2011年浙江省高职升学考试数学试卷

合集下载

2022年浙江高职单招数学试卷附答案

2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

高职单独招生考试数学试卷(答案解析) (1)

高职单独招生考试数学试卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-2.在空间中,下列结论正确的是( ) A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块3.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-6.cos78cos18sin18sin102⋅+⋅=( )A.C.12-D.127.在复平面内,复数z 满足(1)2i z -⋅=,则(z = ) A .2i +B .2i -C .1i -D .1i +6.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为( ) A.16B. 0.25C.19D.5187.已知圆锥底面半径为4,侧面面积为60,则母线长为( ) A. 8B. 16C.152D. 158.函数y = sin2x 的图像如何平移得到函数sin(2)3y x的图像( )A. 向左平移6个单位B. 向右平移6个单位C. 向左平移3个单位D. 向右平移3个单位9.设动点M 到1(13 0)F ,的距离减去它到2(13 0)F ,的距离等于4,则动点M 的轨迹方程为( ) A. 22 1 (2)49x y x ≤ B. 22 1 (2)49x y x ≥ C.22 1 (2)49y x y ≥D.22 1 (x 3)94x y ≥10.已知函数()3sin 3cos f x xx ,则()12f ( ) A.6B.23C.22D.2611.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( ) A. 280种B. 240种C. 360种D. 144种12.如下图20图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( ) A. A ′C ⊥平面DBC ′ B. 平面AB ′D ′//平面BDC ′ C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC13. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1}B. {-1}C. {1,3}D. ∅14. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)15. 函数f (x )=ln(x −2)+1x−3的定义域为( )A. (5,+∞)B. [5,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)16. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 17. 下列函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x18. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 180B. 380C. 190D. 12019. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B.2 C . √3 D.√3320. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题(共10小题,每小题3分;共计30分) 1、执行以下语句后,打印纸上打印出的结果应是:_____.2、角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.3、过点)1,2(-p 且与直线0102=+-y x 平行的直线方程是______4、在∆ABC 中,已知∠B=︒30,∠C=︒135,AB=4,则AC=______5、已知函数bx y +-=sin 31的最大值是97,则b=______6、75sin 15sin +的值是______.7、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______. 8、已知2tan -=α,71tan =+)(βα,则βtan 的值为______ .9、三个数2,x ,10成等差数列,则=x ______10、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______ 三、大题:(满分30分) 1、已知函数3()x x b f x x ++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.2、某学校组织"一带一路”知识竞赛,有A ,B 两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题 回答正确得80分,否则得0分。

2024年高职高考数学试卷

2024年高职高考数学试卷

2024年高职高考数学试卷
2024年高职高考数学试卷指的是2024年高职(又称“高职单考”)高考科目的数学试卷。

这种考试主要针对那些打算进入高等职业教育(即高职)的学生,通常在每年的4月份举行。

数学是其中的一门必考科目,测试考生对基础数学知识的掌握和应用能力。

以下是2024年高职高考数学试卷题目:
1. 已知集合A = {x | x² - 3x + 2 = 0},则下列表示正确的是 ( )
A. 0 ∈ A
B. 0 A
C. {0} A
D. A ∈ {0}
2. 函数 y = x + √(x² + 2) 的值域为 ( )
A. [0, +∞)
B. (-∞, -1]
C. [-1,1]
D. [-√2, √2]
3. 下列函数中,周期为π/2 的是 ()
A. y = sin(2x)
B. y = cos(4x)
C. y = tan(x/2)
D. y = sin(4x)
4. 若函数 f(x) = a + log₃x 的定义域和值域都是 [1,3],则实数 a 的值为 _______.
5. 若直线 y = x + b 与曲线 y = √(x) 有且只有一个公共点,则 b 的取值范围是()
A. b ≥ 0
B. b ≥ 1
C. b ≤ 1
D. b ≤ -1。

2024年浙江省温州市普通高职单独考试2024届高三下学期二模数学试题(含答案)

2024年浙江省温州市普通高职单独考试2024届高三下学期二模数学试题(含答案)

2024届浙江省单独考试温州市模拟测试《数学》试卷(2024.3)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷上、草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分).(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 设x ∈R ,“2x >”是“24x >”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件 2. 下列函数在其定义域内单调递增的是( ) A. ()2f x x=B.()21f x x =+ C. ()e xf x = D.()sin f x x = 3. 已知角α的终边经过点()3,4P ,则cos α=( )A. 35- B. 35 C. 45- D. 454. 函数()513f x x =+-的定义域为( )A. {2x x ≠且}4x ≠-B. {}2x x ≠ C. {}4x x ≠- D.{}3x x ≠ 5. 已知集合{}2,N S x x k k ==∈,{}21,N T x x k k ==+∈,则S T ⋃=( )A. SB. TC. ND. ∅ 6. 从5名女同学和4名男同学中,选两名同学分别担任班长与学习委员,要求男女同学各一名,不同选法共有( )A. 9种B. 20种C. 40种D.72种 7. 已知扇形半径为9,圆心角为60︒,则该扇形的弧长为( )A. 3πB. 2πC. 10D. 9 8. 圆C :()()22132x y -+-=关于x 轴对称的圆的方程为( ) A. ()()22132x y -+-=()()22132x y -+-= C. ()()22132x y -++=()()22132x y -++=9. 已知数列{}n a 为等差数列,若238a a +=,4510a a +=,则67a a +=( )A. 8B. 10C. 12D. 14 10. 已知点()1,1A 、(3B ,过原点的直线l 与线段AB 有公共点,则直线l 倾斜角的取值范围为( )A. π0,4⎛⎤⎥⎝⎦B. ππ,43⎛⎫ ⎪⎝⎭C. ππ,43⎡⎤⎢⎥⎣⎦ D. ππ,32⎛⎫⎪⎝⎭11. 直线210ax y +-=与直线2310x y --=互相垂直,则常数a 的值为( )A. 3-B. 43- C. 2 D.3 12. 如图所示,在边长为1的正方形ABCD 中,点E 为折线段BCD 上动点,则BE BA -的最大值为( )A. 1B. 2C. 2D. 3 13. 从甲、乙、丙、丁、戊五名同学中随机选2人参加普法知识竞赛,则甲被选中的概率为( ) A.25 B. 15 C. 34D. 12 14. 如图所示,在正方体1111ABCD A B C D -中,点O 为侧面11ADD A 的中心,点E 为线段11C D 上的动点,则直线BE 与AO 的位置关系为( )A 平行 B. 相交 C. 异面 D. 平行或相交 15. 已知1x >-,则121x x ++的最小值为( )A. B. )221- C. 2 D. 2- 16. 已知函数23,04,0x x x y x +≤⎧=⎨>⎩的图像与直线y a =有两个交点,则a 的取值范围为( )A. 13a <£B. 13a <<C. 14a <≤D. 14a << 17. 已知一次函数()y f x =的图像如图所示,令()()g x xf x =,则()0g x >的解集为( )A. ()0,1B. ()1,+∞C. (),0∞-D. ()(),01,-∞⋃+∞18. 若221169x y -=,则下列各式为常数的是( )A.()225x y -+ B.()225x y ++C()224x y -+D.()224x y ++19. 如图所示,在由3个相同正方形拼接而成的矩形中,βα-=( )A.π2 B. π3 C.π4 D. π6..20. 如图所示,过抛物线22y px =(0p >)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A. 5B. 6C.163 D. 203二、填空题(本大题共7小题,每小题4分,共28分) 21. 已知函数()21,01,0x x f x x x +≤⎧=⎨->⎩,则()3f =______.22. 在正项等比数列{}n a 中,若11a =,39a =,则公比q =______. 23. 已知1cos 3α=,且α为第四象限角,则sin α=______. 24. 已知双曲线221x y m -=的渐近线方程为33y x =±,则m =______.25. 有如下式子:①lg5lg 202+=;②0!0=;③02024C 0=;④202420232024202322322+=-;⑤13182-=-.其中正确的有______.(写出所有正确式子的序号)26. 如图所示,在矩形ABCD 中,1AB =,2BC =,点M 为边BC 的中点,将矩形ABCD 沿DM 剪去DCM △,将剩余部分绕直线AD 旋转一周,则所得到几何体的表面积为______.27. 过点()2,1P -且与原点距离为2的直线方程为______.三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤.)28. 已知1nx x ⎛⎫+ ⎪⎝⎭的二项式系数之和为256,求:(1)n 的值;(2)二项式展开式中的常数项.29. 已知圆C 的圆心坐标为()1,1-2. (1)写出圆C 的标准方程;(2)若直线10x y +-=与圆C 相交于A ,B 两点,求弦长AB .30. 如图所示,在梯形ABCD 中,AD BC ∥,4AC BC ==,ACB ∠为锐角,且sin 8ACB ∠=.(1)求ABC 的面积与AB 的长. (2)若6CD =sin D .31. 已知函数()223cos 2sin 222x x x f x =-. (1)求()πf 值以及函数()f x 的最小正周期. (2)当[]π,0x ∈-时,求()f x 的最小值.32. 如图所示,在ABC 中,90ACB ︒∠=,CD AB ⊥,且3AC ==BC ,ACD 绕CD 旋转至A CD ',使得面A DC '⊥面BDC .求:(1)三棱锥C A BD '-的体积. (2)二面角C A B D -'-的正切值.33. 已知数列{}n a 满足21320n n n a a a ++-+=,11a =,24a =. (1)求3a ,4a 值.(2)判断数列{}1n n a a +-是否为等比数列. (3)求数列{}n a 的通项公式.的的34. 已知椭圆E :()222210y x a b a b+=>>的焦距为2,1F ,2F 分别是其上、下焦点,点P 在椭圆E 上,且123PF PF +=(1)求椭圆E 的标准方程;(2)已知直线l :y x m =+,当直线l 与椭圆E 相交时,求m 的取值范围;(3)若直线1y x =+与椭圆E 交于A ,B 两点,直线1y x =-与椭圆E 交于C ,D 两点,求四边形ABCD 面积.35. 如图所示,已知一堵“L ”形的现成墙面ABC ,AB BC ⊥,9AB =米,3BC =米,现利用这堵墙和总长为42米的篱笆围建一个“日”字形的小型农场DBEF (虚线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图①),也可能在线段BA 的延长线上(如图②,点E 在线段BC 的延长线上.设DF 为x 米,EF 为y 米.(1)当13x =时,小型农场DBEF 的面积为多少?(2)当“点D 在线段AB 上”和“点D 在线段BA 的延长线上”时,试分别写出y 关于x 的函数关系式; (3)当x 等于多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?的参考答案:ACBAC CADCC DBADB ADBCC 8 33-3①④(3π2x =或34100x y --=28. (1)8 (2)7029. (1)()()22112x y ++-= (230. (12. (2)4.31. (1)()π2,2πf T =-=. (2)3-.32. (1)3. (2)2.33. (1)3410,22a a ==.34.(1)22132y x += (2)( (3)535.(1)()278m(2)()()327,3122453,1215x x y x x ⎧-<<⎪=⎨⎪-≤<⎩(3)当9x =时,小型农场面积最大,最大面积为2243m 2。

2024年高职高考数学试卷

2024年高职高考数学试卷

2024年高职高考数学试卷全文共四篇示例,供读者参考第一篇示例:2024年高职高考数学试卷一、选择题1. 下列哪一个数是有理数?A. 根号2B. πC. -3/4D. e2. 过点A(2,3)和点B(-1,4)作一直线,其斜率为多少?A. 1/3B. 3/5C. 1D. -33. 若a+b=7,a-b=3,求a的值。

A. 2B. 4C. 5D. 7二、填空题1. 根据等差数列的性质,求首项为3,公差为2的第n项。

答:3+(n-1)×22. 已知函数f(x)=3x^2-4x+2,则f(-1)的值为多少?答:9三、简答题1.请用排列组合知识,求一个四位数,它的千位数字为5,百位数字为偶数,十位数字比千位数字大2,个位数字为1的所有可能性。

2. 函数f(x)=x^2,如果增大x的值,函数图像会如何变化?请用实际例子解释。

四、解答题1. 求解不等式2x-3<5,并用数轴表示解集。

2. 若函数f(x)=2x+1,g(x)=3x-2,求解f(g(x))。

以上为2024年高职高考数学试卷,希望同学们认真备考,取得优异的成绩!第二篇示例:2024年高职高考数学试卷已经准备就绪,将在近期进行考试。

本次试卷涵盖了高中阶段数学的各个内容点,旨在全面考核考生的数学水平和解题能力。

以下是试卷的具体信息和一些重点题目的介绍。

第一部分为选择题,共计40道,每道题1分,总分为40分。

选择题涉及了数学的基本概念和常用方法,在解题过程中考生需要注重细节和逻辑推理。

例如:1.已知函数f(x)=2x^2+3x+1,则f(2)的值为多少?A. 15 B. 17 C. 19 D. 21。

考生需根据函数的定义计算出f(2)的值。

第二部分为填空题,共计10道,每道题2分,总分为20分。

填空题主要涉及数学的计算和推导,考生需要正确运用相关知识点进行填空。

例如:2.已知等差数列\{a_n\}的前5项依次为1,4,7,10,13,则a_5的值为______。

浙江省专升本高等数学考试极限题分析初探

浙江省专升本高等数学考试极限题分析初探

76 浙江省专升本高等数学考试极限题分析初探金友良从2005年起,我们浙江省专升本考试独立组卷,至今已有14年。

通过专升本考试,选拨普通高等学校高职高专应届优秀毕业生到本科院校进一步深造学习,为高职高专人才培养构建立交桥模式做出了贡献。

我们学校每年都进行专升本考试复习辅导,本人开设高等数学专升本复习多年,一直对高等数学专升本考试进行研究,对高等数学每部分的考试题目都进行了系统地、针对性地归纳及总结。

由于极限是高等数学中最重要的一个概念,极限思想始终贯穿整个微积分学,极限运算是微积分运算中最基础的部分,有着重要的地位。

本文就浙江省高等数学专升本考试第一部分极限题进行了收集、分析、归纳,整理了几种常考的极限运算基本方法,试图使学生从中掌握解题规律,提高运算能力。

1 精细解读浙江省专升本高等数学教学大纲,明确极限题考试的基本要求1)理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。

理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

2)理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小与无穷大的关系。

会利用等价无穷小替换求极限。

4)理解夹逼定理与单调有界准则,掌握两个重要极限,并能利用这两个重要极限公式求极限。

5)会利用初等函数的连续性求函数的极限。

6)掌握洛必达法则,会利用洛必达法则求各种未定式的极限。

7)理解导数定义与定积分定义,并会利用两个定义求极限。

2 分析历年试题,筛查考试热点1)利用极限的四则运算法则求极限。

2)利用左右极限求函数在某一点处的极限。

3)利用两个重要极限公式求极限。

4)利用导数的定义求极限。

5)利用洛必达法则求极限。

6)利用等价无穷小量求极限。

7)利用定积分概念求极限。

3 典型试题解析1)利用极限的四则运算法则求极限。

利用极限的四则运算法则求极限是极限运算中最基础的方法之一,我们教师一定要强调要用这四则运算法则的一个前提条件是要保证每个极限都存在,且求商的极限时,分母极限不能为零,同时根据不同的题型,熟练掌握不同的解题方法。

2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)2019浙江省高职单独考试数学试卷一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1.已知集合A={-1,1},集合B={-3,-1,1,3},则A∩B=()A。

{-1,1}B。

{-1}C。

{1}D。

∅2.不等式x2-4x≤的解集为()A。

[0,4]B。

(0,4)C。

[-4,0)∪(0,4]D。

(-∞,0]∪[4,+∞)3.函数f(f)=ln(f−2)+1/(f−3)的定义域为()A。

(2,+∞)B。

[2,+∞)C。

(-∞,2]∪[3,+∞)D。

(2,3)∪(3,+∞)4.已知平行四边形ABCD,则向量AB→+BC→=()A。

DC→B。

BD→C。

AC→D。

CA→5.下列函数以π为周期的是()A。

y=sin(x−π/8)B。

y=2cos(x)C。

y=sin(x)D。

y=sin(2x)6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A。

400B。

380C。

190D。

3807.已知直线的倾斜角为60°,则此直线的斜率为()A.−√3/3B.−√3C.√3D.√3/38.若sinα>0且tanα<0,则角α终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.椭圆标准方程为x^2/2t+ y^2/4-t=1,一个焦点为(-3,0),则t的值为()A。

-1B。

0C。

1D。

210.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能11.圆的一般方程为x^2+y^2-8x+2y+13=0,则其圆心和半径分别为()A。

(4,-1),4B。

(4,-1),2C。

(-4,1),4D。

(-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A。

1/17B。

2024年5月浙江省高职考模拟试数学试卷

2024年5月浙江省高职考模拟试数学试卷

2024年5月浙江省高职考模拟试数学试卷姓名:______ 准考证号:______本试题卷共三大题,共4页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题3分,共50分.)(在每小题列出的四个备选答案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)1. 已知集合, 0,1,3B ,则A B ( )A. 1B. 0,1C. 1,0,1D. 1,0,1,22. 直线x 的倾斜角为( )A. 30B. 45C. 60D. 903. 点 0,1A 关于点 10B ,的对称点C 的坐标为( ) A. 2,1 B. 12 C. 11,22 D. 0,24. 若a b ,则下列不等式正确的是( ) A. 11a b B. 22ac bc C. 22a b D. 22a b5. 已知直线l :220x y 与两坐标轴交于A ,B 两点,则AB ( )A. 1B.C. 2D. 56. 解集为 ,01, 的不等式(组)为( )A. 221x xB. 211xC. 01x xD. 1011x x7. 双曲线22184x y 的虚轴长为( )A. 2B.C. 4D.8. 如图所示,正六边形ABCDEF 的边长为1,O 为正六边形的中心,则OA CD ( )A. FOB. 0C. 1D. 29. 下列函数在 e,π上是减函数的是( )A. 1y xB. 3x yC. ln y xD. π,0e,0x y x 10. 中国载人月球探测工程已经具备全面开展工程实施的条件,未来计划从4名男航天员和2名女航天员中选择3人送入环月轨道,则其中有且仅有一名女航天员被选中的选法有( )A. 2种B. 4种C. 6种D. 12种11. 已知二次函数的图像如图所示,根据图中提供的信息,使得 3f x 成立的x 的取值范围为( )A. 0,2B. 0,2C. 1,3D. 1,3 12. 若2 ,4sin 5,则 cos ( ) A. 35B. 35C. 45D. 45 13. 函数 lg 3x f x x x的定义域为( ) A. 0,B. 0,3C. 0,33,D. 0,33, 14. “1n ”是“3C 3n ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 15. 下列说法正确的是( )A. 过直线外一点有且只有一条直线与这条直线平行B 过直线外一点有且只有一个平面与这条直线平行C. 如果两条直线与同一个平面所成的角相等,则这两条直线一定平行D. 空间中与两条异面直线都垂直的直线只有一条16. 已知tan22 ,则2sin2cos22cos 1的值是( )A. 2B. 2C. 1D. 117. 两人玩“石头、剪刀、布”游戏,则两人同时出石头的概率是( ) A. 13 B. 16 C. 19 D.23 18. 在等比数列 n a 中,已知1a ,4045a 是方程210160x x 的两根,则2023a ( )A. 8B. 8C. 4D. 4 19. 已知直线260kx y 与直线 2110x k y k 平行,则k 等于( )A. 1B. 2C. 1 或2D. 0或120. 已知点 4,5A ,抛物线28x y 的焦点为F ,P 为抛物线上与直线AF 不共线的一点,则PAF △周长的最小值为( )A. 18B. 13C. 12D. 7二、填空题(本大题共7小题,每小题4分,共28分.)21. 已知函数 2log ,02,0x x x f x x ,则12f f ______. 22. 若1x ,则41x x 取得最小值时x 值为______. 23. 一个边长为2米的正方体容器中放入了一个与各面都相切的实心球,现在往正方体容器里注水,最多能注水______立方米.(π取3)24. 102x x______. 25. 已知圆C :2220x y y F 与x 轴相切,则圆C 标准方程为______.26. 已知(0,π),且cos 2,则 _____________. 27. 已知数列 n a 满足10a,1n a ,则其前2023项的和2023S ______. 三、解答题(本大题共8小题,共72分.解答需写出文字说明及演算步骤.)28. 计算:25π3sin 20236420231log 25C 8 . 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.的的30. 已知函数 πππcos 22sin cos 344f x x x x.求: (1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 长;(2)求梯形ABCD 面积.33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?34. 已知等差数列 n a 中,14a ,12324a a a ,求:(1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S ,求数列 n b 的通项公式. 35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P,31,2P,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.的的参考答案BDACB BCCBD DACAA CCDAC21.12##0.522. 3 23. 4 .24. 45 25. 2211x y 26. 5π6 27. 028. 计算:25π3sin 20236420231log 25C 8 .原式23113224211log 45221121221542122. 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.(1)直线经过两点 0,4A , 2,6B所以斜率64120k , 所以直线l 的方程为:4y x ,化为一般式方程为:40x y .(2)直线l 被圆心为 5,3的圆C 所截得的弦长为4,所以圆心 5,3到直线l的距离d,所以半径r , 所以圆C 的标准方程为: 225312x y .30. 已知函数 πππcos 22sin cos 344f x x x x.求:(1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.函数 πππcos 22sin cos 344f x x x xπππcos2cos sin2sin sin2334x x x1πcos2sin2sin 2222x x x1cos2sin2cos222x x x1sin2cos222x xπsin 26x故函数 f x 最小正周期2ππ2T ,值域为 1,1由(1)知 πsin 26f x x当πππ2π22π262k x k ,Z k 时,函数单调递增 解得ππππ63k x k ,Z k 时,函数单调递增 即函数的单调递增区间为πππ,πZ 63k k k.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.【小问1详解】设CD 的中点为M ,连接PM的在等腰直角PCD 中,CD 的中点为M ,∴PM CD ,∵二面角A CD P 为直二面角,PM 面PCD ,∴PM 平面ABCD ,即线段PM 为四棱锥P ABCD 的高,在等腰直角PCD 中,2CD ,∴1PM , ∴114221333P ABCD ABCD V S PM 正方形, 故四棱锥P ABCD 的体积为43. 【小问2详解】设AB 中点为N ,连接MN ,PN由于M ,N 为正方形ABCD 中点,显然AB MN ①,又∵PM 平面ABCD ,AB 平面ABCD ,∴AB PM ②,∴PM MN M ,,PM MN 面,∴AB 面PMN ,又∵PN 面PMN ,∴AB PN ,∴PNM 为二面角P AB D 的平面角,Rt PMN △中,1PM ,2MN , 故1tan 2PM PNM MN , 即二面角P AB D 的正切值为12.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 的长;(2)求梯形ABCD 的面积.【小问1详解】如图,过点A 作//AE CD 交BC 于点E ,因为//AD BC ,所以AECD 为平行四边形,所以AE CD ,AD EC ,又2AD ,8BC ,45B ,75C则826BE BC AD ,75AEB C ,180457560BAE 由sin sin AE BE B BAE 得:6sin45sin60AE解得AE ,即CD 【小问2详解】因为75C ,6BE ,CD 2EC所以4sin sin 75sin(4530)sin 45cos30cos 45sin 30C, 所以ABE AECD ABCD S S S 梯形 1sin sin 2BE CD C EC CD C 16sin752sin75216224415 .33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?【小问1详解】当03x 时,120100202010080f x x x x ,当38x 时,22443502020f x x x x2224330x x , 所以函数解析式为 210080,03224330,38x x f x x x x. 【小问2详解】①当03x 时, 10080f x x 单调递增当3x 时,函数有最大值为380(2)当38x 时,222243302(6)402f x x x x即当6x 时,函数有最大值为402∴402380∴当产量为6万套时,利润最大,最大为402万元.34. 已知等差数列 n a 中,14a ,12324a a a ,求: (1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S,求数列 n b 通项公式. 【小问1详解】在等差数列 n a 中,设公差为d ,∵12324a a a∴ 111224a a d a d∴4d , 的∴数列 n a 的通项公式为 4414n a n n , ∴ 12442222n n a a n n n S n n . 【小问2详解】∵114b a ,由12n n nb b S 知, 1221221n n b b n n n n, ∴21112b b , 32123b b , …111n n b b n n, 将上一组等式累加得:111112231n b b n n11111112231n n(裂项相消) 11n, ∴15114n n b n n.35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P ,31,2P ,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.【小问1详解】因为椭圆关于x 轴对称,关于y 轴对称,关于原点中心对称所以31,2P,41,2P必在椭圆上,则 11,1P 就不在椭圆上, 20,1P 在椭圆上. 故椭圆经过点 20,1P,31,2P,41,2P这三点,则有22222222011211a b a b ,解得2a ,1b , ∴椭圆的标准方程为2214x y . 【小问2详解】由(1)可知,c ,∴椭圆的左焦点为.∵tan415k ,∴直线l的方程为y x .设 11,A x y , 22,B x y ,则2214y x x y ,消去y得2580x ,∴12x x ,1285x x ,∴12855AB x设过点Q 且与直线l 平行的直线方程为y x m ,此直线与椭圆相切且这两条平行线间距离最大的时候面积最大时,ABQ 的面积最大. 即有2214y x m x y 消去y 得 2258410x mx m ,∵ 22Δ(8)45410m m ,∴m当m 时,12d ,当m 时,22d, ∵21d d ,∴22h d ,∴ABQ 的最大面积为182525 .。

中职数学 2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷

中职数学 2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷

2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题2分,共50分)(在每小题列出的四个案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)A .{2,0}B .{-2,4}C .{0,4}D .{-2,0,2,4}1.(2分)已知全集U ={-2,0,2,4},集合A ={2,0},则如图中阴影部分表示的集合为( )A .(-4,8)B .(2,8)C .(8,2)D .(2,2)2.(2分)点A (4,0)关于点B (0,4)的对称点的坐标为( )A .B .C .D .3.(2分)直线x -y =0的倾斜角是( )M 3π6π32π35π6A .充分条件B .必要条件C .充要条件D .既不充分又不必要条件4.(2分)设x ∈R ,则“x >2”是“x 3>8”的( )A .(x -1)(4-x )>0B .|x -1|<4C .D .≤05.(2分)函数y =f (x )的图像如图所示,下列不等式中,解集与f (x )<0相同的是( ){x <1x >4x -1x -46.(2分)函数y =•lgx 的定义域为( )M 1-xA .(0,1]B .(0,1)C .(1,+∞)D .(0,1)⋃(1,+∞)A .30°B .168°C .πD .47.(2分)已知sinαcos 168°>0,则α的值可能为( )A .6种B .12种C .24种D .48种8.(2分)有4名同学参加演讲比赛,甲第一位出场的排法有( )A .f (-4)=f (4)B .函数在[3,6]上的最大值为f (3)C .f (4)>f (5)D .函数在[-6,-3]上单调递减9.(2分)函数f (x )关于y 轴对称,且f (x )在[3,6]上是减函数,下列不正确的选项是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)10.(2分)已知圆x 2+y 2+Dx -3=0经过点A (-1,2),则圆的圆心坐标为( )A .B .-C .D .-11.(3分)已知tanα=,且tan (α+β)=1,则tanβ的值为( )3417173434A .7B .6C .5D .412.(3分)抛物线y 2=8x 上点M 到直线x =-1的距离为5,F 为焦点,则|MF |=( )13.(3分)已知函数y =x 2-1与x 轴交于A 、B 两点,点P 为圆(x -3)2+y 2=8上一动点,则△PAB 面积的最大值是(A .3B .2C .3D .4M 2M 2M 2A .平行B .相交C .异面且垂直D .异面但不垂直14.(3分)如图所示,正四棱锥P -ABCD 中,点E 为PB 中点,则AC 与DE 的位置关系为( )A .36B .37C .38D .3915.(3分)已知数列{a n }中,a 1=1,a 2=4,a 3=9,且{a n +1-a n }是等差数列,则a 6=( )A .B .C .D .16.(3分)为了弘扬“孝心文化”,台州市某职业学校开展为父母捶背活动,要求同学们在某周的周一至周五任选两天为父母背,则该校的甲同学连续两天为父母捶背的概率为( )710352512A .(-4,-2)B .(-4,0)C .(2,4)D .(4,2)17.(3分)已知点N (0,1),MP =(-1,1),MN =(3,2),则点P 的坐标为( )→→A .B .C .D .18.(3分)已知tan (θ+)=2,则co (θ+)=( )π6s 2π6453107101519.(3分)已知F 1、F 2是椭圆+=1(a >b >0)的两个焦点,过点F 2的直线与椭圆交于A ,B 两点.若|AF 1|:|ABF 1|=5:12:13,则该椭圆的离心率为( )x 2a 2y 2b2二、填空题(本大题共7小题,每小题4分,共28分)三、解答题(本大题共8小题,共72分)(解答需写出文字说明及演算步骤)A .B .C .D .M 52M 32M 53M 22A .36分钟B .37分钟C .41分钟D .46分钟20.(3分)某学校组织团员举行“江南长城文化节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了5分钟,然后下坡到乙地又宣传了5分钟返回,上坡和下坡均按原来速度保持不变,行程情况如图所示.若返回时,在甲地仍要宣传5分钟,那么他们从乙地原路返回学校所用的时间是( )21.(4分)已知数列-1,-2,x ,y 前三项成等比,后三项成等差,则xy = .22.(4分)直线y =x +1与双曲线x 2-y 2=1的交点个数为.23.(4分)的展开式中,记二项式系数之和为m ,常数项的值为n ,则m +n =.(-)√x 1x624.(4分)已知α∈(0,π),2sinαcosα=cos 2α,则α= .M 325.(4分)将边长为2的正三角形绕着它一边上的高旋转一周,所得几何体的侧面积为 .26.(4分)折扇轻摇,清风徐来,炎炎夏日尽收眼底.如图所示,一把折扇完全展开后,得到的扇形OAB 的面积为900cm 2,当该折扇的周长最小时,OA 的长度为.27.(4分)某研究机构通过研究学生的“日能力值”来激励学生.假设甲和乙刚开始的“日能力值”相同,在往后的学习过程勤奋学习,乙疏于学习.通过研究发现,经过n 天之后,甲的“日能力值”是乙的T 倍,n 与T 有如下关系:n =.若“日能力值”是乙的20倍,则至少需要经过天.(参考数据:lg 102≈2.0086,lg 99≈1.9956,lg 2≈0.3010)lgT lg 102-lg 9928.(5分)计算:-lg 4-2lg 5+++2sin .()169-12M (1-)M 23C 2024202411π429.(5分)如图所示,已知△ABC 为等腰三角形,∠A =120°,AC =2,点E 为AB 延长线上一点,且B E =AB .(1)求CE 的长;(2)求∠BCE 的正弦值.30.(10分)已知圆C 的圆心坐标为(1,-2),且过点(2,-2).(1)求圆C 的标准方程;(2)过点P (5,0)作斜率为1的直线l 交圆C 于A 、B 两点,与点P 较近的点为B ,求线段PB 的长.M 331.(10分)如图所示,已知四棱锥P -ABCD ,底面ABCD 为菱形,AC ,BD 交于点O ,PD ⊥平面ABCD ,且PD =AD =2,∠ABC =120°.(1)求四棱锥P -ABCD 的体积;(2)求半平面PAC 与底面ABCD 所成二面角的余弦值.32.(10分)函数f (x )=Asin (ωx +φ)(ω>0,|φ|<)的部分图像如图所示,且|MN |=2.(1)求函数f (x )的解析式;(2)若点P 为图像上一点,且锐角△MNP 的面积为,求点P 的坐标.π2M 233.(10分)某公司生产一类电子芯片,且该芯片的年产量不超过35万件,每万件电子芯片的计划售价为16万元.已知生产电子芯片的固定成本为30万元/年,每生产x (万件)电子芯片需要投入的流动成本为y (万元)的部分数据如下:x (万件)34562025y (万元)184828036180311033根据市场调查分析,当0≤x ≤14时,流动成本y (万元)与年生产x (万件)之间满足函数模型y =ax 2+bx ;当14<x ≤35时动成本y (万元)与年生产x (万件)之间满足函数模型y =kx +-80.假设该公司每年生产的芯片都能售完.(1)求流动成本y (万元)关于年生产x (万件)的函数关系式;(2)写出年利润g (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(3)为使公司获得的年利润最大,每年应生产多少万件该芯片?400x34.(10分)如图所示,已知双曲线C :-=1(a >0,b >0)的一个顶点为(1,0),离心率为2,直线l :y =x +2与双曲线C 交于A 、B 两点.(1)求双曲线的标准方程;(2)若在x 轴上存在点P ,使△PAB 是以P 为顶点的等腰三角形,求点P 的坐标;(3)在(2)的条件下,求△PAB 的面积.x 2a 2y 2b21235.(12分)已知数列{a n }满足=2(n ∈),a 1=1,a 2=2.(1)求a 3,a 4,a 5的值;(2)求{a n }的通项公式;(3)设=,求数列{b n }的前n 项和为S n .a n +2a n N *b n log 2a2na 2n -1。

(完整word)浙江省高职考试数学卷

(完整word)浙江省高职考试数学卷

〔A卷〕2021 年浙江省高等职业技术教育招生考试数学试卷姓名准考证号本试题卷共三大题。

全卷共 3 页。

总分值120 分,考试时间120 分钟。

考前须知 :1.所有试题均需在答题纸上作答。

未在规定区域内答题,每错一个区域扣卷面总分 1 分。

在试卷和草稿纸上作答无效。

2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3. 选择题每题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

一、单项选择题〔本大题共18 小题,每题 2 分,共 36 分〕在每题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

1.集合A. 5 个2.函数M{ a,b, c, d}, 那么含有元素 a 的所有真子集个数有B .6 个 C. 7 个 D.8 个f (x 1) 2 x 1 ,那么 f ( 2)C. 23.“a b0 〞是“ a b0 〞的A. 充分非必要条件B.必要非充分条件C.充要条件D. 既非充分又非必要条件4.以下不等式〔组〕解集为x x 0 的是x3x x20A.3B.3x1 232C. x22x0D. x125.以下函数在区间〔0,) 上为减函数的是A.y 3x1B. f ( x) log 2 xC. g( x) (1)x D. h( x) sin x 26.假设是第二象限角,那么7 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角7.向量a(2,1), b( 0,3) ,那么a2b第 1 页共 4 页A. (2, 7)B. 53C.7D. 298.在等比数列a n 中,假设 a 2 3, a 4 27 ,那么 a 5A. - 81B. 81C. 81或 - 81D. 3 或 - 39.抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于A.D.10.角终边上一点 P ( 4, 3) ,那么 cosA.34C.3D.55B.44511. cos78cos18 sin 18 sin 102A.33C.112B.2D.2212.两点 M (2,5) ,N(4,-1), 那么直线 MN 的斜率kA.1B.1C.112D.213.倾斜角为, x 轴上截距为 -3 的直线方程为2A.x3B. y 3C. xy3D. xy314.函数 ysin 2 x cos2x 的最小值和最小正周期分别为A.1 和 2B.0 和 2C.1 和D.0 和15.直线 l : x2 y 30 与圆 C : x 2y 2 2x4y 0 的位置关系是A. 相交且不过圆心B.相切C.相离D. 相交且过圆心16 .双曲线x 2y 2 1 的离心率 e49A.23C.13D.133B.23217.将抛物线 y 24x 绕顶点按逆时针方向旋转角,所得抛物线方程为A. y 24xB. y 24xC. x 24yD. x 24 y18 .在空间中,以下结论正确的选项是A. 空间三点确定一个平面B. 过直线外一点有且仅有一条直线与直线垂直C. 如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行第 2 页 共 4 页D. 三个平面最多可将空间分成八块二、填空题〔本大题共8 小题,每题3 分,共 24 分〕19.假设 0 x 4, 那么当且仅当 x 时, x( 4x) 的最大值为 4.20.从 8 位女生和 5 位男生中,选 3 位女生和 2 位男生参加学校舞蹈队,共有种不同选法 .21.计算 : log 4 8.22.在等差数列 { a n } 中, a 1 2, S 7 35, 那么等差数列 { a n } 的公差 d.23.函数 f ( x)2x 25x 3图像的顶点坐标是.24.圆柱的底面半径 r2, 高 h 3 ,那么其轴截面的面积为25.直线 x 2 y 1 0 与两坐标轴所围成的三角形面积S. 26.在闭区间 [0,2] 上,满足等式 sin xcos1,那么 x=.三、解答题〔本大题共 8 小题,共60 分〕解容许写出文字说明及演算步骤 .27. (6 分 ) 在 ABC 中 ,b4, c5, A 为钝角,且 sin A4, 求 a .528. (6 分 ) 求过点 P(0,5) ,且与直线 l : 3x y2 0 平行的直线方程 .29. (7 分 ) 化简: (1 x)5 ( x 1) 5 .30. (8 分 ) tan3 2 , 为锐角,求., tan, 且7531. (8 分 )圆 C : x2y 24x 6 y4 0 和直线 l : xy 50, 求直线 l 上到圆 C距离最小的点的坐标 ,并求最小距离 .32. (7 分 ) (1) 画出底面边长为4cm ,高为 2cm 的正四棱锥 P-ABCD 的示意图 ;(3 分 )〔2〕由所作的正四棱锥P-ABCD ,求二面角 P-AB-C 的度数 .〔 4 分〕33. (8 分 ) 函数 f ( x)5,0 x 1f ( x 1) 3, x .1( 1〕求 f (2), f (5), 的值;〔 4 分〕〔 2〕当 xN 时, f (1), f (2), f (3), f (4), 构成一数列,求其通项公式 .(4 分 )34. (10 分 )两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的局部 . 如下图,现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上.〔 1〕根据所给条件,求出椭圆的标准方程;(3 分 )(2) 求长方形面积 S 与边长 x 的函数关系式 ;〔 3 分〕〔 3〕求当边长 x 为多少时,面积S 有最大值,并求其最大值 .〔 4 分〕第 3 页 共 4 页12〔题 34 图〕第 4 页共 4 页。

2024浙江省高职考(中职高考)联合体第一次模拟(数学试卷(含答案))

2024浙江省高职考(中职高考)联合体第一次模拟(数学试卷(含答案))

第1 页(共6页)2023 2024学年浙江省职教高考研究联合体第一次联合考试数学试卷参考答案一㊁单项选择题(本大题共20小题,1 10小题每小题2分,11 20小题每小题3分,共50分)1.D ʌ解析ɔȵA ɣB ={-1,0,1,3},ʑ2∉(A ɣB ).2.A ʌ解析ɔȵx =2,y =5,ʑx +y =7,反之不一定成立.3.D ʌ解析ɔ特殊值代入法或利用不等式的性质分析.4.C ʌ解析ɔȵA O ң=(0,0)-(2,0)=(-2,0),B O ң=(0,0)-(0,-1)=(0,1),ʑA O ң+B O ң=(-2,1).5.D ʌ解析ɔ由题意得4-x 2>0,x +1>0,{解得-1<x <2.6.C ʌ解析ɔ120ʎ-180ʎ=-60ʎ.7.D ʌ解析ɔP 44=24(种).8.C ʌ解析ɔ根据指数函数㊁对数函数的图像和性质进行比较.9.A ʌ解析ɔ画图或化为0ʎ~360ʎ范围内的角.10.B ʌ解析ɔ斜率k =-63-12+3=-33.11.D ʌ解析ɔ由题意得m +1ɤ0,解得m ɤ-1.12.C ʌ解析ɔȵ函数t (x )=c x 是减函数,ʑ0<c <1.令x =1,则g (1)=b >f (1)=a .ʑb >a >c .13.C ʌ解析ɔP =18.14.A ʌ解析ɔȵt a n α㊃s i n α=s i n αc o s α㊃s i n α=s i n 2αc o s α>0,且s i n 2α>0,ʑc o s α>0.15.C ʌ解析ɔȵT 4=C 36x 3(-2x )3=(-2)3C 36x 3㊃x -32,ʑ第4项的系数为-23C 36=-160.16.D ʌ解析ɔȵ点P (4,0),且|MP |=3,ʑ动点M 的轨迹方程为(x -4)2+y 2=9.17.D ʌ解析ɔȵf (1)=f (3)=0,ʑ对称轴方程为x =1+32,即x =2.又ȵ二次函数f (x )的图像开口向下,ʑf (6)<f (-1)<f (2).18.B ʌ解析ɔA 项中,A 1B 与B 1C 成60ʎ角;B 项中,A D 1与B 1C 是异面垂直关系,即成90ʎ角,正确;C 项中,A 1B 与底面A B C D 成45ʎ角;D 项中,连接A C (图略),A 1C 与底面A B C D 所成的角为øA C A 1ʂ30ʎ.故选B .19.B ʌ解析ɔȵa =|A F 1|=2,c =|O F 1|=1,ʑb 2=3,ʑ椭圆C 的标准方程为x 24+y 23=1.第2 页(共6页)20.D ʌ解析ɔ由题意得2b =a +c ,c -a =2,c 2=a 2+b 2,ìîíïïïï解得a =3,b =4,c =5,ìîíïïïïʑ双曲线C 的标准方程为x 29-y 216=1.二㊁填空题(本大题共7小题,每小题4分,共28分)21.-22 ʌ解析ɔȵx >0,ʑx +2x ȡ2x ㊃2x =22,ʑ-(x +2x)ɤ-22.当且仅当x =2x (x >0),即x =2时,等号成立.22.1 ʌ解析ɔȵf (-1)=-(-1)2+1=0,ʑf [f (-1)]=f (0)=0+1=1.23.1103 ʌ解析ɔS 10=(1+2+4+ +29)+(-1+1+3+ +17)=1ˑ(1-210)1-2+10ˑ(-1+17)2=1023+80=1103.24.4π3 ʌ解析ɔȵV 圆柱=πr 2h =πˑ22ˑ4=16π,V 圆锥=13πO A 2㊃O B =13πˑ22ˑ11=443π,ʑV 圆柱-V 圆锥=16π-44π3=4π3.25.20 ʌ解析ɔȵ抛物线y 2=16x 的焦点为F (4,0),代入直线方程得2ˑ4+0+m =0,解得m =-8,即y =8-2x .将其代入y 2=16x 得x 2-12x +16=0,由韦达定理得x 1+x 2=12.ʑ|A B |=(x 1+p 2)+(x 2+p 2)=x 1+x 2+p =12+8=20.26.31250 ʌ解析ɔȵs i n α=45,c o s α=-35,ʑs i n 2α=2s i n αc o s α=2ˑ45ˑ(-35)=-2425,c o s 2α=c o s 2α-s i n 2α=(-35)2-(45)2=-725,ʑs i n (2α+5π4)=s i n 2αc o s 5π4+c o s 2αs i n 5π4=(-2425)ˑ(-22)+(-725)ˑ(-22)=24250+7250=31250.27.(-ɕ,-2)ɣ(4,+ɕ) ʌ解析ɔ由题意得(m +2)(4-m )<0,ʑ(m +2)(m -4)>0,解得m <-2或m >4.三㊁解答题(本大题共8小题,共72分)(以下评分标准仅供参考,请酌情给分)28.(本题7分)解:原式=223ˑ32+l o g 225-l o g 334+1+C 19-4ˑ3ˑ2ˑ1=2+5-4+1+9-24每项正确各得1分,共6分 =-11.结果正确得1分29.(本题8分)解:(1)ȵs i n (π+α)=32,且αɪ(-π2,0),ʑα=-π3.1分第3 页(共6页)ʑf (x )=s i n (2x -π3)+c o s (2x +π3)+1=s i n 2x c o s π3-c o s 2x s i n π3+c o s 2x c o s π3-s i n 2x s i n π3+1=12s i n 2x -32c o s 2x +12c o s 2x -32s i n 2x +1=1-32s i n 2x +1-32c o s 2x +1=2-62s i n (2x +π4)+1,1分 ʑ函数f (x )的最小正周期T =2π2=π.1分 (2)当s i n (2x +π4)=1时,函数f (x )取最小值,最小值为2-6+22,2分 此时2x +π4=2k π+π2(k ɪZ ),解得x =k π+π8(k ɪZ ),2分 即函数f (x )取最小值时x 的集合为x x =k π+π8(k ɪZ ){}.1分 30.(本题9分)解:(1)联立x +y -5=0,2x -y -1=0,{解得x =2,y =3,{ʑ圆心Q (2,3).1分 又ȵ坐标原点(0,0)到直线y =2的距离d =2,ʑ半径r =2.1分 ʑ圆C 的标准方程为(x -2)2+(y -3)2=4.2分 (2)ȵM Q ʅMP ,ʑ直线MP 为圆C 的切线.1分①当直线MP 的斜率存在时,设直线MP 的方程为y -6=k (x -4),即k x -y +6-4k =0.由r =d 得|2k -3+6-4k |k 2+1=2,解得k =512,ʑ此时,直线MP 的方程为y -6=512(x -4),即5x -12y +52=0.2分 ②当直线MP 的斜率不存在时,直线MP 的方程为x -4=0.1分 综上所述,直线MP 的方程为5x -12y +52=0或x -4=0.1分 31.(本题9分)解:(1)在әA B C 中,由正弦定理得a s i n A =b s i n B ,即2s i n A =2s i n B,ʑs i n B =2s i n A .1分 又ȵc o s A =32,ʑøA 是әA B C 的一个内角,ʑøA =30ʎ.ʑs i n A =12,ʑs i n B =22.1分 ȵb >a ,ʑøB =45ʎ或135ʎ.1分第4 页(共6页)当øB =45ʎ时,øC =105ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2㊃c o s 105ʎ=6-42ˑ2-64=4+23,ʑc =3+1.1分 当øB =135ʎ时,øC =15ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2ˑ2+64=4-23,ʑc =3-1.1分 注:只要答案正确,用其他方法解答也可得分.(2)当øC =105ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6+24=3+12;2分 当øC =15ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6-24=3-12.2分 32.(本题9分)解:(1)ȵA C =1,A B =2,B C =3,ʑA B 2=A C 2+B C 2,ʑәA C B 是直角三角形,且øA C B =90ʎ.1分 ȵP A ʅ平面A B C ,B C ⊂平面A B C ,ʑP A ʅB C ,又ȵB C ʅA C ,且P A 与A C 交于点A ,ʑB C ʅ平面P A C ,ʑP B 与平面P A C 所成的角为øB P C .1分ȵP A =A C =1,P B =P A 2+A B 2=5,ʑP C =2,ʑ在R t әP C B 中,c o s øB P C =P C P B =25=105,1分 ʑP B 与平面P A C 所成角的余弦值为105.1分 (2)由(1)得B C ʅP C ,又ȵA C ʅB C ,ʑøP C A 为二面角P B C A 的平面角.1分 ȵ在R t әP A C 中,A P =A C =1,P A ʅ平面A B C ,ʑøP C A =45ʎ,即二面角P B C A 的大小为45ʎ.2分(3)V C P A B =V P A B C =13S әA B C ㊃P A =13ˑ12ˑ1ˑ3ˑ1=36.2分 33.(本题10分)解:(1)ȵa 2和a 3是一元二次方程x 2-3x +2=0的两个实数根,且数列{a n }单调递增,ʑa 2=1,a 3=2,ʑ公差d =a 3-a 2=1,首项a 1=a 2-d =0,ʑa n =n -1.1分 又ȵb 1=l o g 2a 3=l o g 22=1,b 2=l o g 2a 5=l o g 24=2,1分 ʑ公比q =b 2b 1=2,ʑb n =b 1q n -1=2n -1.1分第5 页(共6页)(2)ȵc n =a n +1+1b n,ʑc n =n +21-n .1分 ʑT n =c 1+c 2+ +c n=(1+2+3+ +n )+(1+12+14+ +12n -1)=n (n +1)2+1-12n 1-121分=n 2+n 2+2-12n -1.1分 (3)ȵd n =(2+a n )b n =(n +1)㊃2n -1,1分 ʑM n =d 1+d 2+d 3+ +d n ,即M n =2ˑ20+3ˑ21+4ˑ22+ +(n +1)㊃2n -1①ʑ2M n =2ˑ21+3ˑ22+4ˑ23+ +(n +1)㊃2n ②由①-②得-M n =2ˑ20+21+22+ +2n -1-(n +1)㊃2n 1分 =2+2(1-2n -1)1-2-(n +1)㊃2n =-n ㊃2n ,1分 ʑM n =n ㊃2n .1分 34.(本题10分)解:(1)ȵәA B F 2的周长为|A F 1|+|A F 2|+|B F 1|+|B F 2|=4a =8,ʑa =2.1分 又ȵe =c a =12,ʑc =1,ʑb 2=a 2-c 2=22-12=3.1分 ʑ椭圆C 的标准方程为x 24+y 23=1.1分 (2)ȵ椭圆C :x 24+y 23=1的右焦点为F 2(1,0),ʑ抛物线y 2=2p x 的焦点为(1,0),1分 ʑp =2,ʑ抛物线的标准方程y 2=4x .1分 ȵ直线l 的倾斜角为135ʎ,ʑ斜率k =t a n 135ʎ=-1,ʑ直线l 的方程为y =-x +1,联立y =-x +1,①y 2=4x ,②{将①代入②并消去y 得x 2-6x +1=0,ʑΔ=(-6)2-4ˑ1ˑ1=32,ʑ弦长|MN |=1+1ˑ321=8,1分第6 页(共6页)又ȵ坐标原点O 到直线y =-x +1的距离d =12=22,1分 ʑS әO MN =12|MN |㊃d =12ˑ8ˑ22=22.1分 (3)联立y =-x +1,①x 24+y 23=1,②ìîíïïïï将①代入②并消去y 得7x 2-8x -8=0,ʑΔ=(-8)2-4ˑ7ˑ(-8)=288,ʑ|P Q |=1+1ˑ2887=247,1分 ʑ247-8=-327<0,ʑ|P Q |<|MN |.1分 35.(本题10分)解:(1)设D C =2x ,则A B =2x ,D C ︵=A B ︵=πx ,1分 ʑA D =B C =l -(4x +2πx )2=l 2-(π+2)x ,2分 ʑS =S 矩形A B C D +πx 2=2x ˑ[l 2-(π+2)x ]+πx 21分=l x -2(π+2)x 2+πx 2=-(π+4)x 2+l x .2分 (2)由(1)得S =-(π+4)x 2+l x .由二次函数的性质得:当x =l 2(π+4)米时,S 取得最大值,S m a x =l 24(π+4)平方米.4分。

高职升本《高等数学》试卷及参考答案

高职升本《高等数学》试卷及参考答案

高等院校“高职升本科”高等数学试卷2及参考答案本试卷分第I 卷(选择题)和第Ⅱ卷两部分。

共150分。

考试时间120分钟。

第I 卷(选择题 共40分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3. 考试结束,监考人将本试卷和答题卡一并收回。

一、单项选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列极限正确的是A. B. 1sin 1lim=∞→x xx 11tanlim =∞→xx x C. D. 04lim =-∞→xx ∞=∞→x x e lim 2. 当时,与等价的无穷小是0→x 112-+x A .B. C. 2 D.x 2x 2x 221x 3. 设函数在()内可导且,又<,则当()()x g x f ,+∞∞-,()0≠x g ()()x g x f '()()x g x f ' <<(其中为常数)时,有a x b b a , A. <B. <()()x g x f ()()a g a f ()()x g x f ()()b g b f C .< D.<()()x g x f ()()a g a f ()()x g x f ()()b g b f 4. 函数在区间上满足拉格朗日中值定理的()1ln +=x y []1,0=ξ A .B. C. D.212ln 12ln 212ln 11-5. 设向量与向量共线,且满足,则=x {}2,1,2-=a 18=⋅x ax A. B. {}3,6,3-{}4,2,4- C . D. {}4,2,4--{}6,3,6-6. 不定积分⎰=dx x x2cos A. B. C x x x ++cos ln tan C x x +-cos ln tan C.D. C x x x +-sin ln tan Cx x x +-cos ln tan 7. 广义积分⎰=-e dx xx 12ln 11 A.B. C.D. 2ππ108. 当>时,下列不等式成立的是x 1 A .> B. < ()x +1ln x xe x C. < D. >()x +1ln x x sin x9. 设周期函数在内可导,周期为4,且,则曲线()x f ()+∞∞-,()()1211lim-=--→xx f f x 在点处的切线斜率为()x f y =()()5,5f A. 1B. 2C. -2D. -110.下列微分方程中,通解是的方程为()x C x C e y x2sin 2cos 21+= A. B. 032=-'-''y y y 052=+'-''y y y C.D. 02=-'+''y y y 0136=+'+''y y y高等院校“高职升本科”招生统一考试高等数学试卷第II 卷(非选择题 共110分)注意事项:1.答第II 卷前,考生须将密封线内的项目填写清楚.2. 考生须用蓝,黑色钢笔或圆珠笔直接答在试卷上.二三四题号161718192021222324252627总分得分二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11. 求极限: =⎪⎭⎫⎝⎛-∞→241cos1lim x x x 12. 已知点是曲线的拐点,则常数的值分别为 ()3,123bx ax y +=b a ,13. 设 则的值为 ()⎩⎨⎧<≥=0,sin ,0,2x x x x f x ()dx x f ⎰-20114. 曲线绕Y 轴旋转一周所形成的旋转曲面的方程为 ⎪⎩⎪⎨⎧==+0,1222x z y 15. 函数的驻点为()()y yx e y x f x2,22++=16. 交换积分次序:()=⎰⎰--dx y x f dy y1201,三、解答题:本大题共8小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分).得分评卷人得分评卷人设为常数且函数 在点处连续,求的值.k ()⎪⎩⎪⎨⎧≥<<=+-1,10,12x ex x x f k x x 1=x k 18.(本小题满分10分)求曲线 ,在相对应的点处的切线方程.()⎩⎨⎧=++=-+0101y te t t x y 0=t 19.(本小题满分10分)设,并且.()⎰+='C edx xx f x()01=f (1)求的表达式; (2) 求不定积分.()x f ()⎰dx x xf 得分评卷人得分评卷人20.(本小题满分10分)已知点和直线,直线. ()3,2,1-A 958273:1-=+=-z y x L 654:2zy x L ==(1)求过点且垂直于直线的平面的方程;A 1L π(2)求过点和直线垂直且平行于平面的直线方程.A 2L π21.(本小题满分10分)设区域,计算二重积分.x y x x y D 2,0:22≤+≤≤⎰⎰+Ddxdy y x 22得分评卷人得分评卷人22.(本小题满分12分)设二元函数,求全微分和二阶偏导数.()yxy z +=1dz 22xz ∂∂23.(本小题满分12分)已知函数在区间上连续,且>0,设函数()x f []b a ,()x f , .()()()⎰⎰+=x ax bdt tf dt t f x F 1[]b a x ,∈(1)证明;()2≥'x F (2)证明方程在区间内有且仅有一个根.()0=x F ()b a ,得分评卷人得分评卷人24.(本小题满分12分)求微分方程的一个解,使得由曲线与直线()02=-+dx y x xdy ()x y y =()x y y =及轴所围成的平面图形绕轴旋转一周所围成的旋转体体积最小.2,1==x x x x2008年天津市高等院校“高职升本科”招生统一考试高等数学参考答案一、选择题1.B2. D3. C4. D5. B6. A7. A8. C9. C 10. B 二、填空题11.12. 13. 2129,23-2ln 111cos +-14. 15. 16. 12222=++z x y ⎪⎭⎫ ⎝⎛-1,21()⎰⎰--2101,x dyy x f dx 三、解答题17.解: 因为在点处连续,所以()x f 1=x ()()1lim 1f x f x =-→ 因为 ,()()[]2121121111lim lim lim e x x x f x x x x x =-+==-→-→→--- 又因为 ,所以 ,因此 ()ke f +=11kee +=121=k 18. 解: 因为,所以dt dx 01=--+t t t dtdx21+-= 因为 所以 0=++dt dy dt dy te e yyyyte e dt dy +-=1得分评卷人因此()()y yte t e dtdx dt dy dx dy +-==121 当时,所求的切线方程的斜率为0=t 1,0-==y x 1-=e k 故所求的切线方程为x e y 11-=+ 19.解:(1)由已知,得 ()⎰+='C e x d x f x2 所以因此 ()C e x f x +=2()C ex f x2121+= 于是 ()C e x f x 21212+=因为 ,所以()01=f e C -= 于是 ()e e x f x 21212-=(2)()()⎰⎰⎰⎰-=-=xdx e dx e dx ex xe dx x xf x x 214121222 ()Cex e x +-=224120. 解:(1) 直线的方向向量为1L {}9,8,7=→s 于是所求平面的方程为π()()()0392817=-+-++z y x 即 36987=++z y x (2)所求直线的方向向量为k j i kj i m363987654-+-==→故所求直线的方程为132211-=--=+z y x 21.解:在极坐标下,区域D 为,θγπθcos 20,40≤≤≤≤ 所以⎰⎰⎰⎰⎰==+Dd d d dxdy y x 4403cos 20222cos 38ππθθθγγθ ()92101222238sin sin 138402=⎪⎪⎭⎫ ⎝⎛-=-=⎰θθπd22. 解:(1)因为 ()xy y ez +=1ln 所以=∂∂xz ()()y xy y xy xy y y xy y e ++=⋅+⋅⋅+111121ln=∂∂y z()()⎥⎦⎤⎢⎣⎡⋅+⋅+++x xy y xy e xy y 111ln 1ln ()()y xy xy xy xy +⎥⎦⎤⎢⎣⎡+++=111ln 于是 dy yzdx x z dz ∂∂+∂∂=()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++++++=dy xy xy xy dx xyy xy y11ln 112(2) ()()yy xy xxy y xy y x xy x z +∂∂⋅++⎪⎪⎭⎫ ⎝⎛+∂∂+=∂∂11112222 ()()()y yxy xy y xy y xy xy yy ++⋅++++⋅-=111112222()()23411xy yy xy y +-+=23.证明:(1)因为 >0,()x f 所以 ()()()()()2121=⋅≥+='x f x f x f x f x F (2) 因为 <0()()()()⎰⎰⎰-=+=a aa bb a dt tf dt t f dt t f a F 11>0 ,()()⎰=badt t f b F 且在区间上连续.()x F []b a , 所以由零点定理知=0在区间内至少有一个根.()x F ()b a , 由(1)知 >0, 所以在上单调增加,从而方程=0()2≥'x F ()x F []b a ,()x F 在区间内至多有一个根.()b a , 故方程=0在区间内有且仅有一个根.()x F ()b a ,24.由 ,得 ,其通解为()02=-+dx y x xdy 12-=-'y xy x Cx dx x C x dx e C e y dx x dx x +=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎰-+⎰=⎰⎰-222221 由及轴所围成的平面图形绕轴旋转一周所得的旋转2,1,2==+=x x x Cx y x x 体体积为 于是 ()()⎰⎪⎭⎫⎝⎛++=+=2122237215531C C dx Cx x C V ππ⎪⎭⎫ ⎝⎛+=215562C dC dV π 令,得驻点 ,由>0. 知是0=dC dV 12475-=C π56212475=⎪⎭⎫ ⎝⎛-''V 12475-=C 惟一极小值点,因此也是最小值点,故所求曲线为 .x x y +-=212475。

高职单独招生考试数学试卷(答案解析) (7)

高职单独招生考试数学试卷(答案解析) (7)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23 B.32 C.132 D.1333.已知角β终边上一点(4,3)P -,则cos β=()A.35- B.45 C.34- D.544.设函数()f x 的定义域为[0,1],则“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某四面体的三视图如图所示,该四面体的表面积为()A 33+B .4C .33D .26.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B. C. D.7.抛物线上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z =a+bi (i 为虚数单位)的共轭复数为,已知z =2+i ,则_____.2.已知集合U ={1,3,5,9},A ={1,3,9},B ={1,9},则∁U (A ∪B )=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBAA6-10题答案:ADDBD11-15题答案:ABDCA16-20题答案:BABCB部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离0d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、【解答】解:若函数()f x 在[0,1]上单调递增,则函数()f x 在[0,1]上的最大值为(1)f ,若21()()3f x x =-,则函数()f x 在[0,1]上的最大值为(1)f ,但函数()f x 在[0,1]上不单调,故选:A .【点评】本题考查了充分、必要条件的判断,属于基础题.5、【解答】解:由三视图还原原几何体如图,PA ⊥底面ABC ,AB AC ⊥,1PA AB AC ===,则PBC ∆的等边三角形,则该四面体的表面积为1133112222S +=⨯⨯⨯+=.故选:A .【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、π;8、1;9、1532-;10、x-y-1=0。

高职单独招生考试数学试卷(答案解析) (4)

高职单独招生考试数学试卷(答案解析) (4)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1、函数的定义域是()A. B.C.D.2.展开式中不含项的系数的和为()A.-1B.0C.1D.23、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4、已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y =2.1x +0.85,则m 的值为()A .1B .0.85C .0.7D .0.55.执行如图所示的程序框图,则输出的b 值等于()a=1,ba<7开结是否a=a+输b=b-aA.24-B .15-C .8-D .3-6、已知集{1,2,3},B {1,3}A ==,则A B = ()A 、{3}B 、{1,2}C 、{1,3}D 、{1,2,3}7、已知集合{}{}3,2,3,2,1==B A ,则()A 、A=B B 、=B A ∅C 、B A ⊆D 、AB ⊆8、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A 、{0,-1}B 、{1}C 、{-2}D 、{-1,1}9、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件10、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为()A 、0B 、1C 、2D 、511、“1=x ”是“0122=+-x x ”的()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件12、“2)1(+=n n a n ”是“0)2(log 21<+x ”的()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件14、0=b 是直线b kx y +=过原点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15、方程4322(log =x 的解为()A.4=x B.2=x C.2=x D.21=x 16、设b a ,是实数,则“0>+b a ”是“0>ab ”的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件17、已知x x x f 2)(2+=,则)2(f 与)21(f 的积为()A 、5B 、3C 、10D 、818、“ααcos sin =”是“02cos =α”的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是()A 、[]1,3-B 、()1,3-C 、(][)+∞-∞-,13, D 、()()+∞-∞-,13, 20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A 、c b a <<B 、b c a <<C 、ca b <<D 、ac b <<二、填空题(共10小题,每小题3分;共计30分)1.设函数f (x )=x|x ﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式0恒成立,则实数a 的取值范围是_______.2.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_______.3、已知函数()f x =223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4、不等式2340x x --+>的解集为______.(用区间表示)5、不等式422<-xx的解集为______..(用区间表示)6、函数()35lg -=x y 的定义域是______.(用区间表示)7、函数y =)9(log 2-x 的定义域是______.(用集合表示)8、不等式062<--x x 的解集是______.(用集合表示)9、不等式0125>--x 的解集为______.(用集合表示)10、已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三、大题:(满分30分)1、如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.2、在平面直角坐标系xOy 中,己知点F 1(-√17,0),F 2(√17,0),点M 满足|MFt|-|MF2|=2.记M 的轨迹为C.(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB 的斜率与直线PQ 的斜率之和参考答案:一、选择题:1-5题答案:BBADC 6-10题答案:CDBCD 11-15题答案:ABACA 16-20题答案:DCADC 选择题解析:1、答案.B【解析】由可得.答案:B【解析】令,得所有项的系数和为,再减去项系数,即为所求.4、参考答案:D【解析】试题分析:由题意得,数据33 5.5715.5,244m mx y++++===,所以样本中心点315.5(,)24,代入回归直线方程,可得0.5m=,故选D.考点:回归直线方程的特征.5、参考答案:C【解析】试题分析:初始1,1,7a b a==<成立;0,3,7b a a==<成立;3,5,7b a a=-=<成立;8,7,7b a a=-=<不成立;输出8b=-,故选C.考点:循环结构.二、填空题:参考答案1、(﹣∞,2];2、;3、0;4、(-4,1);5、(-1,2);6、⎪⎭⎫⎢⎣⎡∞+,54;7、}9{>x x ;8、{}32<<-x x ;9、}32{><x x x 或;10、3。

浙江省高职考试数学试卷汇总

浙江省高职考试数学试卷汇总

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式11浙江高职考1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B =A . {2}xx >- B . {23}x x -<< C . {1}x x > D . {13}x x <<11浙江高职考4.设甲:6xπ=;乙:1sin 2x =,则命题甲和命题乙的关系正确的是A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件 11浙江高职考18.解集为(,0][1,)-∞+∞的不等式组是A . 221x x -≥- B . 1011x x -≥⎧⎨+≤⎩C .211x -≥ D . 2(1)3x x --≤11浙江高职考19. 若03x <<,则(3)x x -的最大值是 .12浙江高职考1.设集合{A x x =≤,则下面式子正确的是A . 2A ∈B .2A ∉C .2A ⊆D . {}2A ⊆12浙江高职考3.已知ab c >>,则下面式子一定成立的是A . ac bc >B . a c b c ->-C . 11a b< D . 2a c b +=12浙江高职考8.设2:3,:230p x q x x =--= ,则下面表述正确的是A .p 是q 的充分条件,但p 不是q 的必要条件B .p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件12浙江高职考9.不等式3-21x <的解集为A . -2,2B . 2,3C . 1,2D . 3,4 12浙江高职考23.已知1x>,则161x x +-的最小值为 . 13浙江高职考1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ13浙江高职考23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .13浙江高职考27. 6分 比较(4)x x -与2(2)x -的大小. 14浙江高职考1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数A . 5个B . 6个C . 7个D . 8个14浙江高职考3.“0=+b a ”是“0=ab ”的 A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件14浙江高职考4.下列不等式组解集为}0|{<x x 的是A .3332-<-x x B . ⎩⎨⎧>-<-13202x x C . 022>-x x D . 2|1|<-x14浙江高职考19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.15浙江高职考1.已知集合M={}230x xx ++=,则下列结论正确的是A . 集合M 中共有2个元素B . 集合M 中共有2个相同元素C . 集合M 中共有1个元素D .集合M 为空集15浙江高职考2.命题甲""a b <是命题乙"0"a b -<成立的 A . 充分不必要条件 B . 必要不充分条件C .充分且必要条件D . 既不充分也不必要条件 15浙江高职考16.已知2(2)(2)0x x y -++=,则3xy 的最小值为A . 2-B . 2C . 6- D. -15浙江高职考19.不等式277x ->的解集为 用区间表示.16浙江高职考1..已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B,则A B =A.}3,2{B.{6,7}C.}5,3,2{D.{1,2,3,4,5,6,7}16浙江高职考2.不等式213x -<的解集是A.(1,)-+∞B.(2,)+∞C.(1,2)-D.(2,4)- 16浙江高职考3.命题甲“sin 1α=”是命题乙“cos 0α=”的A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件16浙江高职考若1x >,则91x x +-的最小值为第三章函数11浙江高职考2.若2410(2)log 3x f x +=,则(1)f =B .12C . 1D . 214log 311浙江高职考3.计算324⎡⎤⎣⎦的结果为A . 7B . -7 CD. 11浙江高职考5. 函数1y x=-的图像在 A . 第一、二象限 B . 第一、三象限 C . 第三、四象限 D . 第二、四象限11浙江高职考9.下列函数中,定义域为{,x x R ∈且0}x ≠的函数是A .2y x = B . 2x y = C . lg y x = D . 1y x -=11浙江高职考13.函数2y x =+的单调递增区间是A .[)0,+∞ B . (),0-∞ C . (),-∞+∞ D . [)2,+∞11浙江高职考17.设15x a +=,15y b -=,则5x y +=A . a b +B . abC . a b -D .ab11浙江高职考34. 本小题满分11分 如图所示计划用12m 长的塑刚材料构建一个窗框. 求:1窗框面积y 与窗框长度x 之间的函数关系式4分; 2窗框长取多少时,能使窗框的采光面积最大4分; 3窗框的最大采光面积3分. 12浙江高职考2.函数()3f x kx =- 在其定义域上为增函数,则此函数的图像所经过的象限为A .一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 二、三、四象限 12浙江高职考4.若函数(f x )满足(1)23f x x +=+,则(0)f =A . 3B . 1C . 5D . 32-12浙江高职考12. 某商品原价200元,若连续两次涨价10%后出售,则新售价为 A . 222元 B . 240元 C . 242元 D . 484元12浙江高职考17.若2log 4x =,则12x =A . 4B . 4±C . 8D . 16 12浙江高职考19.函数2()log (3)f x x =-的定义域为用区间表示. 12浙江高职考34. 本小题满分10分有400米长的篱笆材料,如果利用已有的一面墙设长度够用作为一边,围成一个矩形菜地,如图,设矩形菜地的宽为x 米. 1求矩形菜地面积y 与矩形菜地宽x 之间的函数关系式4分;第34题图2当矩形菜地宽为多少时,矩形菜地面积取得最大值 菜地的最大面积为多少6分; 13浙江高职考2.已知()2223f x x =-,则(0)f = A . 0 B . 3- C . 23- D . 1-13浙江高职考4.对于二次函数223y x x =--,下述结论中不正确的是A . 开口向上B . 对称轴为1x =C . 与x 轴有两交点D . 在区间(),1-∞上单调递增13浙江高职考5.函数()24f x x =-的定义域为A .()2,+∞ B . [)2,+∞ C .(),2][2,-∞-+∞ D .实数集 R13浙江高职考19.已知log 162a =,28b =,则b a -= .13浙江高职考34. 10分有60()m 长的钢材,要制作一个如图所示的窗框. 1求窗框面积2()y m 与窗框宽()x m 的函数关系式;2求窗框宽()x m 为多少时,窗框面积2()y m 有最大值;3 求窗框的最大面积.14浙江高职考2.已知函数12)1(-=+xx f ,则=)2(fA . -1B . 1C . 2D . 314浙江高职考5.下列函数在区间),0(+∞上为减函数的是A .13-=x y B . x x f 2log )(= C . x x g )21()(= D . x x h sin )(=14浙江高职考21.计算:=8log 4 . 14浙江高职考23.函数352)(2++-=x x x f 图象的顶点坐标是 .14浙江高职考33.8分已知函数⎩⎨⎧>+-≤≤=)1(,3)1()10(,5)(x x f x x f . 1求)5(),2(f f 的值;4分2当*∈N x 时,)4(),3(),2(),1(f f f f …构成一数列,求其通项公式.4分14浙江高职考34.10分 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,如图所示.现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上. 1根据所给条件,求出椭圆的标准方程;3分 2求长方形面积S 与边长x 的函数关系式;3分3求当边长x 为多少时,面积S 有最大值,并求其最大值.4分15浙江高职考3.函数lg(2)()x f x x-=的定义域是A .[)3,+∞ B .(3,)+∞ C .(2,)+∞ D .[)2,+∞15浙江高职考4.下列函数在定义域上为单调递减的函数是A .3()()2x f x = B .()ln f x x = C .()2f x x =- D .()sin f x x =15浙江高职考13.二次函数2()43f x ax x =+-的最大值为5,则(3)f =A . 2B . 2-C .92D . 92-15浙江高职考28. 本题满分7分已知函数21,0()32,0x x f x x x ⎧-≥=⎨-<⎩,求值:11()2f -;2分20.5(2)f -;2分3(1)f t -.3分16浙江高职考4.下列函数在其定义域上单调递增的是A.()2f x x =+B.2()23f x x x =-++C.12()log f x x = D.()3xf x -=16浙江高职考5.若函数2()6f x x x =-,则A.(6)(8)(10)f f f +=B. (6)(8)2(7)f f f +=C.(6)(8)(14)f f f += D.(6)(8)(2)f f f +=-16浙江高职考19.函数1()5f x x =-的定义域为 .16浙江高职考21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .16浙江高职考21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .16浙江高职考32. 某城市住房公积金2016年初的账户余额为2亿元人民币,当年全年支出3500万元,收入3000万元.假设以后每年的资金支出额比上一年多200万元,收入金额比上一年增加10%.试解决如下问题:(1)2018年,该城市的公积金应支出多少万元收入多少万元(2)到2025年底,该城市的公积金账户余额为多少万元可能有用的数据:21.1 1.21=,31.1 1.331=,41.1 1.464=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.1 2.144=,91.1 2.358=,101.1 2.594=,11 1.1 2.853=第四章平面向量11浙江高职考25. 若向量(3,4)m =-,(1,2)n =-,则||m n =___________.12浙江高职考10.已知平面向量(2,3)(,),2(1,7)a b x y b a ==-=, ,则,x y 的值分别是A . 31x y =-⎧⎨=⎩B . 122x y ⎧=⎪⎨⎪=-⎩C . 325x y ⎧=⎪⎨⎪=⎩ D . 513x y =⎧⎨=⎩ 13浙江高职考7.AB AC BC -- =A .2BCB .2CBC .0D . 014浙江高职考7.已知向量)1,2(-=a,)3,0(=b ,则=-|2|b aA . )7,2(-B . 53C . 7D . 2915浙江高职考21.已知(0,7)AB =-,则3AB BA -= .16浙江高职考6.如图,ABCD 是边长为1的正方形,则AB BC AC ++=A.2B.2+第五章数列11浙江高职考8.在等比数列{}n a 中,若355a a ⋅=,则17a a ⋅的值等于11浙江高职考30. 本小题满分7分 在等差数列{}n a 中,113a =,254a a +=,33n a =,求n 的值.12浙江高职考5. 在等差数列{}n a 中,若25413a a ==,,则6a =B . 15 12浙江高职考32. 本题满分8分在等比数列{}n a 中,已知11,a =3216a=,1求通项公式n a ;4分2若n nb a =,求{}n b 的前10项和.4分13浙江高职考10.根据数列2,5,9,19,37,75……的前六项找出规律,可得7a = A . 140 B . 142 C . 146 D . 149 13浙江高职考22.已知等比数列的前n 项和公式为112n nS =-,则公比q = .13浙江高职考29. 7分 在等差数列{}n a 中,已知271,20.a a ==1求12a 的值. 2求和123456.a a a a a a +++++14浙江高职考8.在等比数列}{n a 中,若27,342==a a ,则=5aA . 81-B . 81C . 81或81-D . 3或3- 14浙江高职考22.在等差数列}{n a 中,已知35,271==S a ,则等差数列}{n a 的公差=d .15浙江高职考10.在等比数列{}n a 中,若1221n n a a a +++=-,则2212a a ++……2na +=A . 2(21)n -B . 21(21)3n -C .41n- D . 1(41)3n -15浙江高职考22.当且仅当x ∈ 时,三个数4,1,9x -成等比数列.15浙江高职考30.9分根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列.求:1,,a b c 的值;3分2按要求填满其余各空格中的数;3分 3表格中各数之和.3分16浙江高职考7.数列{}n a 满足:*111,,()n n a a n a n N +==-+∈,则5a =B. 1016浙江高职考22.等比数列{}n a 满足1234a a a ++=,45612a a a ++=,则其前9项的和9S = .第六章排列、组合与二项式定理11浙江高职考11.王英计划在一周五天内安排三天进行技能操作训练,其中周一、周四 两天中至少要安排一天,则不同的安排方法共有A . 9种B . 12种C . 16种D . 20种11浙江高职考32. 本小题满分8分 求91()x x-展开式中含3x 的系数. 12浙江高职考13.从6名候选人中选出4人担任人大代表,则不同选举结果的种数为 A . 15 B . 24 C . 30 D . 36012浙江高职考33. 本小题满分8分求6⎛⎝展开式的常数项.13浙江高职考17.用1,2,3,4,5五个数字组成五位数,共有不同的奇数 A . 36个 B . 48个 C . 72个 D . 120个13浙江高职考33. 8分 若展开式(1)nx +中第六项的系数最大,求展开式的第二项.14浙江高职考20. 从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法.14浙江高职考29.7分化简:55)1()1(++-x x .15浙江高职考11.下列计算结果不正确的是 A .4431099CC C-= B .1091010P P= C . 0=1 D .66888!P C =15浙江高职考24.二项式12展开式的中间一项为 .15浙江高职考29.本题满分7分课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数. 1要求组长必须参加;2分2要求选出的3人中至少有1名女生;2分3要求选出的3人中至少有1名女生和1名男生.3分16浙江高职考8.一个班级有40人,从中选取2人担任学校卫生纠察队员,选法种数共有A. 780B. 1560C. 1600D. 8016浙江高职考29.本题满分7分(nx 二项展开式的二项式系数之和为64,求展开式的常数项.第七章概率14浙江高职考9. 抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于 A . B . C . D .14浙江高职考23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P = .16浙江高职考23.一个盒子里原来有30颗黑色的围棋子,现在往盒子里再投入10颗白色围棋子并充分搅拌,现从中任取1颗棋子,则取到白色棋子的概率为 .第八章三角函数11浙江高职考14.已知α是第二象限角,则有sin α=可推知cos α=A. 2-B . 12-C .12 D.211浙江高职考16.如果角β的终边过点(5,12)P -,则sin cos tan βββ++的值为A .4713B . 12165-C . 4713- D . 1216511浙江高职考20.22sin15cos 15︒-︒的值等于 .11浙江高职考24. 化简:cos78cos33sin78sin33︒︒+︒︒=______________. 11浙江高职考27.本小题满分6分在ABC ∆中,若三边之比为1:1:求ABC ∆最大角的度数.11浙江高职考33. 本小题满分8分已知数列11()sin 122f x x x =+,求:1函数()f x 的最小正周期4分; 2函数()f x 的值域4分.12浙江高职考6.在0~360︒ 范围内,与390︒- 终边相同的角是A . 300°B . 600°C . 2100°D . 3300° 12浙江高职考11.已知(,)2παπ∈, 且3cos 5α=-,则sin α= A . 45-B . 45C .34D . 34-12浙江高职考21.化简sin()cos()2ππαα-++= .12浙江高职考24. 函数38sin ()y x x R =-∈的最大值为____________.12浙江高职考28. 本题满分7分在ABC ∆中,已知6,4,60ab C ︒===,求c 和sin B .12浙江高职考30.已知函数2()2sin cos 2cos 1f x x x x =-++.求:1()4f π;3分 2函数()f x 的最小正周期及最大值.4分 13浙江高职考6.在0~360︒︒范围内,与1050︒终边相同的角是A .330︒B .60︒C .210︒D .300︒ 13浙江高职考8.若sin α=45-,α为第四象限角,则cos α= A . 45-B . 45C .35 D . 35- 13浙江高职考13.乘积sin(110)cos(320)tan(700)-︒⋅︒⋅-︒的最后结果为 A . 正数 B . 负数 C . 正数或负数 D . 零 13浙江高职考14.函数sin cos y x x =+的最大值和最小正周期分别为A . 2,2π Bπ C . 2,πDπ13浙江高职考16.在ABC ∆ 中,若::1:2:3A B C ∠∠∠=,则三边之比::a b c =A . 1:2:3 B. 1:2:C . 1:4:9 D .13浙江高职考21.求值:tan 75tan15︒︒+= .13浙江高职考26.给出120,α︒=-在所给的直角坐标系中画出角α的图象 .13浙江高职考30. 8分 若角α的终边是一次函数2(0)y x x =≥所表示的曲线,求sin2.α13浙江高职考31. 8分 在直角坐标系中,若(1,1,),(2,0),(0,1)A B C --,求ABC ∆的面积ABC S ∆.14浙江高职考 6.若α是第二象限角,则πα7-是A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角14浙江高职考10.已知角β终边上一点)3,4(-P ,则=βcos A . 53-B . 54C . 43-D . 4514浙江高职考11.=︒⋅︒+︒⋅︒102sin 18sin 18cos 78cosA . 23-B .23C . 21-D . 2114浙江高职考14.函数x x y 2cos sin 2+=的最小值和最小正周期分别为A . 1和π2B . 0和π2C . 1和πD . 0和π14浙江高职考26.在闭区间]2,0[π上,满足等式1cos sin =x ,则=x .14浙江高职考27.6分在△ABC 中,已知5,4==cb ,A 为钝角,且54sin =A ,求a . 14浙江高职考30.8分已知52tan ,73tan ==βα,且βα,为锐角,求βα+.15浙江高职考5.已知角4πα=,将其终边按顺时针方向旋转2周得角β,则β=A .94πB .174π C .154π-D .174π-15浙江高职考9.若cos()cos()44ππθθ-+=则cos2θ=B C D15浙江高职考14.已知3sin 5α=,且(,),2παπ∈则tan()4πα+= A . 7- B . 7 C . 17- D . 1715浙江高职考15.在ABC ∆中,若三角之比::1:1:4A B C =,则sin :sin :sin A B C =A . 1:1:4B . 1:1:C . 1:1:2D . 1:1:315浙江高职考20.若tan (0),ba aα=≠则cos2sin2a b αα+= .15浙江高职考31. 本题满分6分 已知()3sin()4cos(3)2f x ax ax ππ=-+-+0a ≠的最小正周期为23(1)求a 的值;4分 2()f x 的值域.2分15浙江高职考32.在ABC ∆中,若1,,3ABCBCB S π∆=∠==,求角C .16浙江高职考10.下列各角中,与23π终边相同的是 A.23π- B.43π C.43π- D.73π16浙江高职考12.在ABC ∆中,若tan tan 1A B = ,则ABC ∆的形状是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形16浙江高职考17.已知[]0,x π∈,则sin 2x >的解集为A.(0,)2πB. 3(,)44ππ C.(,]4ππ D.(,]42ππ16浙江高职考24.函数2()6sin()cos(2)8sin 5f x x x x ππ=-+-+的最小值为 .16浙江高职考28. 已知α是第二象限角,4sin 5α=, 1求tan α;2锐角β满足5sin()13αβ+=,求sin .β16浙江高职考31.在ABC ∆中,6,30a b B ︒==∠=,求C ∠的大小.第九章立体几何11浙江高职考10.在空间,两两相交的三条直线可以确定平面的个数为A . 1个B . 3个C . 1个 或3个D . 4个11浙江高职考22.如果圆柱高为4cm,底面周长为10cm π,那么圆柱的体积等于_____. 11浙江高职考31. 本小题满分7分如图所示在正三棱锥V ABC -中,底面边长等于6,侧面与底面所成的二面角为60︒,求:1正三棱锥V ABC -的体积4分;2侧棱VA 的长3分;提示:取BC 的中点D ,连接AD 、VD ,作三棱锥的高VO .12浙江高职考18.如图,正方体1111ABCD A B C D -中两异面直线AC 与1BC 所成角的大小为A . 30°B . 45°C . 60°D 12浙江高职考26. ______________cm 3.12浙江高职考31. 本题满分7分如图,已知ABCD P 是平面ABCD 外一点,且PA ⊥面ABCD , 3PA AB ==. 求:1二面角P CD A --的大小;4分2三棱锥P ABD -的体积.3分13浙江高职考9.直线a 平行于平面β,点A β∈,则过点A 且平行于a 的直线 A .只有一条,且一定在平面β内 B .只有一条,但不一定在平面β内 C .有无数条,但不都是平面β内 D .有无数条,都在平面β内13浙江高职考25.用平面截半径R = 5的球,所得小圆的半径r = 4,则截面与球心的距离等于 .13浙江高职考32. 7分 如图在棱长为2的正方形ABCD A B C D ''''-中,求:1两面角B A D D ''--的平面角的正切值;2三棱锥A BCC '-的体积.D'C' A'C DABB'114浙江高职考18. 在空间中,下列结论正确的是 A . 空间三点确定一个平面B . 过直线外一点有且仅有一条直线与已知直线垂直C . 如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D . 三个平面最多可将空间分成八块 14浙江高职考24.已知圆柱的底面半径2=r,高3=h ,则其轴截面的面积为 .14浙江高职考32.7分1画出底面边长为cm 4,高为cm 2的正四棱锥ABCD P -的示意图;3分2由所作的正四棱锥ABCD P -,求二面角C AB P --的度数.4分14浙江高职考8.在下列命题中,真命题的个数是 ①//,a b a b αα⊥⇒⊥ ② //,////a b a b αα⇒③,//ab a b αα⊥⊥⇒ ④,a b b a αα⊥⊂⇒⊥A . 0个B . 1个C . 2个D . 3个 15浙江高职考25.体对角线为3cm 的正方体,其体积V= .15浙江高职考33. 本题满分7分如图所示, 在棱长为a 正方体1111ABCD A B C D -中,平面1AD C 把正方体分成两部分,求:1直线1C B 与平面1AD C 所成的角;2分2平面1C D 与平面1AD C 所成二面角的平面角的余弦值; 3分 3两部分中体积大的部分的体积. 2分16浙江高职考25.圆柱的底面面积为π2cm ,体积为4π3cm ,球的直径和圆柱的高相等,则球的体积=V 3cm .16浙江高职考33. 本题满分7分如图(1)所示, 已知菱形,60ABCD BAD ︒∠=中,2AB =,把菱形ABCD 沿对角线BD 折为60︒的二面角,连接AC ,如图(2)所示,求:1折叠后AC 的距离; 2二面角D AC B --的平面角的余弦值.图1 图2第十章平面解析几何11浙江高职考6.下列各点不在曲线C :22680xy x y ++-=上的是A . 0,0B . -3,-1C . 2,4D . 3,3 11浙江高职考7.要使直线1:340l x y +-=与2:230l x y λ-+=平行,则λ的值必须等于A . 0B . -6C . 4D . 611浙江高职考12. 根据曲线方程22cos 1,(,)2xy πββπ+=∈,可确定该曲线是A . 焦点在x 轴上的椭圆B . 焦点在y 轴上的椭圆C . 焦点在x 轴上的双曲线D . 焦点在y 轴上的双曲线11浙江高职考15. 两圆221:2C xy +=与222:210C x y x +--=的位置关系是DABCB 1A 1 D 1 C 1 DCCAA . 相外切B . 相内切C . 相交D . 外离 11浙江高职考21.已知两点(1,8),(3,4)A B --,则两点间的距离AB = . 11浙江高职考23.设α是直线4y x =-+的倾斜角,则α= 弧度.11浙江高职考26. 抛物线216y x =-上一点P 到y 轴的距离为12,则点P 到抛物线焦点F 的距离是______________.11浙江高职考28. 本小题满分6分求中心在原点,对称轴为坐标轴,焦点在y 轴上,离心率35e =,焦距等于6的椭圆的标准方程.11浙江高职考29. 本小题满分7分过点(2,3)P 作圆222210x y x y +--+=的切线,求切线的一般式方程.12浙江高职考7.已知两点(1,5),(3,9)A B -,则线段AB 的中点坐标为A . 1,7B . 2,2C . -2,-2D . 2,1412浙江高职考14.双曲线221169x y -=的离心率为 AB .53 C . 43 D . 5412浙江高职考15.已知圆的方程为224230x y x y ++-+=,则圆心坐标与半径为A . 圆心坐标2,1,半径为2B . 圆心坐标-2,1,半径为2C . 圆心坐标-2,1,半径为1D . 圆心坐标-2,1,12浙江高职考16.已知直线210ax y ++=与直线46110x y ++=垂直,则a 的值是A . -5B . -1C . -3D . 112浙江高职考20.椭圆2219x y +=的焦距为 . 12浙江高职考22.已知点3,4到直线340x y c ++=的距离为4,则c =_______.12浙江高职考25. 直线10x y ++=与圆22(1)(1)2x y -++=的位置关系是________________.12浙江高职考27.本题满分6分已知抛物线方程为212.y x =1求抛物线焦点F 的坐标;3分 2若直线l 过焦点F ,且其倾斜角为4π,求直线l 的一般式方程.3分12浙江高职考29. 本题满分7分已知点在双曲线2215x y m -=上, 直线l 过双曲线的左焦点1F ,且与x 轴垂直,并交双曲线于,A B 两点,求: 1m 的值;3分 2AB.4分13浙江高职考3.下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 A .210x y -+= B .121x y+=- C .21y x =+ D . 12(0)y x -=-13浙江高职考11.已知点A 1,-2、B 3,0,则下列各点在线段AB 垂直平分线上的是A .1,4B .2,1C .3,0D . 0,1 13浙江高职考12.条件“ab =”是结论“221ax by +=所表示曲线为圆”的A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件 13浙江高职考15.若直线1:260l x y ++=与直线2:310l x kx +-=互相垂直,则k =A . 32-B . 32C . 23-D . 2313浙江高职考18.直线4320x y -+=与圆()()224116x y -+-= 的位置关系是A . 相切B . 相交C . 相离D . 不确定 13浙江高职考20.双曲线2214xy -=的焦距为 . 13浙江高职考24.经过点(2,1)P -,且斜率为0的直线方程一般式为 . 13浙江高职考28. 6分 已知椭圆的中心在原点,有一个焦点与抛物线28y x =-的焦点重合,且椭圆的离心率23e =,求椭圆的标准方程.14浙江高职考12.已知两点)1,4(),5,2(--N M ,则直线MN 的斜率=kA . 1B . 1-C .21D . 21-14浙江高职考13.倾斜角为2π,x 轴上截距为3-的直线方程为A .3-=xB .3-=yC .3-=+y xD .3-=-y x14浙江高职考15.直线032:=-+y x l 与圆042:22=-++y x y x C 的位置关系是A . 相交切不过圆心B . 相切C . 相离D . 相交且过圆心14浙江高职考16.双曲线19422=-y x 的离心率=e A .32B .23 C .213 D . 313 14浙江高职考17.将抛物线x y 42-=绕顶点按逆时针方向旋转角π,所得抛物线方程为A .x y 42= B . x y 42-= C . y x 42= D . y x 42-=14浙江高职考25.直线012=-+y x 与两坐标轴所围成的三角形面积=S .14浙江高职考28.6分求过点)5,0(P ,且与直线023:=+-y x l 平行的直线方程.14浙江高职考31.8分已知圆0464:22=++-+y x y xC 和直线05:=+-y x l ,求直线l 上到圆C 距离最小的点的坐标,并求最小距离.15浙江高职考6.已知直线40x y +-=与圆22(2)(4)17,x y -++=则直线和圆的位置关系是A . 相切B . 相离C . 相交且不过圆心D . 相交且过圆心 15浙江高职考7.若(0,),βπ∈则方程22sin 1x y β+=所表示的曲线是A . 圆B . 椭圆C . 双曲线D . 椭圆或圆15浙江高职考12.20150y ++=的倾斜角为A .6π B .3πC .23π D .56π15浙江高职考17.下列各点中与点(1,0)M - 关于点(2,3)H 中心对称的是 A . (0,1) B . (5,6) C . (1,1)- D . (5,6)-15浙江高职考18.焦点在x 轴上,焦距为8的双曲线,其离心率2e =,则双曲线的标准方程为A .221412x y -= B . 221124x y -= C . 221412y x -= D . 221124y x -= 15浙江高职考26. 如图所示,在所给的直角坐标系中,半径为2, 且与两坐标轴相切的圆的标准方为 .15浙江高职考27.本题满分7分平面内,过点(1,),(,6)A n B n -的直线与直线210x y +-=垂直,求n 的值.15浙江高职考34. 本题满分10分已知抛物线24x y =,斜率为k 的直线l 过其焦点F 且与抛物线相交于点112,2(,),()A x y B x y .1求直线l 的一般式方程;3分 2求AOB ∆的面积S ;4分3由2判断:当直线斜率k 为何值时AOB ∆的面积S 有最大值;当直线斜率k 为何值时AOB ∆的面积S 有最小值.3分16浙江高职考9.椭圆22116x y m += 的离心率34e =,则m 的值为 A.7 B 7 C. 7或25 D. 7或256716浙江高职考11. 抛物线的焦点坐标为(0,2)F -,则其标准方程为A.24y x =-B. 28y x =-C. 24x y =- D.28x y =-16浙江高职考13.下列结论正确的是 A. 直线a 平行于平面α,则a 平行于平面α内的所有直线 B.过直线a 外一点可以作无数条直线与a 异面C.若直线a 、b 与平面α所成角相等,则a 平行于bD.两条不平行直线确定一个平面16浙江高职考14.如图,直线32120x y +-=与两坐标轴分别交于,A B 两点,则下面各点中,在OAB ∆内部的是 A.(1,2)- B. (1,5)C. (2,4)D. (3,1)16浙江高职考15.点(2,)a 到直线10x y ++=的距离为2,则a 的值为A.1-或 5B.1-或5-C. 1 或5- D .5-16浙江高职考16.点1(3,4)P ,2(,6)P a ,P 为1P2P 的中点,O 为原点,且52OP =,则a 的值为A.7B. 13-C. 7或13D. 7 或13-16浙江高职考18. 若我们把三边长为,,a b c 的三角形记为(),,a b c ∆,则四个三角形()6,8,8∆,()6,8,9∆,()6,8,10∆,()6,8,11∆中,面积最大的是 A. ()6,8,8∆ B. ()6,8,9∆ C.()6,8,10∆ D. ()6,8,11∆16浙江高职考26.直线1212:(1)(2)0,:(3)(1)10,l a x a y a l a x a y l l -++-=-+-+=⊥,则a = .16浙江高职考30. 本题满分8分设直线2380x y +-=与20x y +-=交于点M , 1求以点M 为圆心,半径为3的圆的方程;2动点P 在圆M 上,O 为坐标y xOyxOA B原点,求PO 的最大值.16浙江高职考34. 本题满分9分已知双曲线22221x y a b-=的离心率e =实轴长为4,直线l 过双曲线的左焦点1F 且与双曲线交于,A B 两点,83AB =.1求双曲线的方程;2求直线l 的方程.。

高职单独招生考试数学试卷(答案解析) (5)

高职单独招生考试数学试卷(答案解析) (5)
2022 年单独考试招生考试 数学卷
(满分 120 分,考试时间 90 分钟)
一、选择题:(本题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合题目
要求的.)
1、37. 若
,且 a 为第四象限角,则
的值等于 ( )
A.
B.
C.
D.
2.
展开式中不含
A. -1 B. 0 C. 1 D. 2
,则平地上积水的厚度
h
125000 10000
12.5(mm)
,因为10
12.5
25 ,由题意可知,这一天的雨水属于中雨.故选: B

【点评】本题考查了空间几何体在实际生活中的应用,解题的关键是掌握锥体和柱体体积公式
的应用,考查了逻辑推理能力与空间想象能力,属于中档题. 6、【解析】男女各选 1 名队员的挑选方式为种 C31C31 9 ,故选:B.
因为 f (x) 2cos2 (x) cos(x) 1 2cos2 x cos x 1 f (x) ,故函数 f (x) 为偶函数,

t
cos
x
,则
t
[1,1] ,故
f
(t)
2t 2
t
1 是开口向下的二次函数,所以当
t
2
1 (2)
1 4
时,
f
(t)

f (1 ) 2 (1 )2 1 1 9
项的系数的和为 ( )
3.下列函数中,为增函数的是 ( )
A. y ln(x 1) B. y x2 1
y ex
C. 2
D. y | x 1|
4.已知函数 f (x) cos x cos 2x ,试判断该函数的奇偶性及最大值 (

2023浙江省高职考数学真试题

2023浙江省高职考数学真试题

2023年浙江省高等职业技术教育招生考试数学本式卷共三大题,共4页。

满分150分,考试时间120分钟。

考试注意:1.答题前,请务必将自己的姓名、准考证号用黑色签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效。

一、单项选择题(本大题共20小题,1一10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求.错涂、多涂或末涂均无分.)1.已知集合S={1,2,4},T={2,3},则S ∩T =()A.{1,2,3,4}B.{2}C.{1,3,4}D.φ2.己知角a 的终边经过点(2,-5),则a 是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.直线0=23 -y -x 3的倾斜角是()A.150°B.120°C.60°D.30°.4.函数5)+6x -ln(x =y 2的定义域是()A.(1,5)B.[1,5]C.(-∞,1)U (5,+∞)D.(-∞,1]U [5,+∞)5.已知)23,(,31cos ππαα∈-=,则=αsin ()A.322-B.322 C.31-D.316.已知M (2,0),N(6,4),则以线段MN 为直径的圆的圆心坐标是()A.(2,2)B.(2,4)C.(8,4)D.(4,2)7.由2,3,5,7四个数字组成没有重复数字的三位数,其中比500大的三位数共有()A.24个B.12个C.8个D.6个8.“e x =1”是“x=0”的()A.充分不必要条件. B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.中国刺绣作为一项传统手工技艺,是中国传统文化的重要组成部分。

某个椭圆形的刺绣艺术品的尺寸如图所示,则这个椭圆的离心率是()55.25.65.35.D C B A10.观察两个函数y=f(x),y=g(x)图象,在下列区间中,同为单调递减的区间是()A.(0,1) B.(2,4)C.(5,6) D.(6,8)11.已知实数a>b>c ,则下列结论正确的是()A.a+b<2c B.a+b>2c C.a+c>2b D.a+c<2b12.当x >-1时,函数1102x =f(x)2+++x x 的最小值是()A.2B.3C.6D.1013.若a ,b ,c 是公差为1的等差数列,则cba5,5,5构成()A.公差为1的等差数列B.公差为5的等差数列C.公比为1的等比数列D.公比为5的等比数列14.截至2023年2月,被誉为“中国天眼”的500米口径的射电望远镜(FAST),已经发现超740颗脉冲星,为世界各国探索宇宙星空,提供了中国智慧和中国力量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年浙江省高等职业技术教育招生
考试数学试卷
姓名__________ 准考证号码__________
本试题卷共三大题。

全卷共4页。

满分120分,考试时间120分钟。

注意事项:
1、所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效。

2、答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3、选择题每小题选出答案后,用2B 钢笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4、在答题纸上作图,可先使用2B 钢笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

一、单项选择题(本大题共18小题,每小题2分,共36分)
在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

1.设集合A ={}x|-2<x <3,B ={}x|x >1,则集合A ∩B 等于 A.{}x|x >-2 B. {}x|-2<x <3 C.{}x|x >1 C. {}x|1<x <3
2.若f(2x)=log 24x +10
3
,则f(1)=
A .2 B.12 C .1 D .log 214
3
3.计算⎣⎡⎦⎤(3-7)234
的结果为 A .7 B .-7 C.7 D .-7
4.设甲:x =π6;乙:sinx =1
2,则命题甲和命题乙的关系正确的是
A .甲是乙的必要条件,但甲不是乙的充分条件
B .甲是乙的充分条件,但甲不是乙的必要条件
C .甲不是乙的充分条件,且甲也不是乙的必要条件
D .甲是乙的充分条件,且甲也是乙的必要条件
5.函数y =-1
x
的图象在
A .第一、二象限
B .第一、三象限
C .第三、四象限
D .第二、四象限
6.下列各点不在曲线C :x 2+y 2+ 6x -8y =0上的是
A .(0,0)
B .(-3,-1)
C .(2,4)
D .(3,3)
7.要使直线l 1:x +3y -4=0与l 2:2x -λy +3=0平行,λ的值必须等于 A .0 B .-6 C .4 D .6 8.在等比数列{}a n 中,若a 3·a 5=5,则a 1·a 7的值等于
A .5
B .10
C .15
D .25
9.下列函数中,定义域为{}x|x ∈R ,且x ≠0的函数是
A .y =x 2
B .y =2x
C .y =lgx
D .y =x -
1
10.在空间,两两相交的三条直线可以确定平面的个数为 A .1个 B .3个 C .1个或3个 D .4个
11.王英计划在一周五天内安排三天进行技能操作训练,其中周一、周四两天中至少要安排一天,则不同的安排方法共有
A .9种
B .12种
C .16种
D .20种
12.根据曲线方程x 2cosβ+y 2=1,β∈(π
2,π),可确定该曲线是
A .焦点在x 轴上的椭圆
B .焦点在y 轴上的椭圆
C .焦点在x 轴上的双曲线
D .焦点在y 轴上的双曲线 13.函数y =|x|+2的单调递增区间是 A .[0,+∞) B .(-∞,0) C .(-∞,+∞) D .[2,+∞) 14.已知α是第二象限角,则由sinα=3
2
,可推出cosa = A .-
32 B .-12 C.12 D.32
15.两圆C 1:x 2+y 2=2与C 2:x 2+y 2-2x -1=0的位置关系是 A .相外切 B .相内切 C .相交 D .外离
16.如果角β的终边过点P(-5,12),则sinβ+cosβ+tanβ的值为 A.4713 B .-12165 C .-4713 D.12165
17.设5x +
1a ,5y +
1b ,则5x +
y = A .a +b B .ab C .a -b D.a b
18.解集为(-∞,0]∪[1,+∞)的不等式(组)是
A .x 2-2x >-1
B.⎩⎪⎨⎪⎧
x -1≥01+x <1
C .|2x -1|≥1
D .x -2(x -1)≤3
二、填空题(本大题共8小题,每小题3分,共24分)
19.0<x <3,则x(3-x)的最大值是__________. 20.sin 215°-cos 215°的值等于__________.
21.已知两点A(-1,8)与B(3,-4),则两点间的距离|AB|=__________.
22.如果圆柱高为4cm ,底面周长为10πcm ,那么圆柱的体积等于__________. 23.设α是直线y =-x +4的倾斜角,则α=__________弧度. 24.化简:cos78°cos33°+sin78°sin33°=__________. 25.若向量m =(-3,4),n =(1,-2),则|m |n =__________.
26.抛物线y 2=-16x 上一点P 到y 轴的距离为12,则点P 到抛物线焦点F 的距离是__________.
三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤.
27.(本题满分6分)在△ABC 中,若三边之比为1∶1∶3,求△ABC 最大角的度数.
28.(本题满分6分)求中心在原点,对称轴为坐标轴,焦点在y 轴上,离心率e =3
5,焦
距等于6的椭圆的标准方程.
29.(本题满分7分)过点P(2,3)作圆x 2+y 2-2x -2y +1=0的切线,求切线的一般式方程.
30.(本题满分7分)在等差数列{}ɑn 中,a 1=1
3
,a 2+a 5=4,ɑn =33,求n 的值.
31.(本题满分7分)(如图所示)在正三棱锥V -ABC 中,底面边长等于6,侧面与底面所成的二面角为60°.求:
(1)正三棱锥V -ABC 的体积(4分);
(2)侧棱V A 的长(3分).
(提示:取BC 的中点D ,连接AD 、VD ,作三棱锥的高VO.)
(第31题图)
32.(本题满分8分)求(1
x -x)9展开式中含x 3项的系数.
33.(本题满分8分)已知函数f(x)=sin 12x +3cos 1
2
x +1,求:
(1)函数f(x)的最小正周期(4分);
(2)函数f(x)的值域(4分).
34.(本题满分11分)(如图所示)计划用12m长的塑钢材料构建一个窗框.求:(1)窗框面积y与窗框长度x之间的函数关系式(4分);
(2)窗框长取多少时,能使窗框的采光面积最大(4分);
(3)窗框的最大采光面积(3分).
第34题图。

相关文档
最新文档