勾股定理专题复习

合集下载

八年级上册数学 第一章 勾股定理基本题型总结(经典全面)

八年级上册数学 第一章  勾股定理基本题型总结(经典全面)

CA BDBAC DB专题复习:勾股定理1、勾股定理考点一、勾股定理定义:直角三角形两直角边的平方和等于斜边的平方。

解释:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2(古时候把直角三角形中较短边叫做“勾”,较长的直角边为“股”,斜边称为“弦”)典型例题例题1、(1)在直角三角形ABC中,AC=5,BC=12,求AB的长。

(2)在直角三角形ABC中,AB=25,AC=20,求BC的长。

常见的勾股数:3,4,5;5,12,13;6,8,10等技巧总结:利用勾股定理,在直角三角形中,已知两边可求第三边;一般情况下,用a,b 表示直角边,c表示斜边,则有a2+b2=c2,还可以有其他形式的变式。

例题2、一个零件的的形状如图所示,已知AC=3,AB=4,BD=12,求CD的长.例题3、如图所示,已知三角形ABC中,AB=10,BC=21,AC=17,求BC边上的高。

技巧总结:有时某些线段不可以直接写出来,可以用数学转化的思想,构造直角三角形,再求出答案,也可以用勾股定理建立方程去求。

例题4、如图,台风过后某小学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部点C8米处,已知旗杆长16米,则旗杆是在距底部多少米处断裂?技巧总结:要用勾股定理的变形公式。

例题5、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

技巧总结:分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2,右边S=(a+b )2,左边和右边面积相等,即4×21ab +c 2=(a+b )2 对应的课堂练习:1. 下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 22. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B.c b a >+ C.c b a <+ D.222c b a =+ 3.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25C .斜边长为5D .三角形面积为20 4.在R t A B C ∆中, 90=∠C , (1)如果a =3,b =4,则c = ; (2)如果a =6,b =8,则c = ; (3)如果a =5,b =12,则c = ;(4) 如果a =15,b =20,则c = .5.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为_______1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。

期中复习专题勾股定理与逆定理

期中复习专题勾股定理与逆定理

期中复习专题03勾股定理与逆定理【板块一勾股定理的应用】1、勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是(结果用含m 的式子表示).2、已知一个直角三角形的两直角边长分别为4和5,则这个三角形的第三边长是.3.已知直角三角形两边的长为3和4,则此三角形的第三边长为.4.如果直角三角形的两条边长为1,1-,第三边的长度是.5.在Rt △ABC 中,AC =5,BC =12,则AB 边的长是.6.如图,在数轴上表示1的点为A ,以OA 为边构造正方形AOCB ,以O 为圆心,OB 为半径画圆弧交数轴于点D ,则D 点表示的数为.7.如图,点A 在数轴上所对应的数为3,AB ⊥OA ,且AB =2,以原点O 为圆心,以OB 为半径作弧,则弧与数轴的交点C 表示的数为.8.如图,数轴上的点A 表示的数是1-,点B 表示的数是2,CB AB ⊥于点B ,且2BC =,以A 点为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数是9.如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为.10.如图,在数轴上C 点表示1,D 点表示﹣1,CA =CB ,∠BDC =90°,BD =1.则点A 所表示的数是.11.如图,阴影部分表示以Rt ABC △的各边为直径的三个半圆所组成的两个新月形,面积分别记作1S 和2S .若1230S S +=,13AB =,则ABC 的周长是12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积分别为6,10,4,6,则最大正方形E 的面积是13.如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是14.如图,在Rt ABC △中,90C ∠=︒,以ABC 的三边为边向外作正方形ACDE ,正方形CBGF ,正方形AHIB ,连结EC ,CG ,作CP CG ⊥交HI 于点P ,记正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,若1144S =,2169S =,则:ACP BCP S S △△等于13.以直角三角形的三边为边长向外作正方形,其中两个正方形的面积如图所示,则正方形A 的面积为.14.如图,直线l 上有三个正方形a 、b 、c ,若a 、b 的面积分别为5和11,则c 的面积为15.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如右图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是()A . uu t cm2B . u tcm2C . uu t cm2D . u tcm 216.如图,由单位长度为1的4个小正方形拼成的一个大正方形网格,连接三个小格点,可得ABC ,则AC 边上的高是17.如图,边长为6的等边ABC 中,AD BC ⊥于D 点.(1)求AD 的长;(2)求ABC 的面积.18.如图,Rt △ABC 中,∠C =90°(1)若AB t ,AC t ,求BC 2(2)若AB =4,AC =1,求AB 边上高.19.等腰ABC 中,,120AB AC A =∠=︒,若ABC S = BC 的长度为()A .B .C .D .20.△ABC 中,AB =2AC ,CD 是的边AB 上的高,若AD =1, t ,则BC 边的长度是.21.在ABC 中,17,25AB AC ==,BC 边上的高为15,则ABC 的面积是.22.已知92ABC S =,AM 为ABC 的高且3,1AM CM ==,N 为AB 中点,则MN 的长度为.23,求这个三角形的周长。

数学第一章第二章知识点

数学第一章第二章知识点

1 / 10第一章勾股定理复习专题一、知识要点回顾:1、勾股定理:直角三角形两直角边的 等于斜边的 ;如果直角三角形两直角边分2、勾股定理的逆定理:如果三角形的三边长a,b,c 满足 ,那么这个三角形是___________.3、勾股数:满足a 2+b 2=c 2的三个 a,b,c,成为勾股数;写出常用的几组勾股数 , , 4.直角三角形斜边上的高为------------------。

二、典型例题解析与练习专题一:勾股定理例题1、在Rt △ABC ,∠C=90°则:⑴已知a=b=5,求c 2。

⑵已知a=1,c=2, 求b 2。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=3:4,c=25, 求 b 。

例题2、已知直角三角形的两边长分别为5和12,求第三边。

练习:1、已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

例题3、已知:如图,等边△ABC 的边长是6cm。

⑴求等边△ABC 的高。

⑵求S △ABC 。

例题4、 如图,有一个直角三角形纸片,两直角边AC=18cm ,BC=24cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出BD 的长吗?DBA2 / 10练习。

如图,在矩形ABCD 中,AB =5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,且△ABF 的面积是30cm 2.(1)求此时AD 的长. (2)求DE 的长。

2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4 CD .5例题5、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。

练习:1.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 2.直角三角形的三边长为连续偶数,则这三个数分别为__________.3、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是_________(3题图) (第4题图) (第5题图) (第6题图)4、如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的长为_______.5、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________6、如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 6cm AB BC ==,,则AD = cm .7.一辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.AC DBll 2 l 3ACBABCFEDCBA专题二:勾股定理的逆定理例题1、判断由线段abc组成的三角形是不是直角直角三角形:(1)a=15,b=8,c=17 (2)a=13,b=14,c=15 (3)三边长之比为 3∶4∶5;练习: 1、试判断下列三角形是否是直角三角形:⑴a=9,b=41,c=40;⑵a=15,b=16,c=6;(3)a=5k,b=12k,c=13k(k>0)。

第四讲 勾股定理(总复习)(教案)

第四讲  勾股定理(总复习)(教案)

京师蜀都学堂创新教材系列勾股定理(总复习)专题第讲时间:2014年月日老师:电话:一、兴趣导入(Topic-in):专题简析:1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。

(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23、图形解释:4、勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。

二、知识讲解及例题分析(Teaching):例1 已知两边求第三边:1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。

5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

勾股定理专题复习

勾股定理专题复习

勾股定理专题复习1.如图,在边长为4的正三角形ABC中,AD BC于点D,以AD为一边向右作正三角形ADE。

(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明。

2.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.3.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.4.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()B C D5、如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8 解析:由折叠可知,AE=AB=DC=6,在Rt △ADE 中AD=6,DE=3由勾股定理,得AD=33,设EF=x ,则FC=x -33, 在Rt △EFC 中由勾股定理求得x=32,则EF=32,在Rt △AEF 中,由勾股定理得AF=34。

故选A 。

6. 如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.(1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长. 解:由题意可知△ADE ≌△AFE .∴AF AD =,FE DE =.在矩形ABCD 中,16==AB CD ,CB AD =,︒=∠=∠=∠90D C B , ∵6=CE ,∴10=-==CE CD DE EF . 在Rt △CEF 中,822=-=CE EF FC .A BCDE F 图 2 F E D C B A。

第1章勾股定理(已整理)

第1章勾股定理(已整理)

第一章勾股定理1探索勾股定理练习题1.直角三角形ABC的两直角边BC=12,AC=16,则ΔABC的斜边AB的长是()A.20B.10C.9.6D.82.直角三角形两直角边长分别是6和8,则周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶73.如图所示,在ΔABC中,AB=AC,AD是ΔABC的角平分线,若BC=10,AD=12,则AC=.3题图 4题图 5题图4.如图所示,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.【基础巩固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,则AC=.2.若三角形是直角三角形,且两条直角边长分别为5,12,则此三角形的周长为,面积为.3.已知直角三角形的两边长分别是3和4,则第三边长为.4.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【能力提升】5.如图所示,在正方形网格中,ΔABC的三边长a,b,c的大小关系是()A.a<b<cB.c<a<bC.c<b<aD.b<a<c6.如图所示,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如图所示,阴影部分是一个正方形,它的面积为.8.如图所示,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中水平飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如图所示,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如图所示,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=.13.如图所示,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的距离是.如左下图所示,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A.5B.6C.7D.25例1 例题2如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为.我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗? 〔解析〕根据题意,可以画出右图,其中点A表示小王所在位置,点C,点B表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB2=BC2+AC2,也就是5002=BC2+4002,所以BC=300.敌方汽车10 s行驶了300 m,那么它1 h行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h.检测反馈1.下列选项中,不能用来证明勾股定理的是()2.用四个边长均为a,b,c的直角三角板,拼成如图所示的图形,则下列结论中正确的是()2题图 3题图A.c2=a2+b2B.c2=a2+2ab+b2C.c2=a2-2ab+b2D.c2=(a+b)23.如图所示,大正方形的面积是,另一种方法计算大正方形的面积是,两种结果相等,推得勾股定理是.4.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c之间有什么关系?【基础巩固】1.我国古代数学家赵爽的《勾股圆方图》是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是()A.1B.2C.12D.131题图 3题图3.北京召开的第24届国际数学家大会会标的图案如图所示.(1)它可以看做是由四个边长分别为a,b,c的直角三角形拼成的,请从面积关系出发,写出一个关于a,b,c 的等式.(要有过程)(2)请用四个这样的直角三角形再拼出另一个几何图形,也能验证(1)中所写的等式.(不用写出验证过程)(3)如果a2+b2=100,a+b=14,求此直角三角形的面积.【能力提升】4.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)所示的是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.5.在北京召开的国际数学家大会的会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a4+b4的值为 ()A.35B.43C.89D.976.据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,你能说说其中的道理吗?7.如图所示,在平面内,把矩形ABCD绕点B按顺时针方向旋转90°得到矩形A'BC'D'.设AB=a,BC=b,BD=c.请利用该图验证勾股定理.【拓展探究】8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)是由弦图变化得到的,它是用八个全等的直角三角形拼接而成的.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=16,则S2的值是.9.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图(1)或图(2)摆放时,都可以用“面积法”来证明,下面是小聪利用图(1)证明勾股定理的过程.将两个全等的直角三角形按图(1)所示摆放,连接DC,其中∠DAB=90°,求证a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵b2+ab,又∵c2+a(b-a),∴b2+ab=c2+a(b-a),∴a2+b2=c2.请参照上述证法,利用图(2)完成下面的验证过程.将两个全等的直角三角形按图(2)所示摆放,其中∠DAB=90°,连接BE.验证a2+b2=c2.证明:连接,∵=,又∵=,∴,∴a2+b2=c2.2一定是直角三角形吗?1.以以下各组数为三边长的三角形中,能组成直角三角形的是()A.3,4,6B.9,12,15C.5,12,14D.10,16,252.ΔABC的三边长分别为a,b,c,在下列条件下,不能判定ΔABC是直角三角形的是()A.a2=b2-c2B.a2∶b2∶c2=1∶2∶3C.∠A=∠B-∠CD.∠A∶∠B∶∠C=3∶4∶53.如图所示,四边形ABCD中,AB=3,BC=4,AC=5,CD=12,AD=13,则四边形ABCD的面积为()A.72B.36C.66D.424.如图所示,在ΔABC中,AB=26,BC=20,边BC上的中线AD=24.求AC.【基础巩固】1.下列几组数中,是勾股数的是 ()A.5,6,7B.3,4,9C.5,3,6D.10,24,262.有五根木棒,它们的长度分别为2 cm,6 cm,8 cm,10 cm,12 cm,从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为 ()A.2 cm,6 cm,8 cmB.6 cm,8 cm,10 cmC.6 cm,8 cm,12 cmD.2 cm,8 cm,10 cm3.如图所示,有一块地,已知AD=4 m,CD=3 m,∠ADC=90°,AB=13 m,BC=12 m,则这块地的面积为()A.24 m2B.26 m2C.28 m2D.30 m24.若ΔABC的三边长a,b,c满足|a-5|+(b-12)2+(c-13)2=0,则ΔABC的面积为.【能力提升】5.观察下列几组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41;⑤15,m,n.根据你发现的规律可得m+n=.6.如图所示,∠C=90°,AC=12,BC=9,AD=8,BD=17,求ΔABD的面积.7.已知a,b,c为ΔABC的三边长,且满足a2c2-b2c2=a4-b4,试判断ΔABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴ΔABC是直角三角形.(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)写出本题正确的解题过程.8.求证若勾股数组中,弦与股的差为1.证明这样的勾股数组可表示为如下形式:2a+1,2a2+2a,2a2+2a+1,其中a为正整数.9.国道通过A,B两村庄,而C村庄离国道较远,为了响应政府“村村通公路”的号召,C村决定采用自己筹集一部分,政府补贴一部分的方法修建一条水泥路直通国道.已知C村到A,B两村的距离分别为6 km,8 km,A,B两村距离为10 km,那么这条水泥路的最短距离为多少?3勾股定理的应用课后练习题1.如图所示,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.8 mB.10 mC.12 mD.14 m2.如图所示,将一根长24 cm的筷子放入底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是()A.12 cmB.13 cmC.11 cmD.9 cm3.某楼梯的侧面视图如图所示,其中AB=6.5米,BC=2.5米,∠C=90°,楼梯的宽度为6米,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的面积应为.4.如图所示,铁路AB的一边有C,D两村庄,DA⊥AB于A,CB⊥AB于B,已知AB=25 km,DA=15 km,CB=10 km,现要在铁路上建一个农产品收购站E,并使DE=CE,则农产品收购站E应建在距点A多少千米处?【基础巩固】1.如图所示,一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是 ()A.3尺B.4尺C.5尺D.6尺2.如图所示,一只蚂蚁从正方体的底面A点处沿着表面爬行到正方体上底面的B点处,它爬行的最短路线是()A.A⇒P⇒BB.A⇒Q⇒BC.A⇒R⇒BD.A⇒S⇒B3.如图所示,一个圆柱的底面半径为8 cm,高为15πcm,一只蚂蚁从A点爬到B点的最短路程是cm.4.有一块边长为24米的正方形绿地ABCD(如图所示),在绿地的BC边上距B点7米的点E处有一健身器,居住在A处的居民经常践踏绿地,沿直线AE直达E处健身,小明同学想在A处立一块标牌“少走■米,踏之何忍?”,则标牌上的“■”处的数字是.5.如图所示,要从电线杆离地面12米处向地面拉一条长为13米的钢缆,求地面钢缆固定点A到电线杆底部B的距离.【能力提升】6.两艘轮船从同一港口同时出发,甲船时速40海里,乙船时速30海里,两小时后,两船相距100海里,已知甲船的航向为北偏东46°,则乙船的航向为()A.东偏南46°B.北偏西46°C.东偏南46°或西偏北46°D.无法确定7.如图所示,已知长方体的三条棱AB,BC,BD的长分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.7题图 9题图 10题图8.一艘轮船以24海里/时的速度离开港口向东南方向航行,另一艘轮船同时以10海里/时的速度离开港口向西南方向航行,经过1小时,这两艘轮船相距多远?9.如图所示,在长15米,宽8米的长方形ABCD花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?10.如图所示,有一圆柱形油罐,要从A点环绕油罐搭梯子,正好到A点的正上方B点.梯子最短需要多少米?(已知油罐底面的周长是12 m,高AB是5 m)【拓展探究】11.如图所示,三条公路的交叉地带是一个三角形,经测量这个三角形的三条边长分别是AB=130米,BC=140米,AC=150米.市政府准备将其作为绿化用地,请你求出绿化用地的面积.如图所示,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.第一章勾股定理专题复习专题一勾股定理及其逆定理的基本用法【专题分析】勾股定理是初中阶段应该掌握的一个重要定理,运用勾股定理的过程中蕴含着方程、几何、不等式等多种解决问题的方法.用勾股定理的逆定理判定一个三角形是不是直角三角形应注意:(1)首先确定最大边,不妨设最大边长为c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则ΔABC是以∠C为直角的直角三角形.(若c2>a2+b2,则ΔABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则ΔABC为锐角三角形)若直角三角形两直角边长的比是3∶4,斜边长是20,求此直角三角形的面积.【针对训练1】等腰三角形的底边长为6,腰长为5,求ΔABC的面积.如图所示,ΔABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=12.(1)求证ΔBCD是直角三角形;(2)求ΔABC的面积.【针对训练2】如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)求BC的长;(2)求四边形ABDC的面积.专题二勾股定理的应用【专题分析】在实际生活中,勾股定理有着广泛的应用.在运用的过程中,要注意是运用勾股定理还是运用勾股定理的逆定理.在解决问题的过程中,寻找和构造垂直关系就成为解题的关键所在.(莱芜中考)如图所示,在ΔABC中,AB=AC=5,BC=6.若点P在边AC上移动,求BP的最小值.【针对训练3】如图所示,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20 km,BB1=40 km,已知A1B1=80 km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.专题三数学思想方法(一)转化的思想方法【专题分析】我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.如图(1)所示,ΔABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.【针对训练4】在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图(1)所示.为了安全起见,爆破点C周围半径250米范围内(包括250米)不得进入,则在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?(二)方程的思想方法【专题分析】方程是通过等量关系解决问题的重要手段,在解决几何计算、代数求值、求解函数解析式等都渗透着方程思想,在中考中方程思想占有重要的地位,渗透在各种大小问题之中.如图所示,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8 cm,BC=10 cm,求EF的长.【针对训练5】如图所示,四边形ABCD是长方形,把ΔACD沿AC折叠得到ΔACD',AD'与BC交于点E,若AD=4,DC=3,求BE的长.。

专题复习:勾股定理(教案)

专题复习:勾股定理(教案)
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明方法这两个重点。对于难点部分,如定理的证明过程,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
1.数学抽象:通过勾股定理的学习,使学生能够从实际问题中抽象出数学模型,理解数学概念的本质,提高数学思维能力。
2.逻辑推理:培养学生运用不同的证明方法,理解和掌握勾股定理的推理过程,提高逻辑思维能力和解题技巧。
3.数学建模:学会将勾股定理应用于解决实际问题,建立数学模型,培养学生解决实际问题的能力。
五、教学反思
在今天《勾股定理》的复习课上,我发现学生们对于定理的概念和应用有了较好的掌握,但在证明过程中还存在一些困难。我尝试用生活中的实例引入勾股定理,让学生感受到数学与生活的紧密联系,这一点效果不错,大家都很感兴趣。但在教学过程中,我也注意到了几个问题。
首先,对于定理的证明方法,尤其是代数法的证明,部分学生感到难以理解。在今后的教学中,我需要更加耐心地引导他们,通过多举例、多解释,帮助他们突破这个难点。
-掌握至直角三角形的边长比例关系,如30°-60°-90°和45°-45°-90°直角三角形。
-例:通过实际例题,如计算墙壁上悬挂画框的合适位置,强调勾股定理在实际问题中的应用。
2.教学难点
-理解勾股定理的证明过程:学生需要理解并掌握从具体实例中抽象出定理的过程,以及不同证明方法背后的逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

《勾股定理》考点复习

《勾股定理》考点复习

《勾股定理》专题复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2—a2 .2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形.这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方—最小边的平方=中间边的平方。

③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角。

④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2=c2的三个正整数,称为勾股数.注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数.常见勾股数有:(3,4,5)(5,12,13)(6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短.二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.4、在直线l 上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。

考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为 .2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 . 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.6倍D.8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。

人教版初二数学下册 勾股定理与折叠问题 复习专题

人教版初二数学下册 勾股定理与折叠问题 复习专题

《勾股定理与折叠问题》复习专题一、知识回顾勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2即22b c a=-=-,22c a b=+,22a c b知道直角三角形三边中的两边,就能求出第三边;如果只知道直角三角形三边中的一边,能求出另外两条边吗?例1、在平静的湖面上,有一枝荷花,高出水面1米.一阵风吹过来,荷花被吹到一边,花朵齐及水面.已知荷花移动的水平距离为2米,问这里的水深多少米?例2、若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.131、一直角三角形的斜边比一直角边大2,另一直角边长为6,则斜边长是()A、8B、10C、12D、142、直角三角形有一条直角边为6,另两条边长为连续的偶数,则该三角形的周长为()A、20B、22C、24D、263、升旗仪式的时候,小明突发奇想,想知道学校旗杆的高度。

放学后,他观察到旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好与地面接触,则旗杆的高度为()A、11米B、12米C、13米D、14米4、小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,求河水的深度是多少?5、小东拿一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竿长多少米?二、折叠问题解题心得:1、看见“折叠”、“翻折”就要想全等,把题目的数据标在图上2、设折叠的一条边为x(不要设折痕)3、根据勾股定理列方程,然后解答例1、有一块直角三角形纸片,两直角边AC=12cm,BC=16cm,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则DE的长度为_________例2、已知,矩形ABCD中,E在AB上,把△BEC沿CE对折。

勾股定理复习课件

勾股定理复习课件

4
44
4
∴AC2+AD2=CD2, ∴∠CAD=90°.
12+(3)2=5. 44
∴S 四边形 ABCD=S△ABC+S△ACD=12AB·BC+12AD·AC=12×1×34+12×3×54=94
第十七章 勾股定理
素养提升
专题一 方程思想——折叠问题
例 1 如图, 将一个长方形纸片 ABCD 沿对角线 AC 折叠, 点 B 落在 点 E 处, AE 交 DC 于点 F, 已知 AB=4 cm, BC=2 cm. 求折叠后重合 部分(△ACF)的面积.
如图, 过点 C 作 CD⊥AB 于点 D,
由勾股定理, 得 AB= AC2+BC2= 92+122=15.
根据等积法 12AC·BC=
12AB·CD,
则 CD=
36. 5
第十七章 勾股定理
专题二: 勾股定理的实际应用
例 3 如图, 在公路 l 旁有一块山地正在开发, 发现需要在 C 处进 行爆破. 已知点 C 与公路上的停靠点 A 的距离为 300 m,与公路上 的另一停靠点 B 的距离ቤተ መጻሕፍቲ ባይዱ 400 m,且 AC⊥CB, 为了安全起见, 以爆 破点 C 为圆心, 250 m 为半径的圆内不得有人进入. 则在进行爆破 时, 公路 AB 段是否有危险?需要暂时封锁吗?
相关题 2 [广州中考]在 Rt△ABC 中, ∠C=90°, AC=9, BC=12, 则
点 C 到 AB 的距离是( A ).
A.356
B.1225
C.94
D.3 4 3
分析:
先根据题意画出图形, 再结合勾股定理求出直角三角形的斜边长, 最

勾股定理复习专题3.利用勾股定理解题的6种常见题型

勾股定理复习专题3.利用勾股定理解题的6种常见题型

专训3.利用勾股定理解题的6种常见题型利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC 中,∠ABC =90°,点D 为AC 边的中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.(第1题)利用勾股定理作长为n 的线段2.已知线段a ,作长为13a 的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC 中,∠ABC =90°,CD ⊥AD ,AD 2=2AB 2-CD 2.求证:AB =BC.(第3题)利用勾股定理解非直角三角形问题4.如图,在△ABC 中,∠C =60°,AB =14,AC =10.求BC 的长.(第4题)利用勾股定理解实际生活中的应用5.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km /h ⎝ ⎛⎭⎪⎫即503 m /s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第5题)利用勾股定理探究动点问题6.如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P 从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,借助图①求t的值;(3)当△ABP为等腰三角形时,借助图②求t的值.(第6题)解析(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC中,点D为AC边的中点,∴BD⊥AC,BD平分∠ABC(等腰三角形三线合一),∴∠ABD=∠CBD=45°,又易知∠C=45°,∴∠ABD=∠CBD=∠C.∴BD=CD.∵DE⊥DF,BD⊥AC,∴∠FDC +∠BDF =∠EDB +∠BDF.∴∠FDC =∠EDB. 在△EDB 与△FDC 中,⎩⎨⎧∠EBD =∠C ,BD =CD ,∠EDB =∠FDC ,∴△EDB ≌△FDC(ASA ), ∴BE =FC =3.∴AB =7,则BC =7.∴BF =4.在Rt △EBF 中,EF 2=BE 2+BF 2=32+42=25,∴EF =5. 2.2a ;3a3.证明:∵CD ⊥AD ,∴∠ADC =90°,即△ADC 是直角三角形. 由勾股定理,得AD 2+CD 2=AC 2.又∵AD 2=2AB 2-CD 2,∴AD 2+CD 2=2AB 2.∴AC 2=2AB 2. ∵∠ABC =90°,∴△ABC 是直角三角形.由勾股定理,得AB 2+BC 2=AC 2,∴AB 2+BC 2=2AB 2, 故BC 2=AB 2,即AB =BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.4.解:如图,过点A 作AD ⊥BC 于点D. ∴∠ADC =90°.又∵∠C =60°, ∴∠CAD =90°-∠C =30°,(第4题)∴CD =12AC =5.∴在Rt △ACD 中,AD =AC 2-CD 2=102-52=5 3. ∴在Rt △ABD 中,BD =AB 2-AD 2=11. ∴BC =BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.5.解:(1)在Rt △AOB 中,∵∠BAO=60°,∴∠ABO=30°,∴OA=12AB.∵OA=100 m,∴AB=200 m.由勾股定理,得OB=AB2-OA2=2002-1002=100 3(m).在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA=100 m.∴B(-100 3,0),C(100,0).(2)∵BC=BO+CO=(100 3+100)m,100 3+10015≈18>503,∴这辆汽车超速了.6.解:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4 cm.(2)由题意知BP=t cm,①如图①,当∠APB为直角时,点P与点C重合,BP=BC=4 cm,即t=4;[第6题(2)]②如图②,当∠BAP为直角时,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=32+(t-4)2,在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2,解得t=25 4.故当△ABP为直角三角形时,t=4或t=25 4.(3)①如图①,当BP=AB时,t=5;②如图②,当AB=AP时,BP=2BC=8 cm,t=8;[第6题(3)]③如图③,当BP=AP时,AP=BP=t cm,CP=|t-4|cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t-4)2,解得t=25 8.综上所述:当△ABP为等腰三角形时,t=5或t=8或t=25 8.。

勾股定理专题复习

勾股定理专题复习

专题复习一 勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。

如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。

2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。

常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题归类:专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。

2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。

3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。

5、三条边分别是5,12,13的三角形的面积是 。

6、如果一个三角形的三边长分别为a,b,c 且满足:a 2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。

7、如图1,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。

8、有一块土地形状如图3所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。

(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。

勾股定理专题复习课

勾股定理专题复习课
勾股定理可以用于计算直角三角形的面积。
详细描述
根据勾股定理,直角三角形的面积可以通过两条直角边的长度和斜边的高来计算。面积 = (1/2) × 直角边1 × 直角边2 = (1/2) × 斜边 × 高。
示例
在直角三角形ABC中,已知直角边a=3和b=4,斜边c=5,斜边上的高h可以通过面积公式计 算为h=12/5。
等。
05 勾股定理的易错点解析
勾股定理适用条件的误解
总结词
理解不准确
01
总结词
应用范围限制
03
总结词
忽视前提条件
05
02
详细描述
勾股定理适用于直角三角形,但学生常常误 以为它适用于所有三角形,导致在解题时出 现错误。
04
详细描述
勾股定理只适用于直角三角形,对于 非直角三角形,需要使用其他定理和 公式进行计算。
06
详细描述
勾股定理的前提是三角形必须是直角三角形, 如果忽视这个前提,会导致计算结果不准确。
勾股定理计算中的常见错误
在此添加您的文本17字
总结词:计算错误
在此添加您的文本16字
详细描述:学生在使用勾股定理进行计算时,常常因为粗 心或对公式理解不准确而出现计算错误。
在此添加您的文本16字
总结词:单位不统一
勾股定理与三角函数的关系
总结词
勾股定理与三角函数之间存在密 切关系,可以通过三角函数来求 解相关问题。
详细描述
在解决与直角三角形相关的三角 函数问题时,勾股定理常常被用 来计算边长或角度。例如,在求 解三角函数的实际应用问题时, 可以使用勾股定理来计算相关物 体的长度或距离。
示例
在解决与航海、测量和几何学相 关的实际问题时,常常需要使用 勾股定理和三角函数来求解角度 和距离。

专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(解析版)

专题21 勾股定理【考查题型】【知识要点】知识点一勾股定理勾股定理的概念:如果直角三角形的两直角边分别为,,斜边为,那么。

变式:,,,,.适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

用拼图的方法验证勾股定理的思路是:1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理勾股定理的证明方法:方法一(图一):,,化简可证.方法二(图二):四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为,所以方法三(图三):,,化简得证图一图二图三知识点二勾股数勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数常见的勾股数:如;;;等扩展:用含字母的代数式表示组勾股数:1)(为正整数);2)(为正整数)3)(,为正整数)注意:每组勾股数的相同整数倍,也是勾股数。

知识点三勾股定理的逆定理勾股定理的逆定理内容:如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边【注意】1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;2)定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边3)勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点四直角三角形的性质与判定性质:1)直角三角形的两个锐角互余。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.图1l图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E1E1D 1C 1B 4C 3C2C图3由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠ 122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C )222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7.5米; (C )12米; (D )8米 4、下列说法中正确的有( )(1)如果∠A+∠B+∠C=3:4:5,则△ABC 是直角三角形;(2)如果∠A+∠B=∠C ,那么△ABC 是直角三角形;(3)如果三角形三边之比为6:8:10,则ABC 是直角三角形;(4)如果三边长分别是221,2,1(1)n n n n -+>,则ABC 是直角三角形。

(A )1个; (B )2个; (C )3个; (D )4个ABC图75、如图4是某几何体的三视图及相关数据,则判断正确的是( ) A . a >c B .b >c C .4a 2+b 2=c 2D .a 2+b 2=c 26、已知直角三角形两边长分别为3、4,则第三边长为 .7、已知直角三角形的两直角边之比为3:4,斜边为10,则直角三角形 的两直角边的长分别为 .8、利用图5(1)或图5(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .9、一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米, ∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为 米(答案可保留根号).10、如图6,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数), 那么第8个正方形的面积8S =_______。

11、如图7,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明), 并求AD 的长.图4图5(1)图6图5(2)12、已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.13、在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm(1)求这个三角形的斜边AB的长和斜边上的高CD的长.(2)求斜边被分成的两部分AD和BD的长.14、如图8:要修建一个育苗棚,棚高h=1.8 m,棚宽a=2.4 m,棚的长为12 m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?图815、如图9,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.专题二:能得到直角三角形吗考点分析:本部分内容是勾股定理及其逆定理的应用,它在中考试卷中不单独命题,常与其它知识综合命题典例剖析例1.如图10,A 、B 两点都与平面镜相距4米,且A 、B 两点相距6米,一束光线由A 射向平面镜反射之后恰巧经过B 点,求B 点到入射点的距离.分析:此题要用到勾股定理,全等三角形,轴对称及物理上的光的反射的知识.解:作出B 点关于CD 的对称点B ′,连结AB ′,交CD 于点O ,则O 点就是光的入射点,因为B ′D =DB ,所以B ′D =AC ,∠B ′DO =∠OCA =90°,∠B ′=∠CAO 所以△B ′DO ≌△ACO (SSS ),则OC =OD =21AB =21×6=3米,连结OB ,在Rt △ODB 中,OD 2+BD 2=OB 2,所以OB 2=32+42=52,即OB =5(米),所以点B 到入射点的距离为5米.评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础图9图10例2.如果只给你一把带刻度的直尺,你是否能检验∠MPN 是不是直角,简述你的作法. 分析:只有一把刻度尺,只能用这把刻度尺量取线段的长度,若∠P 是一个直角,∠P 所在的三角形必是个直角三角形,这就提示我们把∠P 放在一个三角形中,利用勾股定理的逆定理来解决此题.作法:①在射线PM 上量取PA=3㎝,确定A 点, 在射线PN 上量取PB=4㎝,确定B 点.②连结AB 得△PAB . ③用刻度尺量取AB 的长度,如果AB 恰为5㎝,则说明∠P 是直角,否则∠P 不是直角.理由:PA=3㎝,PB=4㎝,PA 2+PB 2=32+42=52,若AB=5㎝,则PA 2+PB 2=AB 2,根据勾股定理的逆定理得△PAB 是直角三角形,∠P 是直角.说明:这是一道动手操作题,是勾股定理的逆定理在现实生活中的一个典型应用.学生既要会动手操作,又必须能够把操作的步骤完整的表述出来,同时要清楚每个操作题的理论基础. 专练二:1.做一做:作一个三角形,使三边长分别为 3 cm,4 cm,5 cm,哪条边所对的角是直角?为什么?2.断一断:设三角形的三边分别等于下列各组数:①7,8,10 ②7,24,25 ③12,35,37 ④13,11,10 (1)请判断哪组数所代表的三角形是直角三角形,为什么?(2)把你判断是Rt △的哪组数作出它所表示的三角形,并用量角器来进行验证.3算一算:.一个零件的形状如图12,已知AC=3㎝,AB=4㎝,BD=12㎝,PAMN图11求:CD 的长.4.一个零件的形状如图13所示,工人师傅按规定做得AB =3,BC =4,AC =5,CD =12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?5.如图14,等边三角形ABC 内一点P ,AP =3,BP =4,CP =5,求∠APB 的度数.6.若△ABC 的三边长为a ,b ,c ,根据下列条件判断△ABC 的形状.(1)a 2+b 2+c 2+200=12a +16b +20c (2)a 3-a 2b +ab 2-ac 2+bc 2-b 3=07.请在由边长为1的小正三角形组成的虚线网格中,画出1 个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形.图12AB图13图148.为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图15,已知圆筒高108㎝,其截面周长为36㎝,如果在表面缠绕油纸4圈,应裁剪多长油纸.专题三:蚂蚁怎样走最近考点分析:勾股定理在实际生活中的应用较为广泛,它常常单独命题,有时也与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.如图16(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为米,梯子滑动后停在DE位置上,如图10(2)所示,测得得BD=米,求梯子顶端A下落了多少米?分析:梯子顶端A下落的距离为AE,即求AE的长.已知AB和BC,根据勾股定理可求AC,只要求出EC即可。

解:在Rt△ACB中,AC2=AB2-BC2=,∴AC=2,∵BD=,∴CD=2∴EC=,,所以,梯子顶端下滑了0.5米.图16(2)图16图15点评:在实际生活、生产及建筑中,当人们自身高度达不到时,往往要借助于梯子,这时对梯子的选择,及梯子所能达到的高度等问题,往往要用到勾股定理的知识来解决.但要注意:考虑梯子的长度不变.例2.有一根竹竿, 不知道它有多长. 把竹竿横放在一扇门前, 竹竿长比门宽多4尺;把竹竿竖放在这扇门前, 竹竿长比门的高度多2尺;把竹竿斜放,,竹竿长正好和门的对角线等长.问竹竿长几尺?分析:只要根据题意,画出图形,然后利用勾股定理,列出方程解之解:设竹竿长为x尺。

相关文档
最新文档