软磁材料的分类
软磁材料分类
软磁材料分类软磁材料是一类在外加磁场下表现出较高磁导率和低磁滞的材料,通常用于电子设备中的电感器、变压器、传感器等领域。
根据其性能和应用特点,软磁材料可以被分为不同的分类。
本文将对软磁材料的分类进行介绍和解析。
首先,软磁材料可以根据其化学成分来进行分类。
常见的软磁材料包括硅钢片、镍铁合金、铁氧体等。
硅钢片是一种铁基合金,其主要成分为铁和硅,具有较高的导磁率和低的磁滞损耗,被广泛应用于电力变压器和电机中。
镍铁合金是由镍和铁组成的合金材料,具有优异的软磁性能和热稳定性,常用于高频变压器和传感器中。
铁氧体是一类氧化铁化合物,具有良好的磁导率和较低的磁滞损耗,常用于微波器件和磁存储器件中。
其次,软磁材料还可以根据其晶体结构来进行分类。
根据晶体结构的不同,软磁材料可以分为多晶材料和非晶材料两大类。
多晶材料是指晶粒尺寸在微米级别的材料,具有较高的饱和磁感应强度和低的磁滞损耗,适用于高频变压器和电感器件。
非晶材料是指晶粒尺寸在纳米级别的材料,具有优异的软磁性能和较低的润滑损耗,适用于高频电感器和传感器件。
此外,软磁材料还可以根据其制备工艺来进行分类。
根据制备工艺的不同,软磁材料可以分为烧结材料和沉淀材料两大类。
烧结材料是指通过粉末冶金工艺将原料粉末烧结成块状材料,具有较高的饱和磁感应强度和优异的磁导率,适用于高功率电感器和变压器。
沉淀材料是指通过化学沉淀法将原料溶液沉淀成薄膜或纳米颗粒,具有良好的软磁性能和较低的润滑损耗,适用于微型传感器和存储器件。
综上所述,软磁材料的分类主要包括化学成分、晶体结构和制备工艺三个方面。
不同类型的软磁材料具有不同的性能和应用特点,可以根据具体的工程需求选择合适的材料。
随着科学技术的不断进步,软磁材料的分类和应用将会得到进一步的拓展和深化,为电子设备的发展提供更多的可能性和选择空间。
铁心材料的种类与使用
铁心材料又称为软磁材料,软磁材料可以大致分为两类:①金属软磁材料;②以氧化铁为主原料的铁氧体软磁材料。
这些软磁材料的饱和磁通密度BS 和频率为IkHz 时Bm=0.1T 的铁损Wl/lk 的关系如所示。
主要软磁材料的饱和磁通密度BS 和铁损Wl/lk ,可以看到,频率IkHz 时,高BS 方面,波明德合金有优势;低铁损方面,则纳米晶软磁合金和PC 型坡莫合金(高磁导率材料)比较有优势。
(2)主要的电机铁心材料A.无取向电工钢电机铁心材料用得最多的是无取向电工钢,其在铁元素中添加质量分数为1%~3%的硅元素,表面施加绝缘涂层。
特征:①超过2T 的饱和磁通密度;②比较好的磁特性;③加工容易;④价(8W 至)--︑_* ≡^0.5恒和磁通悔度Λ√T格低。
是最广泛使用的电机铁心材料。
无取向电工钢的全世界年产量超越一干万吨,作为电机用铁心材料具有压倒性的市场份额。
B.6.5%硅元素无取向电工钢在铁中添加质量分数为6.5%硅元素的无取向电工钢(记为6.5%Si-Fe),其表面为绝缘涂层。
它的磁致伸缩系数几乎为零,以铁损为代表的磁特性得到了大幅改善,加工中的磁特性劣化程度较小。
6.5%Si-Fe与通常的无取向电工钢不同,它不能进行压延加工。
因此,无取向电工钢通常是使用化学气相沉积法(CVD)使硅元素扩散至6.5%来制造的。
供应商目前全球只有一家(JFE钢铁),其年供应量以千吨计。
此外,在质量相当的情况下,6.5%Si-Fe的价格通常是无取向电工钢的10倍左右,价格较高。
C.PB型坡莫合金一般使用的PB型坡莫合金是质量分数为40%~50%的擦和铁的合金,板厚为0.05~2.0mm,最大宽度可达40Omm。
与无取向电工钢相比,它的铁损更小,容易加工。
PB型坡莫合金由于使用了价格较高的镖,因此在质量相当的情况下其价格通常是无取向电工钢的几十倍,价格更高。
D.波明德合金一般使用的波明德合金是质量分数为49%的钻、质量分数为2%的钢和铁的合金,板厚为095~2.0mm,最大宽度可达200mmβ不仅加工困难,而且由于饱和磁致伸缩系数极大(达到70X10-6),加工应力将导致其磁特性大大劣化。
软磁材料
需求量最大及对性能改进要求最为迫切的材料是高频低功率损耗铁氧体材料和高磁导率铁氧体材料。高频低 功率损耗铁氧体材料主要用于各种高频小型化的开关电源及显示器、变压器等。高磁导率铁氧体材料则主要用于 宽带变压器、脉冲变压器用抗电磁波干扰器件等。
新软磁体
软磁铁氧体
软磁铁氧体的特点是:饱和磁通密度低,磁导率低,居里温度低,中高频损耗低,成本低。前三个低是它的 缺点,限制了它的使用范围,现在(21世纪初)正在努力改进。后两个低是它的优点,有利于进入高频市场,现在 (21世纪初)正在努力扩展。
以100kHz,0.2T和100℃下的损耗为例,TDK公司的PC40为410mW/cm3,PC44为300mW/cm3,PC47为 250mW/cm3。TOKIN公司的BH1为250mW/cm3,损耗不断在下降。国内金宁生产的JP4E也达到300mW/cm3。
磁导率是软磁铁氧体的弱项。现在(21世纪初)国内生产的产品一般为左右。国外TDK公司的H5C5,Philips 公司的3E9,分别达到和。
采用SHS法合成MnZn铁氧体材料的研究,值得注意。用这种方法的试验结果表明,可以大大降低铁氧体的制 造能耗和成本。国内已有试验成功的报导。
研究进展
近年来,出现了采用电驱动装置和电子控制装置实现产品的驱动、自动控制和多功能化的趋势,关键的核心 材料之一就是软磁材料。软磁材料在各种器件中起到能量耦合传递及转换的作用。在能源日趋紧缺和环境问题日 趋严重的今天,降低软磁材料的损耗提高磁芯效率,在节约能源及控制环境污染等方面具有重大意义。
软磁材料
软磁材料基本知识一、软磁材料的发展及种类1.软磁材料的发展软磁材料在工业中的应用始于十九世纪末。
随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。
到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。
直至现在硅钢片在电力工业用软磁材料中仍居首位。
到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。
从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。
进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。
2.常用软磁磁芯的种类铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。
按(主要成分, 磁性特点, 结构特点) 制品形态分类:1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系常用软磁材料的分类及其特性(Soft Magnetic Materials)二、软磁材料的分类介绍(一). 合金类1.硅钢硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。
是软磁材料中产量和使用量最大的材料。
也是电源变压器用磁性材料中用量最大的材料。
特别是在低频、大功率下最为适用。
常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。
关于磁性材料充磁及充磁工装的搭配
成品的磁性材料磁性能测试2-磁通量测试
在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个 平面的磁通量,简称磁通(Magnetic Flux)。标量
⚠ 磁通量的单位是Wb,1Wb=1T*m^2=1V*S,由此,1V=1Wb/s。
磁通测试法的优点
▲衡量磁体磁性用磁矩M这个物理量,就解决了一个磁体无论在哪里,用哪台磁矩计或亥姆霍兹线圈,其测 得的磁矩值是一样的,这对磁体参数的技术交流和产品贸易带来了极大的方便。
磁矩的测试方法
▲不同的亥姆霍兹线圈具有不同的线圈常数C ▲磁矩 M =线圈常数C × 磁通Φ; ▲磁矩测试仪:一台可以输入线圈常数C的
7
成品的磁性材料磁性能测试1-表磁测试
表磁测试
▲测量磁体表面的磁感应强度B(磁通密度)用霍尔传 感器配特斯拉计测得; ▲测试范围:某个点的磁感应强度;
表磁测试法的缺点
1. 磁体表面不同位置磁感应强度不一,手工测难定位,人为因素大。 2. 因霍尔元件封装及表棒制作工艺差异,导致不同厂家生产的仪表尽管都以校准,但实际应用起来差异大。 3. 表磁的大小并不对应于:剩磁,磁矩,吸力等磁体固有的属性。
3. 常见的硬磁材料-烧结钕铁硼
3-1 烧结钕铁硼-我们接触最多,应用最广的强磁材料,一般呈各向异性,其制造流程如下:
钕 (Nd)
铁(Fe)
+
+
硼(B)
熔炼
铸片
制粉 +
钕 (Nd)
铁(Fe)
硼(B)
熔炼
铸片
制粉
铽Tb镝Dy
取向成型
真空烧结
毛胚
加工成各种成品/电镀
2
关于磁性材料
磁性材料及其应用
磁致伸缩可用于制备称重、测力、扭矩 传感器等
四、磁记录材料
我们已经进入信息社会?
“知识大爆炸”?
记忆靠人脑?
磁记录:是使用记录磁头在磁记录介质内写入磁化强度图纹 作为信息存储,用同一或另外记录磁头可从磁化强度图纹读 出所储存的信息。
磁 记 录 的 基 本 过 程
抹音磁头 录音磁头
放音磁头 驱动器
工作缝隙小、磁场分布陡河磁迹宽 度窄,故可提高记录速度和读出分 辨率
磁电阻磁头
利用磁电阻效应制成
磁头材料
合金磁头材料:含钼 坡莫合金和仙台斯特 合金 铁氧体磁头材料:镍锌铁 氧体和锰锌铁氧体
非晶态磁头材料: Co-(Zr, Hf,Nb,Ta,Ti) 二元系合 金薄膜和Co-Fe-B类金属非 晶态薄膜
• 3d过渡金属(T) -非金属系 • 3d过渡金属(T) -金属系 • 过渡金属(T) -稀土类金属(R) 系
软磁材料主要用于动力工程、高性能电子学、通信技术、 航空及空间技术等,来制造磁导体,增加磁路的磁通量,降低 磁阻。
二、永磁材料 永磁材料又称硬磁材料,是用于制造各种永久磁铁的磁性 M 材料。 1、性能特点
改善材料的显微结构,降低杂质和气 孔的含量,增大晶粒尺寸。 降低内应力σ
磁滞回线示意图
3、软磁材料的分类及其应用 软磁材料
金属软磁
铁氧体软磁
非晶及纳米晶软磁
• 电工纯铁 • 硅钢 • 坡莫合金 • 其它软磁合金 (Fe-Al、Fe-Si-Al、 Fe-Co)
• MnZn,NiZn, MgZn等尖晶石型 铁氧体 • Co2Y,Co2Z等平 面六角型铁氧体
有机粘接剂及润滑剂 磁性粉 Al2O3粉/铁丹粉/碳粉
记录层 带基 涂布型磁带结构示例
纳米磁性材料
(2)生成磁性液体的必要条件 ) 生成磁性液体的必要条件是强磁性颗粒要足够小, 生成磁性液体的必要条件是强磁性颗粒要足够小 , 在致可以削弱磁偶极矩之间的静磁作用, 在致可以削弱磁偶极矩之间的静磁作用 , 能在基液 中作无规则的热运动。 中作无规则的热运动。 (3) 基液 ) 水基、 煤油基 、 短基 、 二醋基 、 聚苯基 、 硅油基 、 水基 、 煤油基、 短基、 二醋基、 聚苯基、 硅油基、 氟碳基等。 氟碳基等。
5. 纳米磁记录材料
磁性纳米粒子由于尺寸小,具有单磁畴结构, 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很 用它制作磁记录材料,能使记录密度大大提高, 高,用它制作磁记录材料,能使记录密度大大提高,可比普 通的磁性材料提高10倍以上 还可以提高声噪比, 倍以上; 通的磁性材料提高 倍以上; 还可以提高声噪比,改善图象 质量。 质量。 20世纪 年代,高密度磁记录用的磁粉的尺寸就已进入到纳 世纪80年代 世纪 年代, 米尺寸,例如: 米尺寸,例如: 磁粉尺寸给为200nm×35nm, (1) 性能优良的 ) 性能优良的CrO2磁粉尺寸给为 × , (2) 铁或其合金磁粉的尺寸给为 ) 铁或其合金磁粉的尺寸给为20nm,并制成高密度的金 , 属磁带, 属磁带, 年代发展起来的掺Co、 的钡铁氧体 的钡铁氧体( (3) 90年代发展起来的掺 、Ti的钡铁氧体(BaFe12O19) ) 年代发展起来的掺 典型的颗粒尺寸为六角片形,直径50nm,厚20nm, 典型的颗粒尺寸为六角片形,直径 , , (4) 近年来,又研究氮化铁、碳化铁等类型的纳米磁粉。 ) 近年来,又研究氮化铁、碳化铁等类型的纳米磁粉。
1963年 , 美国国家航空与航天局的帕彭首先 采用油酸为表 年 美国国家航空与航天局的帕彭首先采用油酸为表 面活性剂,把它包覆在超细的Fe3O4微颗粒上(直径约为l0m), 面活性剂,把它包覆在超细的Fe 微颗粒上(直径约为l m), 并高度弥散于煤油(基液) 从而形成一种稳定的胶体体系。 并高度弥散于煤油(基液)中,从而形成一种稳定的胶体体系。 在磁场作用下, 在磁场作用下,磁性颗粒带动着被表面活性剂所包裹着的液体 一起运动,好像整个液体具有磁性,于是,取名为磁性液体 磁性液体。 一起运动,好像整个液体具有磁性,于是,取名为磁性液体。
软磁材料分类
软磁材料分类
软磁材料根据其磁性质和应用领域可以分为以下几类:
1. 铁氧体:具有高磁导率和饱和磁化强度的材料,广泛用于电感器、变压器、电机和磁芯等领域。
2. 镍铁合金:具有低矫顽力和高磁导率的材料,常用于制造磁头和传感器等电子器件。
3. 铁镍合金:具有高磁导率和大的磁滞回线面积的材料,适用于制造高灵敏度和大输出信号的磁强计和磁导传感器等应用。
4. 铁硅合金:具有高电阻率和高磁导率的材料,用于制造电感线圈和电磁铁等应用。
5. 铁铝合金:具有高饱和磁感应强度和低矫顽力的材料,常用于制造高频电感器件和磁芯。
6. 铁钡合金:具有高相对磁导率和低矫顽力的材料,用于制造大功率电感器、变压器和磁芯等。
7. 铁碳合金:具有较高矫顽力和低磁导率的材料,常用于制造磁性弹簧和磁芯等。
以上是一些常见的软磁材料分类,每种软磁材料都有其特定的应用领域和优势。
磁性材料的特点和分类
磁性材料的特点和分类磁性材料主要分为永磁材料与软磁材料。
永磁材料又称硬磁材料,磁体经过外加磁场以后能长期保留其强磁性,特点是矫顽力(Hc)高。
一般其矫顽力Hc≥10A4/m。
磁能积(BH)max大。
软材料是加磁场后即容易磁化,也容易退磁的磁性材料,特点是矫顽力小,一般其矫顽力Hc≤10A3/m。
永磁材料四种主要磁特性(1)高的最大的磁能积最大磁能积(BH)max是永磁材料单位体积存储和可利用的最大磁能量密度的量度。
(2)高的矫顽力矫顽力(Hc)是永磁材料磁和非磁的干扰而保持其永磁性的量度。
(3)高的剩余磁通密度(Br)和高的剩余磁化强度(Mr)它们是具有空气隙中磁场强度的量度。
(4)高的稳定性即对外加干扰磁场和温度、振动等环境因素的变化的高稳定性。
永磁材料的主要分类(1)金属永磁材料:这是一种发展和应用都比较早的以铁和铁元素(如镍、钴等)为重要元素组成的合金永磁材料,主要有稀土永磁(如钕铁硼稀土合金永磁),铝镍钴(AINiCo)系和铁铬钴(FeCrCo)系三大永磁合金。
(2)铁氧体永磁材料:这是以Fe2O3为主要元素组成的复合氧化物的强磁材料,其特点是电阻率高,特别有利于在搞频和微波使用。
如钡铁氧体永磁材料,锶铁氧体永磁材料等。
(3)其它永磁材料:如微粉永磁材料,纳米永磁材料,胶塑永磁材料等。
软磁材料的主要特点(1)低的矫顽力Hc:显示磁性材料即容易外加磁场磁化,又容易受到加磁场或其他因素退磁,而且磁损耗也低。
(2)高的饱和磁通密度Bs和高的饱和磁化强度Ms:这样荣故意得到高的磁导率µ和低的矫顽力Hc,也可以提高磁通密度。
(3)低的磁损耗和电损耗:这就要求低的矫顽力Hc和高的电阻率。
(4)高的稳定性:对温度、震动等环境因素的变化具有高的稳定性。
软磁材料的主要分类(1)铁氧体软磁材料:是一系列含有氧化铁的复合氧化物材料(或称为陶瓷材料),特点是饱和磁感应强度低(0.5T以下)但是磁导率比较高。
磁性材料的特性及应用
减落因数: 减落因数: 在恒温条件下,完全退磁的磁芯的磁 导率随时间的衰减变化。 电感因数: 电感因数: 电感因数定义为具有一定形状和尺寸 的磁芯上每一匝线圈产生的电感量, 即
AL = L N2
3.电阻率: 电阻率: 电阻率 具有单位截面积和单位磁路长度的磁性 材料的电阻。与适用频率相关 由低到高排序: 硅(镍)钢片---金属磁粉芯: ( ) ----锰锌铁氧体---镁锌铁氧体---镍锌铁氧体
4.功率损耗: 功率损耗: 功率损耗 磁芯在高磁通密度下的单位体积损耗 和单位重量损耗;是磁滞损耗、涡流 损耗和剩余损耗三者之和;是衡量功 率型 材质优劣的重要参数,常用的测试 条件有100KHZ/200mT和25KHZ/200mT. (图)
5.居里温度: 居里温度: 居里温度 居里温度是磁性材料从铁磁性到顺磁性 的转变温度,或称磁性消失温度。一般 表示方法:随温度升高,磁导率下降到 最大值的80%,20%时,这二点联线,延 长到与温度轴的交点,即为居里温度。 (图)
3.磁芯型式上的优缺点 磁芯型式上的优缺点: 磁芯型式上的优缺点
EE或EI型:
结构简单,易加工,成本低. 漏磁多,空间利用率一般.
ER型: 结构相对简单,易加工,成本低. 漏磁多,空间利用率较好.
EFD,EPC型: 结构较复杂,易变形,成 本高 但可获得较低成品高 度,实现扁平化.
EP型:
结构较复杂,难加工,成本高 卓越的磁屏蔽性能,且信号传输失真度小.
2.磁导率 磁导率 初始磁导率是磁性材料的磁导率在磁化 曲线始端的极限值.它和温度、频率有关。
软磁材料介绍
第1页,共36页。
*主要的软磁材料:
〔1〕合金--如硅钢〔Fe-Si〕、坡莫合金〔Fe-Ni〕、 仙台斯特合金〔Fe-Si-Al〕;
〔2〕软磁铁氧体--Mn-Zn系、Ni-Zn系、Mg-Zn系等; 〔3〕非晶态、纳米晶、薄膜等。
*开展史: 〔1〕铁氧体问世之前,金属软磁材料垄断了电力、电子、 通信各领域。优点:其MS远高于铁氧体,因此电力工业 中的变压器、电机等至今仍是Fe-Si合金材料。缺点:涡 流损耗限制了其在高频段的应用。 〔2〕20世纪40年代开场,软磁铁氧体由实验室走向工业 生产。
Ni78.5%Fe-Ni合金经过热处理后,i可达104 *铁氧体软磁材料:配方时选择K1和 S很小的根本成分,如 MnFe2O4、MgFe2O4、CuFe2O4、NiFe2O4等。然后再采用正 负K1、 S补偿或添加非磁性金属离子冲淡磁性离子间的耦合作 用。
第7页,共36页。
3、改善材料的显微构造
*应用:电动机、发电机、变压器、电磁机构、继电器电子器件及测 量仪表中。
第16页,共36页。
第17页,共36页。
2.3.3 坡莫合金 *1913年被开发出来,镍的质量分数为30%-90%的镍铁合金。
*优点:很高的磁导率,成分范,延展性好,低的损耗。
消除方法:保温后,采用缓慢冷却到100-300℃的退火措施,这样在
650-300℃之间Fe3C有足够的时间析出、长大为对磁性能影响不大 的大颗粒夹杂物。
*应用:电磁铁的铁芯和磁极,继电器的磁路和各种零件, 感应式和电磁式测量仪表的各种零件,扬声器的各种磁路, 中的振动膜、磁屏蔽,电机中用以导引直流磁通的磁极,冶 金原料等。
*含碳量是影响磁性能的主要因素。
除碳方法:高温用H2处理除碳,以消除铁中碳对畴壁移动的阻碍作用。
软磁材料
五、稳定性
• 高科技特别是高可靠工程技术的发展,要求软磁 材料不但要高µ i ,低损耗等,更重要的是高稳定性。
• 软磁材料的高稳定性是指磁导率的温度稳定性要高, 减落要小,随时间的老化要尽可能地小,以保证其 长寿命工作于太空、海底、地下和其他恶劣环境。 • 影响软磁材料稳定工作的因素有低温、潮湿、电磁 场、机械负荷、电离辐射等,在这些因素的影响下, 软磁材料的基本特性参数发生变化,从而导致性能 的变化。
4.2 提高起始磁导率的途径
• 必要条件:提高Ms并降低K1、λs :的值. • 充分条件:降低杂质浓度,提高密度, 增大晶粒尺寸,结构均匀化,消除内应 力和气孔的影响。这都与配方的选择和 工艺条件密切相关。
提高起始磁导率µ i的途径
一、提高Ms降低磁晶各向异性常数K1和磁致伸缩系数λs • 材料的起始磁导率µ i 与Ms的平方成正比。 • 最有效方法是从配方和工艺上使K1→0,λs →0. 例如:CoFe2O4、Fe3O4Ms虽高,但K1和λs太大。
4.3.1 电工纯铁
• 纯度:电工纯铁是指纯度在99.8%以上。冶炼时,
首先用氧化渣除之碳、硅、锰等元素,再用还原 渣除去磷和硫,出钢时在钢包中添加脱氧剂获得。 • 软磁性能:经过退火热处理,起始磁导率µi 为 3, Hc为 300—500,最大磁导率µ 为 (6~12) × 10 max 39.8~95.5 A/m。(0.5~1.2Oe) 1 A/m =4/ 103 Oe
二、矫顽力 Hc
• 软磁材料的基本性能要求是,能快速地响应 外磁场变化,这就要求材料具有低矫顽力值。 • 图为在低磁场时就表现出灵敏的响应。
软磁材料典型的磁滞回线示意图
影响矫顽力Hc的因素
• 软磁材料的矫顽力较低: 通常约为0.1-100 A/m 数量级。 • 软磁材料的反磁化过程主要是通过畴壁位移来 实现的,因此材料内部应力起伏和杂质的含量 与分布成为影响矫顽力Hc的主要因素。对于内 应力不易消除的材料,应着重考虑降低 λs;对 于杂质含量较多的材料应着重考虑降低Kl值。 • 对于软磁材料,在提高µ i 的同时可以实现降低 Hc的目的。
磁性材料分类
磁性材料分类软磁材料软磁材料磁性材料中矫顽力很低,因而既容易受外加磁场磁化,又容易退磁的材料称为软磁材料。
软磁材料的主要特征是:1、高的磁导率。
这表示软磁材料对磁场的灵敏度高(一般常用起始磁导率)2、低矫顽力Hc。
3、高的饱和磁通密度Bs。
4、低的磁(功率)损耗P。
5、高的稳定性。
分类:(因使用的功率、频率的不同要求、材料的磁特性的不同)1、Fe-Si系。
2、Fe-Ni系。
3、铁氧体系。
4、非晶材料系。
5、其他。
稀土永磁材料稀土永磁材料这是当代新发展起来的最大磁能积最高的一类永磁材料,是主要含稀土族和铁族元素的金属互化物(又称金属间化合物)。
由于这类永磁材料综合了一些稀土元素的高磁晶各异性和铁族元素高居里温度的优点,因而获得当前最大磁能积最高的永磁性能。
从 60年代起,稀土永磁材料已经研究和生产了三代材料,第一代的SmCo5系材料,第二代的Sm2Co17系材料,第三代的Nd-Fe-B系材料,当前正在研究第四代材料。
把这些材料称为“系”,是指其组元可以部分或全部用其他相当的元素进行代换,以获得最佳的或特定要求的永磁性能。
在目前的稀土永磁材料中,最大磁能积最高的是:居里温度最高的是Sm2Co17系材料;在稀土永磁材料制造工艺上,除较大量使用烧结工艺外,还发展了快淬法、热形变法、热压法和粘结法等新工艺,它们各具有其特点和适用的生产条件。
Nd-Fe-B系合金是第一种不含Co的高性能实用新型永磁材料。
自1983年问世以来,迅速地得到发展。
稀土永磁材料按主要成分分类:1、SmCo5 系2、Sm2Co173、Nd-Fe-B系;4 、Pr-Fe-B系;5 、 Sm-Fe-N系烧结钕铁硼永磁材料烧结钕铁硼永磁材料烧结钕铁硼磁体的磁能积的理论极限值是512KJ/M3(640MGOe)1987年实验室首次突破400KJ /M3(50MGOe),1990年达到了54.6MGOe,国内最高水平为52.4MGOe。
工业化生产烧结钕铁硼体的磁能积从1983年最初问世的 35MGOe到目前的50MGOe高性能钕铁硼磁体的特征:主相晶粒分布在微米之间,大小均匀,晶界清晰,晶粒表面缺陷少,晶粒规则,主相体积百分率达到90%以上;富钕相薄而且分布均匀;密度达到理论密度的主相取向度达到90%以上。
什么是软磁材料
什么是软磁材料软磁材料是一种具有良好软磁性能的材料,通常用于电磁设备和电子器件中。
软磁材料具有低磁滞、低铁损、高导磁率等特点,能够有效地转换和传导磁能,因此在现代电工电子领域中应用广泛。
本文将从软磁材料的定义、分类、特性及应用等方面对软磁材料进行介绍。
首先,软磁材料是指在一定条件下,能够在外加磁场作用下产生磁感应强度,而在去磁场作用下能够完全消除磁感应强度的材料。
根据其磁滞回线的形状,软磁材料可分为软磁材料和硬磁材料。
软磁材料的磁滞回线呈现出狭窄的形状,而硬磁材料的磁滞回线呈现出宽阔的形状。
软磁材料主要包括铁素体材料、非晶合金材料、软磁纳米晶材料等。
软磁材料具有许多独特的特性。
首先,软磁材料具有低磁滞特性,即在外加磁场作用下,材料的磁化强度随着磁场的变化而变化,而在去磁场作用下,磁化强度能够迅速消失。
其次,软磁材料具有低铁损特性,即在交变磁场作用下,材料的铁损较小,能够有效地减少能量损耗。
另外,软磁材料还具有高导磁率特性,即在外加磁场作用下,材料能够产生较大的磁感应强度,从而有效地传导磁能。
软磁材料在电工电子领域中有着广泛的应用。
首先,软磁材料常用于电力变压器、互感器等电力设备中,能够有效地传导和转换电能。
其次,软磁材料还常用于电子器件中,如变压器、感应线圈、电感器等,能够实现信号的传输和处理。
另外,软磁材料还常用于磁记录材料中,如磁盘、磁带等,能够实现信息的存储和读取。
总之,软磁材料是一种具有良好软磁性能的材料,具有低磁滞、低铁损、高导磁率等特点,能够有效地传导和转换磁能。
在电工电子领域中有着广泛的应用,包括电力设备、电子器件、磁记录材料等。
随着科学技术的不断发展,软磁材料的研究和应用将会更加深入,为电工电子领域的发展带来新的机遇和挑战。
软磁材料的名词解释
软磁材料的名词解释引言:软磁材料是一类具有特殊性质的物质,其起源可以追溯到数十年前的电磁学研究。
软磁材料在现代科技领域中扮演着重要的角色,广泛应用于电力、电子、通信等行业。
本文将对软磁材料进行详细的名词解释,探讨其特性和应用。
一、什么是软磁材料软磁材料是一类能够被外部磁场磁化的材料,具有低矫顽力和高导磁率的特点。
与硬磁材料相比,软磁材料对磁场的响应更加敏感,能够更快速地磁化和反磁化。
其磁滞回线相对狭窄,滞后角小,因此能够在频繁变化的磁场中有效工作。
二、软磁材料的分类根据材料的化学组成和特性,软磁材料可以分为多种类型。
最常见的软磁材料有铁氧体、镍铁合金和钴铁合金。
1. 铁氧体铁氧体是最常见的软磁材料之一,主要由氧化铁和其他金属氧化物组成。
铁氧体具有良好的导磁性能和低的涡流损耗,广泛应用于高频电子设备、传感器和电动机等领域。
2. 镍铁合金镍铁合金通常由镍和铁组成,具有高的导磁率和低的剩磁。
这种材料广泛应用于电力变压器、变流器和电感器等设备中,用于提供高效、稳定的电能转换。
3. 钴铁合金钴铁合金是一种高导磁率和高饱和磁感应强度的软磁材料,通常由钴和铁组成。
它在高频传输系统、磁记录和微波电子学中具有重要应用。
三、软磁材料的特性软磁材料具有多种特性,使其在电磁设备中得到广泛应用。
1. 高导磁率软磁材料的高导磁率意味着它们能够更有效地吸收和传导磁场能量。
通过提高导磁率,软磁材料能够提高电磁设备的效率和性能。
2. 低矫顽力软磁材料的矫顽力是指它们磁化和反磁化的难易程度。
低矫顽力使得软磁材料能够快速地响应外部磁场的变化,实现高频电磁波的传输和处理。
3. 较低的滞磁滞磁是指材料在磁场移动过程中保持磁化的能力。
软磁材料的较低滞磁表现为狭窄的磁滞回线,使其在应用中能够更快速地实现磁化和反磁化。
4. 低涡流损耗涡流损耗是指材料在交变磁场中产生的能量损失。
软磁材料通常具有低的涡流损耗,能够在高频应用中减少能量损耗,提高传输效率。
软磁材料性能
上式说明:
a 工作频率f越大, Pth 越大
C、 μi –f特性
意义:
材料的磁导率随使用频率的变化关系即为μi –f特性,当μi 降低 时的频率为截止频
率 μi –f特性与使用的关系:
1
截止频率以上材料的μi值急剧下降,使材料的电感值急剧下降,会造成产品失效不能2 使
用。所谓宽频即为截止频率高。
影响μi –f特性的因素:
材料的制造工艺
材料的晶粒尺寸越小截止频率越高
3、我公司高导铁氧体材料的特性 命名方法 R 10K 磁导率大小 软磁
材料 名称 R4K R5K R7K R10K R12K R15K
μi
4300±25%
5000±25%
7000±25%
10000±30 % 12000±30 % 15000±30 %
tanδ/μi (×10-6)
<10
αμr ( ×106℃) (20—60℃)
μi高
1、功率铁氧体材料
主要用于高频小型化开关电源、电视机显示器的回扫变压器等。
①发展过程
70年代第一代
中国2KD TDK H35 PHILIPS 3C85 适于20KHZ
80年代初第二代 (DMR30)2KBD TDK PC30 EPCOS N27 适于100K以下
80年代后期第三代 (DMR40)2KB1 TDK PC40 PHILIPS 3C90 适于250K以下
金属软磁材料
金属软磁材料金属软磁材料是一类具有优良软磁性能的金属材料。
它们在电磁技术、电力工程、电子器件等领域中具有重要应用。
本文将从定义、特性、分类、应用等方面对金属软磁材料进行介绍。
一、定义金属软磁材料是指在外加磁场作用下,能够迅速磁化并且在去磁场后能够迅速恢复无磁状态的金属材料。
与硬磁材料相比,金属软磁材料具有较低的矫顽力和剩余磁感应强度,能够快速响应外加磁场的变化。
二、特性1. 高磁导率:金属软磁材料具有较高的磁导率,能够有效地传导磁场。
2. 低矫顽力:金属软磁材料的矫顽力较低,表现为在外磁场作用下磁化容易且去磁后能够迅速恢复无磁状态。
3. 低剩余磁感应强度:金属软磁材料的剩余磁感应强度较低,去磁后磁感应强度迅速减小。
4. 高饱和磁感应强度:金属软磁材料的饱和磁感应强度较高,能够在一定范围内保持较高的磁感应强度。
三、分类金属软磁材料根据其成分和微结构可以分为多种类型,常见的有:1. 铁素体软磁材料:如电工钢、硅钢等,主要由铁和少量的碳、硅等元素组成,具有优良的软磁性能和导磁性能。
2. 镍铁合金软磁材料:如氢脆镍等,具有较高的饱和磁感应强度和低矫顽力。
3. 铁铝合金软磁材料:如铁铝硅合金,具有较高的磁导率和低矫顽力。
4. 铁镍合金软磁材料:如镍铁、铁镍钴等,具有较高的饱和磁感应强度和低矫顽力。
四、应用金属软磁材料在电子器件、电力工程等领域中具有广泛应用,主要包括以下几个方面:1. 电感元件:金属软磁材料能够有效地传导磁场,被广泛应用于电感元件中,如变压器、电感线圈等。
2. 传感器:金属软磁材料具有快速响应外磁场的特性,被用于制造各种传感器,如磁传感器、磁力计等。
3. 电动机:金属软磁材料具有较高的饱和磁感应强度和低矫顽力,被广泛应用于电动机的铁芯部分,提高电机的效率和性能。
4. 电磁屏蔽材料:金属软磁材料能够有效吸收和屏蔽外界磁场,用于制造电磁屏蔽材料,保护电子器件免受外界干扰。
金属软磁材料具有优良的软磁性能和导磁性能,在电磁技术、电力工程、电子器件等领域中发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软磁材料的分类
具有低矫顽力和高磁导率的磁性材料。
软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。
应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等。
软磁材料种类繁多,通常按成分分为:
①纯铁和低碳钢。
含碳量低于0.04%,包括电磁纯铁、电解铁和羰基铁。
其特点是饱和磁化强度高,价格低廉,加工性能好;但其电阻率低、在交变磁场下涡流损耗大,只适于静态下使用,如制造电磁铁芯、极靴、继电器和扬声器磁导体、磁屏蔽罩等。
②铁硅系合金。
含硅量 0.5%~ 4.8%,一般制成薄板使用,俗称硅钢片。
在纯铁中加入硅后,可消除磁性材料的磁性随使用时间而变化的现象。
随着硅含量增加,热导率降低,脆性增加,饱和磁化强度下降,但其电阻率和磁导率高,矫顽力和涡流损耗减小,从而可应用到交流领域,制造电机、变压器、继电器、互感器等的铁芯。
③铁铝系合金。
含铝6%~16%,具有较好的软磁性能,磁导率和电阻率高,硬度高、耐磨性好,但性脆,主要用于制造小型变压器、磁放大器、继电器等的铁芯和磁头、超声换能器等。
④铁硅铝系合金。
在二元铁铝合金中加入硅获得。
其硬度、饱和磁感应强度、磁导率和电阻率都较高。
缺点是磁性能对成分起伏敏感,脆性大,加工性能差。
主要用于音频和视频磁头。
⑤镍铁系合金。
镍含量30%~90%,又称坡莫合金,通过合金化元素配比和适当工艺,可控制磁性能,获得高导磁、恒导磁、矩磁等软磁材料。
其塑性高,对应力较敏感,可用作脉冲变压器材料、电感铁芯和功能磁性材料。
⑥铁钴系合金。
钴含量27%~50%。
具有较高的饱和磁化强度,电阻率低。
适于制造极靴、电机转子和定子、小型变压器铁芯等。
⑦软磁铁氧体。
非金属亚铁磁性软磁材料。
电阻率高(10-2~1010Ω·m),饱和磁化强度比金属低,价格低廉,广泛用作电感元件和变压器元件(见铁氧体)。
⑧非晶态软磁合金。
一种无长程有序、无晶粒合金,又称金属玻璃,或称非晶金属。
其磁导率和电阻率高,矫顽力小,对应力不敏感,不存在由晶体结构引起的磁晶各向异性,具有耐蚀和高强度等特点。
此外,其居里点比晶态软磁材料低得多,电能损耗大为降低,是一种正在开发利用的新型软磁材料。
⑨超微晶软磁合金。
20世纪80年代发现的一种软磁材料。
由小于50纳米左右的结晶相和非晶态的晶界相组成,具有比晶态和非晶态合金更好的综合性能,不仅磁导率高、矫顽力低、铁损耗小,且饱和磁感应强度高、稳定性好。
现主要研究的是铁基超微晶合金。