.3.1), (8.3.2)的解,证明y 是变分问题(8.3.4)的解;即:y 使泛函()I y 在21C [,]a b 上达到极小.因为()y y x =满足方程(8.3.1),所以()()()()()()0p x y x q x y x f x ''-+≡.设任意21()C [,]y y x a b =∈,则函数()()()x y x y x η=-满足条件()()0a b ηη==,且2()C [,]x a b η∈. 于是()()[]()222222()()()()()[()()]()[()()]2()[()()]d ()[()]()[()]2()()d 2()()()()()()()()d ()[()]()[()]d baba baaI y I y I y I y p x y x x q x y x x f x y x x x p x y x q x y x f x y x xp x y x x q x y x x f x x x p x x q x x xηηηηηηηηη-=+-''=+++-+'-+-''=+-++⎰⎰⎰()()()22222()()()()()()d ()[()]()[()]d ()[()]()[()]d .bb ba a bap x y x q x y x f x x x p x x q x x xp x x q x x x ηηηηη⎡⎤'''=--+++⎢⎥⎣⎦'=+⎰⎰⎰⎰因为()0,()0p x q x >≥,所以当()0x η≠时,()22()[()]()[()]d 0bap x x q x x x ηη'+>⎰, 即()()0I y I y ->.只有当()0x η≡时,()()0I y I y -=. 这说明y 使泛函()I y 在21C [,]a b 上达到极小. 证毕!定理8.3.2 边值问题(8.3.1), (8.3.2)存在唯一解.证明 用反证法. 若12(),()y x y x 都是边值问题(8.3.1), (8.3.2)的解,且不相等,则由定理8.3.1知,它们都使泛函()I y 在21C [,]a b 上达到极小,因而12()()I y I y > 且 21()()I y I y >,矛盾!因此边值问题(8.3.1), (8.3.2)的解是唯一的.由边值问题解的唯一性,不难推出边值问题(8.3.1), (8.3.2)解的存在性(留给读者自行推导).8.3.2 有限元法等价性定理说明,边值问题(8.3.1), (8.3.2)的解可化为变分问题(8.3.4)的求解问题. 有限元法就是求变分问题近似解的一种有效方法. 下面给出其解题过程:第1步 对求解区间进行网格剖分01,i n a x x x x b =<<<<<=区间1[,]i i i I x x -=称为单元,长度1(1,2,,)i i i h x x i n -=-=称为步长,1max i i nh h ≤≤=. 若(1,2,,)i h h i n ==,则称上述网格剖分为均匀剖分.给定剖分后,泛函(8.3.3)可以写成()22()()[()]()()2()()d baI y p x y x q x y x f x y x x '=+-⎰()12211()[()]()()2()()d i i nnx i x i i p x y x q x y x f x y x xS -=='=+-∑∑⎰记. (8.3.9)第2步 构造试探函数空间。
代数方程和微分方程求解PPT教学课件
2020/12/12
8
多项式运算的几个常用函数:
P=conv(p1,p2);
%多项式乘法
[d,r]=deconv(p1,p2); %多项式除法
Dp=polyder(p);
%多项式的导数
Ip=polyint(p) %多项式的积分(原函数)
Y=polyval(p,x)
%输出多项式p在向量x
的值
2020/12/12
9
多项式求根的函数为 r=roots(p)
求得多项式p的所有根。
例4.3:求多项式 x 6 2 x 5 0 1 x 4 3 3 x 8 3 2 2 x 8 2 2 13 x 6 19 22 6 的根并在多项式图形中表示。
2020/12/12
10
参考程序:
q =[1 -20 138 -328 -223 1692 1260]; r=roots(q); x=-2.2:0.05:8; y=polyval(q,x); y1=polyval(q,r); plot(x,y,r,y1,'p') xlim([-2.2,8]) legend('polynomial','roots')
2020/12/12
11
2020/12/12
12
线性方程组的求解
线性方程组 Ax=b
可以利用矩阵除法直接得到。但当系数矩阵为稀 疏矩阵时,利用稀疏矩阵函数可以得到更高的计 算效率。 稀疏矩阵利用函数
A1=sparse(A); 定义。
2020/12/12
13
例4.4:求解n阶线性方程组
2 1
0 x1 1
4
也可以利用下面的语句求解
>>
常微分方程的基本概念与解法
常微分方程的基本概念与解法常微分方程是数学中的一门重要分支,用于描述自然界中的各种变化规律。
本文将介绍常微分方程的基本概念和常见的解法。
一、常微分方程的概念常微分方程是关于未知函数的导数和自变量之间的关系式,其中自变量通常表示时间。
一般形式为dy/dx = f(x, y),其中y是未知函数,f(x, y)是已知函数。
常微分方程可分为一阶常微分方程和高阶常微分方程两种。
1. 一阶常微分方程一阶常微分方程是指未知函数的导数只涉及到一阶导数的方程。
一阶常微分方程的一般形式为dy/dx = f(x, y),也可以写成f(x, y)dx - dy = 0。
其中f(x, y)是已知函数,x是自变量,y是未知函数。
2. 高阶常微分方程高阶常微分方程是指未知函数的导数涉及到高阶导数的方程。
高阶常微分方程的一般形式为d^n y/dx^n = f(x, y, dy/dx, d^2 y/dx^2, ..., d^(n-1) y/dx^(n-1)),其中n为正整数,f是已知函数,x是自变量,y是未知函数。
二、常微分方程的解法解常微分方程的方法多种多样,根据方程的类型和特点选择不同的解法。
1. 可分离变量法当方程可以写成dy/dx = g(x)h(y)的形式时,可以使用可分离变量法解方程。
这种方法的关键是将变量分离,即将含有y的项移到方程的一边,含有x的项移到方程的另一边,然后分别积分得到x和y的表达式。
2. 线性常微分方程的求解线性常微分方程是指方程可以写成dy/dx + P(x)y = Q(x)的形式。
对于线性常微分方程,可以使用积分因子法求解。
首先找到一个函数u(x),使得dy/dx + P(x)y = Q(x)乘以u(x)后变为全导数,则原方程可以写成d(uy)/dx = Q(x)u(x)的形式。
然后对等式两边进行积分并解得y的表达式。
3. 齐次线性常微分方程的求解齐次线性常微分方程是指方程可以写成dy/dx = f(y/x)的形式。
微分方程的基本原理与求解方法探析
微分方程的基本原理与求解方法探析微分方程是描述自然界各种现象的数学工具,广泛应用于物理学、工程学、生物学等领域。
本文将探讨微分方程的基本原理以及一些常见的求解方法。
一、微分方程的基本原理微分方程是含有未知函数及其导数的方程。
根据未知函数的个数和方程中出现的最高阶导数的个数,微分方程可以分为常微分方程和偏微分方程两类。
常微分方程中的未知函数只是一个变量的函数,而偏微分方程中的未知函数是多个变量的函数。
微分方程描述了未知函数及其导数之间的关系,其求解的目标是找到满足方程并符合给定条件的未知函数。
在常微分方程中,解的存在唯一性定理确保了解的存在性和唯一性,使得我们能够通过求解微分方程来得到具体的数学表达式。
二、常见的微分方程求解方法1. 分离变量法:对于可以表示为未知函数乘以不同自变量的导数之和的微分方程,可以将方程两边进行变量的分离,并进行积分以求解。
这种方法适用于一阶常微分方程的求解。
2. 指数分布法:对于形如dy/dx = P(x)·y^α的一阶线性齐次微分方程,可以引入一个变换y = z^m,将方程化为dz/dx = mP(x)·z^m。
通过适当选择m值,使得方程变为可分离变量的形式。
然后进行变量的分离和积分,得到解。
3. 常系数线性齐次微分方程:对于形如dy/dx + ay = 0的一阶非齐次线性微分方程,可以通过引入一个变量z = y·exp(ax),将方程进行变换为dz/dx = 0的可分离变量方程。
然后进行积分,最后还原为未知函数y。
4. 特征方程法:对于二阶常系数线性齐次微分方程,可以通过特征方程来求解。
根据二阶齐次线性微分方程的一般形式d^2y/dx^2 + a1·dy/dx + a0·y = 0,可以得到特征方程的解,从而求得通解。
5. 拉普拉斯变换法:拉普拉斯变换是一种将给定函数f(t)转换为连续变量s的函数F(s)的方法。
通过对微分方程进行拉普拉斯变换,将微分方程转化为代数方程,然后求解代数方程得到F(s),最后通过拉普拉斯逆变换得到解。
常微分方程求解
常系数高阶线性方程2018年3月21日当线性微分方程中所有的系数都是常数时,称为常系数线性微分方程。
常系数非齐次线性微分方程有一般形式L[x]≡d n xd t n+a1d n−1xd t n−1+···+a n−1d xd t+a n x=f(t)(1)齐次线性微分方程为L[x]=0(2) 1常系数齐次线性微分方程通解的求法(1)特征方程与特征根n次代数方程λn+a1λn−1+···+a n−1λ+a n=0(3)称为齐次线性方程(2)的特征方程,其中a1,a2,···,a n是(2)式中相应的常系数。
它的n个根λ1,λ2,···,λn称为特征根。
(2)常系数齐次线性方程的通解只要求出(2)式的任何n个线性无关的解,就可按通解结构定理写出它的通解。
这些线性无关的解完全由特征根来决定,这就是所谓特征根法,它们的对应关系见表1.表1:特征根与对应的线性无关解特征根对应的线性无关解λj(j=1,2,···,n)x j(t)=exp(λj t)(j=1,2,···,n)若λ=α+iβ是特征方程的单根,则¯λ=α−iβ也是特征方程的单根x1(t)=exp(αt)cosβt x2(t)=exp(αt)sinβtλ是r重实根x1(t)=exp(λt),x2(t)=t exp(λt),···,x r(t)=t r−1exp(λt)若λ=α+iβ是r重复根,则¯λ=α−iβ也是r重复根x1(t)=exp(αt)cosβtx2(t)=t exp(αt)cosβt,···,x r(t)=t r−1exp(αt)cosβtx r+1(t)=exp(αt)sinβtx r+2(t)=t exp(αt)sinβt,···,x2r(t)=t r−1exp(αt)sinβt12常系数非齐次线性微分方程特解的求法22常系数非齐次线性微分方程特解的求法求解非齐次线性微分方程,关键是求出它的一个特解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1.3 线性方程组的数值解
最简便方法是使用矩阵左除或是矩阵求逆的方法, 求解线性方程组AX=b。 X= A\b X=inv(A)*b 其中,A是方程组的系数矩阵,b是常数向量,X是 解析解。 例8-3 求线性方程组的数值解 x1 x 2 x 3 x 4 5 x 2 x x 4 x 2 1 2 3 4 2 x1 3 x 2 x 3 5 x 4 2 3 x1 x 2 2 x 3 11 x 4 0
对于二维方程组图解,其解就是两条函数曲线的 交点所对应的坐标数值。如果只有1个交点(或切 点),则表示该方程组有1个解;如果有2个交点, 则表示该方程组有2个解;如果没有交点,则表示 该方程没有解。 例8-1 用图解法求解二维联立方程。 a=-2;b=2; % 定义横轴区间 ezplot('x^2+y^2-1.69',[a,b]); axis 'equal'; % 控制坐标轴比例相等 hold on;grid on; ezplot('2.4*x^3-y+1.5',[a,b]); line([a,b],[0,0]);line([0,0],[b,a]); xlabel('\bf x');ylabel('\bf y'); title('\bf 二维代数方程组的图解法')
x 例8-4 求解一维非线性方程f x a r c t a n x e 0 % 求解单变量x非线性方程 x0=0.1; % 解的初值 [xz,fz,flag]=fzero('atan(x)+exp(x)',x0); disp(' 求解成功性判断参数:'), flag disp(' 非线性方程的解:'),xz disp(' 非线性方程解的函数值:'),fz M文件运行结果: 求解成功性判断参数: flag = 1 非线性方程的解: xz = -0.6066 非线性方程解的函数值: fz = -1.1102e-016
% 线性方程组的数值解 AA=[1,1,1,1;1,2,-1,4;2,-3,-1,-5;3,1,2,11]; bb=[5;-2;-2;0]; % 线性方程组常数向量 disp(' 采用矩阵左除求出线性方程组的解:') xx=AA\bb disp(' 采用矩阵求逆求出线性方程组的解:') zx=inv(AA)*bb disp(' 计算残量:') r=AA*zx-bb disp(' 计算残量的模:') R=norm(r)
8.1 代数方程求解
8.1.1 代数方程图解法
符号绘图函数fplot()和ezplot()也可以用于图解 法求代数方程的根,它适用于求解维数较少的一 维方程或二维方程组。 对于一维方程图解,其解就是函数曲线与x轴交点 所对应的变量数值。如果有多个交点,则表示该 方程有多个解;如果没有交点,则表示该方程没 有解。 例如,在例5-3使用符号绘图函数绘制代数方程的 图形(图5-3左图)中可见,函数在区间[-5,5]内 与x轴有3个交点,因此该代数方程该区间内有3个 实根。
Biblioteka x xy a 0 2 y xy b 0
2
% 二维非线性方程组的解析解 syms a b x y; f1='x^2-x*y-a'; f2='y^2-x*y+b'; disp(' 二维非线性方程组的解析解:') [X,Y]=solve(f1,f2,'x,y') M文件运行结果: 二维非线性方程组的解析解: x = a/(a-b)^(1/2) -a/(a-b)^(1/2) Y = 1/(a-b)^(1/2)*b -1/(a-b)^(1/2)*b
M文件运行结果: 采用矩阵左除或矩阵求逆求出线性方程组的解: xx (zx)= 1.0000 2.0000 3.0000 -1.0000 计算残量: r = 1.0e-014 * 0.0888 0.2220 -0.4441 0.1776 计算残量的模: R = 5.3475e-015
第8章 代数方程和常微分方程求解
代数方程是未知数和常数进行有限次代数运算所 组成的方程,它包括有理方程和无理方程。代数 方程 f 0的解称为 fX 0的根或零点, X 其求解一般是通过代数几何来进行。 微分方程是含有一个或是多个导数的方程。只有 一个自变量及其导数的微分方程称为常微分方程; 包含两个以上自变量及其偏导数的微分方程称为 偏微分方程。 工程上许多物理规律,设计过程的模拟和评价, 凡是涉及质量和能量运动设计分析的问题,都最 终归结到微分方程。
8.1.4 非线性方程的数值解
1、一维非线性方程 对于一维非线性方程求解,可以看作是单变量的 极小化问题,通过不断缩小搜索区间来逼近一维 问题的真解。因此,可以使用一维非线性方程优 化解函数来求解。其调用格式是: [x,fx,flag]=fzero(fun,x0) 其中,输入参数中:fun是非线性方程的函数表达 式;x0是根的初值; 输出参数中:x是非线性方程的数值解;fx是数值 解的函数值;返回参数flag>0时,表示求解成功, 否则求解出现问题。 函数fzero所使用的算法为二分法、secant法和逆 二次插值法的组合。
gtext('\bf f_1=x^2+y^2-1.3^2'); gtext('\bf f_2=2.4x^3-y+1.5');
8.1.2 代数方程的解析解
求非线性方程或方程组解析解的函数调用格式: X=solve(fun,x) 其中,fun是符号方程的函数表达式,x是自变量, X是解析解。 应当指出,函数solve(fun,x)也可以用于求线性 方组的解析解。 例8-2 求非线性解方程组解析解