计量经济学计算题试题库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、简答题: 1.给定一元线性回归模型:

t t t X Y μββ++=10 n t ,,2,1 =

(1)叙述模型的基本假定;(2)写出参数

0β和1β的最小二乘估计公式;

(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。 2.对于多元线性计量经济学模型:

t kt k t t t X X X Y μββββ+++++= 33221 n t ,,, 21=

(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。

6.线性回归模型的基本假设。违背基本假设的计量经济模型是否可以估计

五、简答题:

1.答:(1)零均值,同方差,无自相关,解释变量与随机误差项相互独立(或者解释变量为非随机变量)

(2)∑∑===

n

t t

n

t t

t x

y

x 1

21

1

ˆβ,X Y 1

0ˆˆββ-= (3)线性即,无偏性即,有效性即

(4)2

ˆ1

2

2

-=

∑=n e

n

t t

σ

,其中∑∑∑∑∑=====-=-=n

t t t n t t n t t

n t t

n t t

y x y x y e 1

11

21

2211

21

2

ˆˆββ

2. 答: (1)N XB Y

+=;

121⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n Y Y Y Y )1(2122212

12111111+⨯⎪⎪⎪⎪⎪⎭⎫ ⎝

⎛=k n kn n n k k X X X X X X X X X X

1

)1(210⨯+⎪⎪⎪⎪⎪

⎪⎭⎫ ⎝⎛=k n B ββββ 1

21⨯⎪⎪⎪⎪⎪⎭⎫

⎝⎛=n n N μμμ (2)E B X Y

+=ˆ; (3)()Y

X X X B

''=-1

ˆ。

6.答:

(1)随机误差项具有零均值。即 E(i μ)=0 i=1,2,…n

(2)随机误差项具有同方差。即 Var(i μ)=2

μσ i=1,2,…n

(3)随机误差项在不同样本点之间是独立的,不存在序列相关。即 Cov(j i μμ,)=0 i≠j i,j=1,2,…n

(4)解释变量k X X X ,,,21 是确定性变量,不是随机变量,随机误差项与解释变量之间不相关。即

Cov(

i ji X μ,)=0 j=1,2,…k i=1,2,…n

(5)解释变量之间不存在严重的多重共线性。

(6)随机误差项服从零均值、同方差的正态分布。即

i μ~N(0,2

μσ)

i=1,2,…n

六、一元计算题

某农产品试验产量Y (公斤/亩)和施肥量

X

(公斤/亩)7块地的数据资料汇总如下:

∑=255i

X ∑=3050i Y

∑=71.12172i

x

∑=429.83712i y ∑=857.3122i i y x

后来发现遗漏的第八块地的数据:

208=X ,4008=Y 。

要求汇总全部8块地数据后分别用小代数解法和矩阵解法进行以下各项计算,并对计算结果的经济意义和统计意义做简要的解释。 1.该农产品试验产量对施肥量X (公斤/亩)回归模型u bX a Y

++=进行估计。

2.对回归系数(斜率)进行统计假设检验,信度为0.05。

3.估计可决系数并进行统计假设检验,信度为0.05。 4.计算施肥量对该农产品产量的平均弹性。

5.令施肥量等于50公斤/亩,对农产品试验亩产量进行预测,信度为0.05。

6.令施肥量等于30公斤/亩,对农产品试验平均亩产量进行预测,信度为0.01。

所需临界值在以下简表中选取:

t 0.025,6 = 2.447 t 0.025,7 = 2.365 t 0.025,8 = 2.306 t 0.005,6 = 3.707 t 0.005,7 = 3.499 t 0.005,8 = 3.355 F 0.05,1,7 = 5.59 F 0.05,2,7 = 4.74 F 0.05,3,7 = 4.35 F 0.05,1,6 = 5.99 F 0.05,2,6 = 5.14 F 0.05,3,6 = 4.76

首先汇总全部8块地数据:

87

181

X X

X i i

i i

+=∑∑== =255+20 =275

n X X i i ∑==8

1

)8(375.348

275

==

2)

7(7

127

127X

x X

i i i i

+=∑∑== =1217.71+7⨯2

7255⎪

⎝⎛=10507

287

1

28

1

2X X X

i i i i

+=∑∑== =10507+202 = 10907

2)

8(8

1

28

1

28X

X x

i i

i i

+=∑∑== = 10907-8⨯2

8275⎪

⎝⎛=1453.88

87

181

Y Y

Y i i

i i +=∑∑===3050+400=3450

25.4318

3450

8

1

)8(==

=∑=n Y Y i i 2

)

7(7

1

27127Y y Y i i i i +=∑∑== =8371.429+7⨯2

73050⎪⎭⎫ ⎝⎛=1337300

287

12

812Y Y

Y i i

i i +=∑∑== =1337300+4002 = 1497300

2)8(8

1

28

12

8Y Y y i i i i

+=∑∑== =1497300 -8⨯(

8

3450)2

== 9487.5 )

7()7(7

1

7

17Y X y x Y X i i i i i i +=∑∑== ==3122.857+7⎪⎭⎫ ⎝⎛7255⨯⎪⎭⎫

⎝⎛73050=114230 887

181Y X Y

X Y X i i

i i i

i +=∑∑== =114230+20⨯400 =122230

)8()8(8

1

8

1

8Y X Y

X y x i i

i i i

i -=∑∑== =122230-8⨯34.375⨯431.25 =3636.25

1.该农产品试验产量对施肥量X (公斤/亩)回归模型u bX a Y ++=进行估计

5011.288

.145325

.3636ˆ2==

=∑∑i

i

i x

y

x b

相关文档
最新文档