小学数学六年级上册比的意义和比的基本性质练习题
六年级数学上册《比》练习题及答案解析
六年级数学上册《比》练习题及答案解析学校:___________姓名:___________班级:______________一、填空题1.正方形内画最大的圆,圆的面积与正方形面积的最简整数比是( ),比值是( )。
2.甲数的25等于乙数的34,甲乙两数的最简整数比是( )。
3.两个连续偶数的和是50,则较小的偶数与较大的偶数的比是( )。
4.甲、乙、丙三个数的比是2∶4∶5,三个数的平均数是44,则甲数是____。
5.等腰三角形两个内角度数比为2∶1,这个等腰三角形三个内角度数分别是_______,也可能是_______。
二、判断题6.一个比的前项是8,如果前项加上16,要使比值不变,后项应该乘3。
( )7.一堆黄沙,已经用去27,剩下的和已经用去的比是2∶5。
( )8.甲、乙、两三人分糖果,三人按3∶4∶5分配或按7∶9∶11分配,乙所得糖果数相同。
( )三、选择题9.有甲乙两个圆柱,高相等,底面半径比是1∶4。
这两个圆柱的体积比是()。
A.1∶4B.1∶8C.1∶16D.1∶3210.5∶9的前项加上10,要使比值不变,后项应()。
A.加上18B.乘10C.加1011.一款捷豹牌变速自行车,前齿轮分别为36齿、24齿;后齿轮为28齿、26齿、24齿、18齿,其中最快速度的组合是()。
A.48∶32B.48∶18C.36∶32D.36∶18四、化简比和求比值12.化简比。
16∶8016∶2447∶450.75∶150.42∶7.256∶49五、解答题13.大宝和小宝一起喝汤圆,本来大宝碗里的和小宝碗里的个数之比为2∶3,后来大宝想要减肥,又夹了4个汤圆到小宝碗里,此时大小宝碗里汤圆之比为1∶2,求两人一共有多少个汤圆?14.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。
这两个组各借书多少本?(用两种方法解答)参考答案与解析:1.157∶200π4【分析】根据题意可知,正方形内画最大的圆,圆的直径等于正方形的边长;设正方形的边长为a,这圆的半径为a2;根据正方形面积公式:边长×边长;圆的面积公式:π×半径2,代入数据,求出正方形面积和圆的面积;再根据比的意义,用圆的面积∶正方形面积,化简即可;再用比的前项除以比的后项即可求出比值。
2023-2024年小学数学六年级上册精讲精练 第四单元《比》(人教版原卷)
期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第四单元比知识点01:比的意义、各个部分的名称1. 两个数量之间的关系可以用来表示。
2. 在两个数的比中,“:”是,比号前面的数叫做,比号后面的数叫做,叫做比值。
3. 比的前项,后项和比值分别相当于除法算式中的:;分别相当于分数中的:。
比的后项不能是知识点02:比的基本性质和化简比1.比的基本性质:,这叫做比的基本性质。
2.化简比的方法:(1)化简整数比时,前、后项同时除以。
(2)化简分数比时,前、后项同时乘它们分母的,转化成,再。
(3)化简小数比:先把前、后项的小数点同时向右移动,转化成,再化简。
知识点03:按比分配按比分配的解题方法:方法一:把比看作份数之比。
先求每份是多少,再求几份是多少。
解题步骤:①求出总份数;②求出一份是多少;③求出方法二:把比转化成分率。
利用解答。
解题步骤:①求出总份数;②求出各部分占总量的几分之几;③求出。
考点01:比的意义1.(2022秋•湖滨区期中)下面四幅图中的比可以用3:2表示的是()A.B.C.D.2.(2022秋•增城区期中)六(1)班有学生45人,其中男、女人数比是()A.4:3 B.8:7 C.5:6 D.6:5 3.(2022秋•香洲区期中)已知甲数是乙数的,则甲数和乙数的比是;如果乙数是20,那么甲数是。
4.(2022•杭州模拟)某班男生人数的与女生人数的相等,这个班男生人数与全班人数的最简整数比是。
5.(2022秋•丰县期中)把4克糖放入96克水中,糖与糖水的比是。
如果再放入4克糖,糖与糖水的比是。
6.(2022秋•无棣县期中)在刚结束的U17女足世界杯比赛中,中国队1:0战胜墨西哥队,由此我们可以发现,比的后项也可以为0。
(判断对错)7.(2022秋•郧阳区期中)从学校到图书馆,甲用8分钟,乙用10分钟,则甲乙二人的速度比是4:5。
(判断对错)8.(2020秋•溆浦县期末)实验小学科技小组、舞蹈小组与乒乓球小组人数的比是多少?如果舞蹈小组有64人,问乒乓球小组有多少人?9.(2021•雨城区模拟)已知甲、乙、丙三个数,甲等于乙、丙两数和的,乙等于甲、丙两数和的,丙等于甲、乙两数和的,甲、乙、丙三数的比是多少?10.(2021•雨城区模拟)甲、乙两数的比是5:6,乙、丙两数的比是4:5,已知甲、丙两数的差是15,则甲、丙两数分别是多少?11.(2021秋•盐城期末)篮球和足球个数的比是5:3,篮球的个数比足球多,足球个数比篮球少。
小学六年级数学上册练习题第四单元-比
小学六年级数学上册练习题第四单元-比第一课时 比的意义班级: 姓名:巩固达标 一、填空。
(1)在4:7=中,( )是比的前项,( )是比的后项,比值是( )。
(2)43=( )÷( ) =( ):( )(3)人体血液中,红细胞的平均寿命是120天,血小板的平均寿命是10天。
红细胞与血小板的寿命的比是( )。
(4)--辆“复兴号”高铁3小时行驶了1050km,这列高铁行驶的路程和时间的比是( ) :( ),比值是( ),比值表示( )。
(5)一条公路已修了全长的125,已修的和未修的比是( ),未修的和全长的比是( )。
(6)比与分数、除法的联系。
( )(7) 甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
(8)在100克水中加入10克盐,盐和盐水的比是( )。
二、判断。
(对的画“√”,错的画“X”)(1)在今年一场足球比赛中,法国1:0战胜比利时,所以比的后项为0。
( )(2) 小明的身高125cm,弟弟的身高是1m,小明和弟弟身高的比是125:1。
( )三、求下面各比的比值。
0.36 : 0.45 1.5t:400kg 32:9420分: 0.25时能力拓展应用题。
1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
小华体重多少千克?2、修一条工路,第一天修了全长的,第二天修的比第一天的少50米,两周共修了160米,这条路一共有多长?3、学校有彩色粉笔48盒,比白粉笔的少3盒,学校有白粉笔多少盒?4、一满杯糖水正好是200 g,其中含糖20g 。
从杯中倒出20g 糖水后,再往杯里加满水,这时杯子里的糖与水的质量比是多少?第二课时 比的基本性质班级: 姓名:巩固达标 1、填空(1).填表后再说一说比与分数、除法有怎样的关系。
(2)如果把3: 7的前项加上12,要使比值不变,后项应加上( )。
(3)12:16=( ):4=18÷( )=( ):0.8=32(4)甲数的43等于乙数的32,那么甲、乙两数的最简整数比是( ):( )。
苏教新课标小学数学六年级上册《三 分数除法 9、比的意义和比的基本性质练习》_1
2.什么是比的基本性质?有什么用处?
3.做练习九第9题
再适当增加几种不同类型的比让学生化简并求比值。
4.做练习九第10题。
先估计,再量一量、填一填。
交流后评议。
比和比值有什么区别。
三、综合练习。
1.做练习九第11、12题。
2.口答:灵活提问,用不同的方法说说每句话的含义。
(1)男生人数和女生人数的比是5:6
第三单元第性质练习教科书第57练习九第9-13题。
教学目标
知识和能力
使学生加深认识比的意义和基本性质,能说出一个比的具体含义,能比较熟练地应用比的基本性质化简比。
过程与方法
使学生认识求比值与化简比的联系和区别,以及比与相关知识间的联系和区别。
情感态度
与价值观
使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重难点
教学重难点:理解比的意义和比的基本性质。
教学难点:正确应用比的基本性质化简比。
教学准备
课件
教学过程
一、揭示课题
今天这节课,我们继续练习有关比的意义和性质的知识,通过练习,希望大家能正确运用所学的知识解决实际问题。
二、基本题练习
1.比的意义及除法分数之间的关系。
比前项比号后项比值
除法被除数除号除数商
4.化简比并求比值
(1)12 ﹕18
(2)1.8﹕0.09
(3)0.625﹕
(4) :
5、作业:练习九第13题。
6、阅读“你知道吗”
四、课堂小结
这节课,通过练习,你还有什么不明白的地方?让学生说说,提出问题,然后全班集体解决提出的问题。
专题05《比的意义、性质和应用题》六年级数学上册
(2023年秋季班苏教版六上)知识拓展考点培优讲练知识点一:比的意义、各个部分的名称1.两个数量之间的关系可以用两个数的比来表示。
2.在两个数的比中,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以后项所得的商叫做比值。
3.比的前项,后项和比值分别相当于除法算式中的:被除数,除数和商;分别相当于分数中的:分子、分母和分数值。
比的后项不能是0。
知识点二:比的基本性质和化简比1.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
2.化简比的方法:(1)化简整数比时,前、后项同时除以最大公因数。
(2)化简分数比时,前、后项同时乘它们分母的最小公倍数,转化成整数比,再化简。
(3)化简小数比:先把前、后项的小数点同时向右移动相同的位数,转化成整数比,再化简。
知识点三:按比分配按比分配的解题方法:方法一:把比看作份数之比。
先求每份是多少,再求几份是多少。
解题步骤:①求出总份数;②求出一份是多少;③求出各部分的数量。
方法二:把比转化成分率。
利用分数乘法解答。
解题步骤:①求出总份数;②求出各部分占总量的几分之几;③求出各部分的数量。
A.4∶3B.3∶4【变式1-4】(2017•东台市模拟)桃树的棵数比李树多,桃树棵数和李树棵数的比是(A.黄花、蓝花的总数比红花多20%B.三种花的总数是蓝花的6倍C.红花比黄花多买了10盆D.黄花和蓝花的数量比为3∶5【变式6-1】(2023•石河子)29.保洁阿姨用84消毒液与水按1∶80的比配制成消毒水对地面进行消毒,配制40毫升的消毒水需要()毫升84消毒液,()毫升水。
【变式6-2】(2023•洛阳)30.一个长方体的棱长总和是240厘米,它的长、宽、高的比是3∶2∶1,这个长方体的表面积是()平方分米,体积是()立方分米。
【变式6-3】(2023•淅川县)31.用同样长的铁丝围成两个长方形,甲长方形的长与宽之比为6∶1,乙长方形的长与宽之比为2∶1,那么,甲长方形的面积大于乙长方形的面积。
六年级数学小升初毕业考试总复习——比和比例专项训练(附答案)
六年级小升初毕业考试总复习——比和比例专项训练一、比1.比的意义:两个数的比表示两个数要除。
2.比、分数、除法之间的联系:用字母表示三者之间的联系:a:b=a ÷b=ba(b ≠0) 3.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
4.按比分配:方法(一)先求出每份是多少,再用每份量乘各部分量所占的份数,求出各部分量。
方法(二)先求出总份数,再求出各部分量占总量的几分之几,最后求出各部分量。
考试真题:1.(朝阳区2019年小学毕业考试试卷)按要求完成。
A.张师傅要完成100个零件的加工任务,他已经完成了全部任务的41,他已经加工了多少个零件?B.一种零件的加工图纸的比例尺是4:1, 这个零件在图纸上的长度是100毫米,实际这个零件的长度是多少毫米?C.学校把养护100棵花苗的任务按照1:4分配给五年级和六年级同学,在这个任务中,五年级同学要养护多少棵花苗?D.学校合唱队有100名队员,其中男队员占41,学校合唱队有男队员多少名? ①在解决上面四个实际问题时,不能用“100×41”来解决的是( )。
②请你把上面不能..用“100×41”解决的问题解答出来。
2.(朝阳区2019年小学毕业考试试卷)按照这种截取的方法,第四天截取的长度与原来木棍的长度的最简单整数比是多少?请你用喜欢的方式展示你的思考过程。
3.(大兴区2019年小学毕业考试)按要求画一画。
(下面每个小方格的边长都代表1厘米)①画一个周长是20厘米的长方形,且长与宽的比是3:2. ②画出这个长方形的所有对称轴。
4.(东城区2019年小学数学毕业考试试卷)( )÷16=()21=0.875=( )%=7:( ).5.(东城区2019年小学数学毕业考试试卷)下图中平行四边形的面积是20cm 2,甲和丙面积的比是( )。
《庄子·天下篇》中写道: “一尺之棰, 日取其半, 万世不竭” 这句话意思是:一根一尺的木棍,如果第一天截取它长度的一半,以后每天截取它前一天剩下长度的一半,那么将永远也截取不完。
六年级数学比和比例试题
六年级数学比和比例试题1.一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是.【答案】0.4.【解析】根据比例的性质“两外项的积等于两内项的积”,先确定出两个內项也互为倒数,乘积是1,进而根据倒数的意义求得另一个內项的数值.解:在一个比例里,两个外项互为倒数,可知两个外项的乘积是1根据比例的性质,可知两个内项的积也是1,其中一个内项是2.5,另一个外项为1÷2.5=0.4.2.大牛和小牛头数的比是4:5,表示大牛比小牛少..(判断对错)【答案】×.【解析】在这里把大牛的头数看作4,则小牛的头数是5,要求大牛比小牛少几分之几,就是把小牛的头数看作单位“1”,大牛比小牛少的头数占小牛的几分之几.解答:解:设大牛的头数是4,则小牛的头数是5,(5﹣4)÷5=1÷5=,即大牛比小牛少.故答案为:×.点评:本题主要是考查分数的应用,关键是把比转化成分数.3.圆的周长与它的直径的比值约是3.14.(判断对错)【答案】√.【解析】根据圆周率的含义:圆的周长和它直径的比值叫做圆周率,圆周率用字母“π”表示,π≈3.14,圆周率π是一个无限不循环小数;进而解答即可.解答:解:由圆周率的含义可知:圆的周长与直径的比值约等于3.14,说法正确;故答案为:√.点评:此题应根据圆周率的含义进行分析、解答.4. 5.6:4.2化成最简单的整数比是比值是.【答案】4:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解答:解:(1)5.6:4.2,=(5.6×10):(4.2×10),=56:42,=(56÷14):(42÷14),=4:3;(2)5.6:4.2,=5.6÷4.2,=.故答案为:4:3,.点评:此题主要考查了化简比和求比值的方法,另外还要注意化简比时,先把比的两项的单位统一;化简后的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数5.甲数是乙数的,甲数与乙数的比是4:7..(判断对错)【答案】√.【解析】把乙数看作单位“1”,甲数是乙数的,则甲数是,进而求出甲数与乙数的比.解答:解:甲数:乙数=:1=4:7故答案为:√.点评:本题是考查比与分数的关系及比的意义.利用它们之间的关系进行转化即可.6. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.7.一个长方体棱长总和是120厘米,长、宽、高的比是5:3:2,这个长方体长厘米,宽厘米,高厘米;体积是.【答案】15、9、6、810立方厘米.【解析】要求这个长方体的体积是多少,首先要找它的长、宽、高,又知道这个长方体的棱长总和是120厘米,长、宽、高的比是5:3:2,依据“长方体的棱长和=(长+宽+高)×4”用棱长和除以4,即可求出一份(长+宽+高)值,长占长宽高的,宽占长宽高的,高占长宽高的,据此可算出长方体的长、宽和高的值;再根据长方体的体积公式:V=abh,解答即可.解:120÷4=30(厘米)长:30×=15(厘米)宽:30×=9(厘米)高:30×=6(厘米)体积:15×9×6=135×6=810(立方厘米)答:这个长方体长15厘米,宽9厘米,高6厘米,体积是810立方厘米.故答案为:15、9、6、810立方厘米.【点评】解答此题的关键是:先据题目条件分别求出长、宽、高,进而可以求出其体积.8.小明与小华邮票张数的比是5:6,小明给小华10张邮票后,小明与小华邮票张数的比是4:5.小明原有邮票多少张?【答案】450张【解析】“小明与小华邮票张数的比是5:6”小明的邮票占了邮票总数的,“小明给小华10张邮票后,小明与小华邮票张数的比是4:5”,小明的邮票这时占了邮票总数的,小明给小华的10张邮票就占了总数的(),据此可求出邮票的总数,进而可求出小明原有邮票的张数.解:10÷(),=10÷=990(张)990×=450(张)答:小明原有邮票450张.【点评】本题的重点是抓住题目中的邮票张数不变,求出10对应的分率再根据分数除法的意义求出邮票的总数,进而求出小明原有邮票的张数.9. 1:0.25化成最简单的整数比是,比值是.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:1:0.25,=(1×4):(0.25×4),=4:1;(2)1:0.25,=1÷0.25,=4;故答案为:4:1,4.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.10.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.11.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.12.1时:45分化成最简整数比是,比值是.【答案】4:3,.【解析】(1)先把比的前项和后项的单位统一,再根据比的基本性质作答,即把比的前项和后项同乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项,即可得出答案.解:1时:45分=60分:45分=(60÷15):(45÷15)=4:3;1时:45分=60分:45分=60:45=60÷45=,故答案为:4:3,.【点评】本题主要考查了求比值和化简比.化成最简单的整数比和求比值是不同的,求比值结果是一个数(整数,小数,分数);而化简比,结果是一个比.13.用240米的铁丝做一个长方体框架,长、宽、高的比是3:2:1,这个长方体的长、宽、高各是多少?【答案】长、宽、高分别是30米,20米,10米.【解析】首先求得一条长、宽、高的和:240÷4=60厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可.解:一条长、宽、高的和:240÷4=60(米)总份数:3+2+1=6(份)长:60×=30(米)宽:60×=20(米)高:60×=10(米)答:这个长方体的长、宽、高分别是30米,20米,10米.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.14. 40千克:0.4吨比值是.把51:1.7化成最简整数比是.【答案】,30:1【解析】求比值是根据比的意义(两个数相除又叫两个数的比),用比的前项除以比的后项.化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.注意单位之间的换算.解:40千克:0.4吨=40千克:400千克=40:400=40÷400==;51:1.7=51:=(51×10):()=510:17=(510÷17):(17÷17)=30:1.故填:,30:1.【点评】求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式.15. 5a=6b那么a:b= :.【答案】6,5【解析】根据比例的性质,把所给的等式5a=6b改写成一个外项是a,一个内项是b的比例,则和a相乘的数5就作为比例的另一个外项,和b相乘的数6就作为比例的另一个内项,据此写出比例即可.解:因为5a=6b,所以a:b=6:5.故答案为:6,5.【点评】此题考查把给出的等式改写成比例式,在改写时,要注意:相乘的两个数要做内项就都做内项,要做外项就都做外项.16.把一个长方形按3 : 1放大,放大后的新长方形与原长方形的面积比是()。
第6讲 比的意义和性质-六年级上册数学知识点汇总与错题专练(人教版)
第6讲比的意义和性质六年级上册数学知识点汇总与错题专练(易错梳理+易错举例+易错题演练)【易错梳理】1、比的意义和各个部分的名称。
(1)比:两个数相除也叫两个数的比;(2)比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
(3)比的读法、写法:a比b记作a:b,读作a比b。
注意:比值是没有单位名称的。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式,但是不能用整数和小数来表示。
3、比和除法、分数的区别。
4、比的基本性质。
比的前项和后项同时乘或者除以相同的数(0 除外),比值不变。
5、化简比的意义。
把两个数的比化成最简单的整数比(比的前项和后项是互质数的比),叫作化简比,也叫作比的化简。
6、化简比的方法。
(1)整数比的化简方法。
比的前项和后项同时除以它们的最大公因数。
(2)分数比的化简方法。
比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简。
(3)小数比的化简方法。
通常把比的前、后项的小数点同时向右移动相同的位数,先转化成整数比,再进行化简。
注意点:1、一个比的前、后两个数位置不能颠倒。
2、比值和比是有区别的,比值是一个具体的数,可以是分数、小数、整数,而比表示两个数的关系。
3、比、分数、除法三者是有区别的,它们之间不是“等于”的关系,而只能是“相当于”的关系。
4、比的基本性质不是指同时加或者减相同的数,也不是指同时乘或者除以不同的数(0除外)。
5、一般情况下,小数比的化简要先把前、后项扩大相同的倍数化成整数比,再化成最简单的整数比。
【易错举例】易错点1:比的后项有的时候可以是0。
判断:六(①)班和六(2)班足球比赛的比分是3:0),所以比的后项可以是0。
六年级比的意义和基本性质练习题
比的意义和基本性质练习题一、基本知识储备1、比的意义:两个数()又叫做两个数的比。
2、比与除法、分数之间的区别与联系。
3、比的基本性质:比的前项和( )同时乘上或( )相同的数(0除外),比值不变。
4、“化简比”与“求比值”的区别。
二、经典例题 例1:用字母表示三者之间的内在联系。
a ︰b =( )÷( )=()()()0b ≠,比的后项()为0。
(填“能”或“不能”)举一反三1:一袋洗衣粉重320克,一块香皂重80克。
洗衣粉与香皂的重量比是(),比值是();香皂与洗衣粉的重量比是(),比值是()。
例2:盐与水的比是1︰10,则盐︰盐水=(︰),水︰盐=(︰),盐水︰水=(︰)。
举一反三2:两个正方形边长比是1︰3,这两个正方形的周长比是(︰)面积比是(︰)。
例3:男生与女生的人数比是3︰4,男生比女生少() ()。
举一反三3:1、某班有男生20人,女生30人,男生与全班人数的比是(),女生比男生多() ()。
2、甲数除以乙数的商是43,甲数与乙数的比是()。
例4:易错题分析1、在4︰9中,如果比的前项加上8,要使比值不变,后项应加上()。
易错题分析2、A ︰B=2︰3,B ︰C=4︰5,那么A ︰B ︰C=(︰︰)。
易错题分析3、一项工程,甲单独完成需要6小时完成,乙单独完成需要5小时完成,甲、乙工作效率之比是(︰)。
举一反三4:1、在3︰8中,如果比的前项加上15,要使比值不变,后项应加上()。
2、A ︰B=3︰4,B ︰C=5︰6,那么A ︰B ︰C =(︰︰)。
3、一辆汽车从甲地开往乙地,3小时到达,返回时4小时到达,前往速度与返回速度的比是(︰)。
三、迁移拓展 例1、如果532CB A ==(其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
举一反三7:如果2A=3B=4C (其中A 、B 、C 都不等于0),那么A ︰B ︰C=(︰︰)。
例2、有两个重叠的正方形,大正方形的边长是5厘米,小正方形的边长是4厘米,重叠部分的面积是9平方厘米,求阴影部分面积。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.(东山县)用一根长64厘米的铁丝,围成一个长与宽比是5:3的长方形框架,这个长方形框架围成的面积是多少?【答案】240平方厘米【解析】分析:根据“长方形的周长=(长+宽)×2”可得:先用“64÷2”求出长方形一条长和宽的和,再用按比例分配知识,求出长方形的长和宽,进而根据“长方形的面积=长×宽”进行解答即可.解答:解:64÷2=32(厘米),5+3=8,(32×)×(32×),=20×12,=240(平方厘米);答:这个长方形框架围成的面积是240平方厘米.点评:解答此题的关键是:根据按比例分配知识求出长方形的长和宽,进而根据长方形的面积计算公式进行解答.2.把20克农药放入到580克水中,农药和药水的比是..(判断对错)【答案】√.【解析】要明确农药放入水中变成药水,要求农药和药水的比是多少,只要求出药水的重量,根据题意,即可得出结论.解答:解:20:(20+580),=20:600,=1:30;故答案为:√.点评:此题做题的关键是先求出药水的重量,然后根据要求进行比,最后化成最简整数比即可.3.建筑工人用水泥、沙子、石子配成一种混凝土,水泥、沙子、石子的质量比是2:3:5。
要配制3000千克这样的混凝土,需要水泥、沙子、石子各多少千克?【答案】需要水泥600千克,需要沙子900千克,需要石子1500千克【解析】水泥、沙子、石子质量的比是2:3:5,那么水泥占2份,沙子占3份,石子占5份。
配成的混凝土一共是2+3+5=10(份)需要水泥的千克数列式为:3000×2/10=600(千克)。
需要沙子的千克数列式为:3000×3/10=900(千克)。
需要石子的千克数列式为:3000×5/10=1500(千克)。
解:2+3+5=10(份)3000×2/10=600(千克)3000×3/10=900(千克)3000×5/10=1500(千克)。
人教版六年级上册数学讲义及练习-第4单元比的认识(含答案)
比的认识知识集结知识元比知识讲解知识点:比的意义,比与除法、分数的关系;一、比的意义1. 比的意义:两个数相除又叫做两个数的比.2. 在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.例如 15 :10 = 15÷10=(比值通常用分数表示,也可以用小数或整数表示)15 ∶ 10 =前项比号后项比值3. 比可以表示两个相同量的关系,即倍数关系.例:长是宽的几倍.也可以表示两个不同量的比,得到一个新量.例:路程÷速度=时间.二、比与除法、分数的关系1. 根据分数与除法的关系,两个数的比也可以写成分数形式.2. 比和除法、分数的联系:3. 比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系.4.根据比与除法、分数的关系,可以理解比的后项不能为0.5.体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系.三、比值1、求比值:用前项除以后项,结果最好是写为分数 .2、比值:相当于商,是一个数,可以是整数,分数,也可以是小数.知识点:比的基本性质一、比的基本性质:1.比的前项和后项同时乘或除以相同的数(0除外),比值不变.二、化简比:依据比的基本性质1.两个整数的比:用比的前项和后项同时除以它们的最大公因数.2.两个分数的比:用比的前项和后项同时乘分母的最小的公倍数,再按化简整数比的方法来化简.3.两个小数的比:先把小数化成整数,再按化简整数比的方法来化简.例如:15∶10 = 15÷10 === 3∶2 最简整数比是3∶2三、求比值:用求比值的方法:求比值的过程是通过前项除以后项,求出商.注意:最后结果要写成分数、小数或整数的形式.例如:15∶10 = 15÷10 ==(不能写成3:2)四、最简整数比:1.比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.2.根据比的基本性质,可以把比化成最简单的整数比.3.比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位.知识点:按比例分配应用题一、按比例分配:1.按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1.用分率解:按比例分配通常把总量看作单位一,即转化成分率.要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占用25×得到糖的数量,水占用25×得到水的数量.2. 用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少.例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5 糖有1份就是5×1 水有4分就是5×4知识点:部分与部分的比转化为部分与整体的比部分与部分的比转化为部分与整体的比的方法:先求出所有部分之和,然后再根据比的意义进行比较即可.例如:甲数:乙数=2:3,求甲数:甲、乙两数之和=().应该先求出甲数和乙数之和,2+3=5,然后在进行相比即可.知识点:化连比问题三、连比的概念:三个量以及三个量以上的比的关系,叫做连比.比如:30:20:10 像这样的比叫做连比,其中30、10、20叫做连比的项.四、连比的性质:⑴如果a∶b=m∶n,b∶c=n∶k,则a∶b∶c=m∶n∶k;⑵如果k≠0,则a∶b∶c=ak∶bk∶ck=::利用连比的性质可以求连比,也可以化简连比.三、比”和“连比”得区别:1、比和连比是两个不同的概念,从意义上看比是表示两个数的倍数关系(或两个数相除).连比是两个以上数之间的各自所占的份数比,它不是以上两个数连除的关系.2、比和连比中的“项”也是不同的:3、从比值上看:比既能表示两个数的倍数关系,也可以求出比值.如:3:4的比值是,连比不是连除的意思,不可能求出商,也无法求出比值.四、连比的化法:例如:甲和乙的比是3∶4,乙和丙的比是6∶5,甲、乙、丙的连比应该是9∶12∶10.其中项统一过程如下:知识点:按比例分配问题进阶.一、按比例分配:按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.二、按比例分配应用题:1、比的第一种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?解题思路:男生比女生多几份:7-5=2求每一份:20÷2=10(人)因此,男生有10×7=70(人),女生有10×5=50(人)2、比的第二中应用:转化连比解答按比分配的问题例如:一个学校篮球队和足球队人数之比为5:4,足球队和排球队之比为3:5.已知篮球队比足球队和排球队总和少34人,求各组人数.解题思路:转化连比:篮球队:足球队:排球队=15:12:20篮球队比足球对和排球对之和少几份:12+20-15=17每份人数:34÷17=2(人)篮球队:2×15=30(人)2×12=24(人)2×20=40(人)3、比的第三种应用:行程问题中的比的应用例如:客车和货车从A、B两地同时出发,速度比为3:4,相遇后继续前行,当货车到达A 地后,客车距B地还有20千米,求两地的距离.解题思路:同时出发,速度比等于路程比分析:相遇时,两车路程之和为A、B两地的距离.把A、B两地距离当坐单位“1”,货车到达A地时,恰好为“1”,客车行驶的占货车的,还有未行驶,因此全程为20÷=80(千米)4、比的第四种应用:列方程解决比的问题例如:哥哥和弟弟原有钱之比为7:5,如果哥哥给弟弟520元之后,弟弟和哥哥的钱数之比为4:3,现在哥哥有多少钱?解题思路:用常规方法解不出,考虑用方程解答解:设哥哥现在有x元,则弟弟现在有x,哥哥原有(x+520)元,弟弟原有(x-520)元,列方程为:x-520=(x+520)例题精讲比例1.一个三角形三个内角的度数比是1:1:2,这个三角形是( )三角形.【答案】等腰直角三角形例2.一块铁与锌的合金,铁占合金的,那么铁与锌的质量之比();合金的质量是锌的质量的()倍【答案】2:7例3.公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?【答案】柳树:25棵;杨树:15棵例4.甲数与乙数的比是3:4,乙数与丙数的比是6:7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的比是多少?【答案】9:12:14.【解析】题干解析:根据连比的性质,进而求出甲数与丙数的比、甲数、乙数与丙数三个数的比,化简成最简整数比即可.例5.师徒二人共同加工一批零件,已知师傅与徒弟的工作效率的比是5:7,完成任务时,师傅比徒弟少做120个.这批零件共有多少个?(两种方法解答)【答案】720个【解析】题干解析:(1)由“工效比是5:7,”得出工作量的比也是5:7,把两人的工作量分别看作5份和7份,则相差7﹣5=2份,由此求出一份,进而求出(5+7)份表示的个数就是这批零件的个数.(2)用方程解答,设完成任务时,师傅完成了x 个,徒弟完成了120+x个,再把工作量相比就是5:7,列出方程求出师傅完成的个数,再求徒弟完成的个数,然后相加即可.当堂练习填空题练习1.甲乙两个小朋友做游戏,在一个边长1分米的正方形地上划地盘。
(完整版)比的意义和基本性质练习题
比的意义一、细心填写:1.两个数相除又叫做这两个数的()。
比前项除以后项所得的商叫()。
2、甲数是12, 乙数是18.(1)甲与乙的比是()∶( )。
(2)乙与甲的比是( )∶()。
(3)甲与甲乙两数和的比是()∶( )。
(4)乙与甲乙两数和的比是()∶()。
(5)甲乙两数差与甲乙两数和的比是()∶()。
3.小明3分钟走了240米, 小杰5分钟走了350米。
(1)小明与小杰行走时间的比是(), 比值是( )。
(2)小明与小杰行走路程的比是( ), 比值是()。
(3)小明路程与时间的比是(), 比值是(), 比值表示( )。
(4)小杰路程与时间的比是( ),比值是(), 比值表示().(5)小明行走速度与小杰行走速度的比是( ).4.某校六年级一班男生人数是女生人数的。
男生人数与女生人数的比是()。
女生人数与全班人数的比是( )。
全班人数与女生人数的比是().5.苹果比梨多, 苹果与梨的比是( ), 梨与苹果和梨和的比是( ).5.甲数是乙数的3倍,乙数和甲数的比是()。
6、一段路,甲走完全程用7小时, 乙走完全程用6小时, 甲、乙的时间比是(),甲与乙的速度比是()。
7、两个正方形的边长的比是1∶3, 它们的周长比是()。
8、2∶13=( )÷()=()()95=( )∶()=()÷()9、将5克糖放入20克水中, 糖与糖水的比是( ).三、求比值。
12: 8 0。
4:0。
12 :5: 41 4.5:0.9 0.75:4130分钟∶41时 0.75吨∶250千克 400厘米∶0.8米比的基本性质一、细心填写1.( ),叫做比的基本性质.2.16:20=32: ( ) =( )÷10 = = ( ): 0.2( ): 16= = =( )÷24=3: ( )=( )÷20=0.250.8÷1.2=4÷( )=8: ( )==( ): 27=28÷( )=( ): ( )=0.625=15÷( )= =20: ( )3.火车4小时行驶了600千米,路程和时间的最简整数比是( ), 比值是( )。
苏教国标版六年级上册比的意义和基本性质练习
1、A是B的 3 倍,B和A的比是( A占两数和的( )。
2 5
),
2、在5:8中,如果前项增加6倍,要使 比值不变,后项应扩大( )倍。
3、在32:80中,如果后项减少10,要使 比值不变,前项应减少( )。
4 4、甲占甲乙两数和的 ,乙比甲多 9
(
), 甲比乙少(
)。
5、食堂有大米120袋,面粉的袋数是大 7 ,大米和面粉的比是( 米的 )。 4 5 6、一条水渠,已修好了 ,还剩下60米, 8 已修的和剩下的长度之比是( ).
⒊ 量出三角尺上30。角所对的边和斜边的长, 再写出它们长度的比,并计算比值。
1.5cm
1 1.5∶3=1.5÷3= 2
我们发现:直角三角形中30°角所对的对 边的长度是斜边长度的一半。
练习十三
⒋ 在右边的方格图上,画出两个大小 不同的长方形,使长方形的长与宽的 比都是2∶1。
?厘米 6厘米
?厘米 3厘米能为0。 ( ×)
②哥哥身高170厘米,弟弟身高1米,则哥哥与
弟弟的身高之比是17:10。
(√ )
③我们经常在体育比赛中看到比赛结果也是一
个比。
( ×)
火眼金睛:哪些照片与第一张照片(A)形状相同?
6厘米 8厘米 A 6厘米 8厘米
12厘米 B
6厘米 C 3厘米
12厘米
=16:( 20 )=( 80 )%
两个正方形边长的比是5:3,周长的比是 ( ),面积的比是( )。
二、根据比的基本性质回答问题。
1、一个比的比值是40,如果它的前项扩大2倍, 后项不变,比值是( )。 80 2、一个比的比值是40,如果它的后项扩 大2倍,前项不变,比值是( 20 )。
人教版六年级数学上册第四章《比》复习卷
二.填空题
13.0.6= 3 =12÷ 20 = 6 :10= 60 %= 六 成.
5
【分析】解答此题的关键是0.6,把0.6化成分数并化简是 ;根据分数与除法的关系, =3÷5,再根据商不 变的性质,被除数、除数都乘4就是12÷20;根据比与分数的关系, =3:5,再根据比的基本性质,比的前 、后项都乘2就是6:10;把0.6的小数点向右移动两位,添上百分号就是60;根据成数的意义,60%就是六 成.由此进行转化并填空. 【解答】解:0.6= =12÷20=6:10=60%=六成; 故答案为: ,20,6,60,六. 【点评】此题主要是考查除式、小数、分数、百分数、比、成数之间的关系及转化,利用它们之间的关系和 性质进行转化即可.
【解答】解:由于两个正方形的周长比是2:1 所以两个正方形的边长比是2:1 两个正方形的面积比是22:12=4:1 答:这两个正方形的面积比是4:1; 故选:C. 【点评】此题主要考查正方形的边长、周长比的关系,以及面积与边长之间的关系.
一.选择题
3.已知 =1.2, =1.2,则x和y比较( A )
【点评】此题主要考查零作除数无意义.
一.选择题
6.a÷b=1.2,则b:a=( A )
A.5:6
B.6:5
C.1:2
【分析】根据a÷b=1.2可得:a=1.2b,所以b:a=b:1.2b=1:1.2=10:12=5:6,据此即可选择.
【解答】解:根据a÷b=1.2可得:a=1.2b, 所以b:a=b:1.2b=1:1.2=10:12=5:6, 故选:A. 【点评】根据a÷b=1.2得出用b表示字母a的式子a=1.2b,再代入到b:a中化简即可解答.
六年级数学上册《比的意义和基本性质》习题
六年级数学上册《比的意义和基本性质》习题一、想一想,填一填。
1、()叫做两个数的比。
2、比的前项和后项同时乘或除以()(0除外),比值()。
3、比的前项除以1/5,要使比值不变,比的后项应该()。
4、()∶1/12=3/5,4∶()=0.5。
5、4÷5=()/15=28∶()=()∶20=()(小数)。
二、请你来当小裁判。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、如果a∶b=8∶3,那么a=8,b=3。
()3、爸爸和小明的年龄比是7∶2,3年后他们的年龄比不变。
()4、圆圆的身高是1米,妈妈的身高是162厘米,妈妈和圆圆身高的比是162∶1。
()5、乙队在一场球赛中以4∶0的比分大胜甲队,这里的4∶0不是比。
()三、对号入座。
1、A∶B=4/7,如果比的前项和后项同时除以3,比值是()。
A、4/7B、4/21C、 12/72、在下面各比中,与0.5∶0.6的比值相等的比是()。
A、1/5∶1/6B、1/2∶3/5C、25∶263、如果一个比是最简单的整数比,那么这个比的前项和后项一定是()。
A、质数B、互质数C、整数4、如果把3∶7的前项加上9,要使它的比值不变,后项应()。
A、加上9B、加上21C、减去9四、求比值。
0.75∶1.52/5∶1/62∶1.84∶1/22/3小时∶45分0.3平方米∶9平方分米五、把下面各比化成最简单的整数比。
12∶210.8∶2.45/8∶15/160.5∶0.751/8千克∶500克15秒∶1/3分六、请按要求写比。
1、甲数是乙数的8/17,乙数与甲数的比是()。
2、在97克水里放入3克盐,盐与水的比是(),比值是();水与盐水的比是(),比值是()。
3、某工程队4天修路2019米,这个工程队修路总米数与修路时间的比是(),比值是(),这个比值表示()。
七、走进生活,解决问题。
1、一批服装由甲单独做需30天才能完成,由乙单独做需20天完成。
《比的意义和基本性质》练习题
比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔只数的31与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( ) 8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )9、 填写比、除法和分数的关系。
比 比的前项除法 除数分数 --- 分数线 分数值10、( )又叫做两个数的比。
( )叫做比值。
11、43=( ):( ) =( )÷( )12、在100克水中加入10克盐,盐和盐水的比是( )。
13、男工人数是女工人数的52,男、女工人数的比是( )。
14、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
15、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。
16、( ),叫做比的基本性质。
17、16:20=32:( ) =( )÷10 =()4=()80=1.6( ) =( ):0.218、火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。
19、甲数是乙数的3倍乙数与甲数的比是( ),比值是( )。
20、601班男生与女生人数的比是2:3,女生占全班的( ),男生占全班的( )。
21、甲数是乙数的32,乙数与甲数的比是( ),甲数与乙数的比是( )。
二、求比值:12:8 0.4:0.12 5: 41 4.5:0.9 31:65 32:910 0.75:41 4: 41 35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:6 三、化简比:35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:683:21 0.75: 43 24: 31 6.4:0.16 2.25:9 815:32 54:83 31:41四、判断是否:1、54可以读作“6比7”。
六年级数学比的意义和基本性质练习题
六年级数学比的意义和基本性质练习题
39、比的意义和基本性质(一)
一、细心填写:
1、鸡有80 只,鸭有100 只,鸡和鸭只数的比是(),比值是()。
2、长方形长3 分米,宽12 厘米,长与宽的比是(),比值是()。
3、小李5 小时加工60 个零件,加工个数与时间的比是(),比值是()。
4、一本书读了55 页,45 页没有读,已读与总数的比是(),比值是()。
5、甲数相当于乙数的,甲数与乙数的比是(),乙数与甲数的比是()。
6、三好学生占全班人数的,三好学生与全班人数的比是()。
7、白兔只数的与黑兔相等。
白兔与黑兔的比是(),白兔与黑兔的比是()
8、若A÷B=5(A、B 都不等于0)则A:B=( ):( )
若A=B(A、B 都不等于0)则A:B=( ):( )
二、求比值:
:0.3:0.02
: 0.21:6.3
48:36 0.5:
7:3.5 3:1:0.125 三、解决问题:。
六年级数学比和比的应用题
一、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、 比和除法、分数的联系:二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
三、化简比与求比值的区别1、 求比值 (前项除以后项的商叫做比值。
比值是一个数) 方法:整数比或者小数比求比值,可以把它写成分数形式(后项前项),再把它约分,约成最简分数或整数。
这个结果就是比值。
练习:14:35 120:300.25:2 1.8:2.4 方法:分数比,可以把它看成分数除法来做,求得的结果就是比值。
58 ∶56 14:7152、 化简比 (最后结果是一个比,且是前项和后项只有公因数1,而不是一个数)方法:可以采用求比值的方法,先求比值,再把比值转化为最简整数比。
(比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
)练习: 14:35 120:30 0.25:21.8:2.4 58 ∶56练习一1、两个数( )又叫做两个数的( )。
2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。
3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。
客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。
六年级数学上册《比的意义和基本性质》练习题及答案-人教版
六年级数学上册《比的意义和基本性质》练习题及答案-人教版一、认真审题,正确填空。
(共22分,每空2分。
)1.在一个比中,“:”是( ),它前面的数叫做比的( ),它后面的数叫做比的( )。
2. 8元/个 32元/只文具盒与书包单价的最简整数比是( ),比值是( )。
3. 20:( )=54=( ):20=()30=8÷( ) 4. 希望小学女生与全校学生人数的比是5:13,那么该校男生人数与女生人数的比是( ) 5. 把4∶7的前项加上12,要使比值不变,后项应加上( )。
二、仔细推敲,公正判别。
(共10分,每题2分。
)1.在第53届世界乒乓球锦标赛混双决赛中,中国选手许昕/韩国选手梁夏银以4:0战胜日本选手吉村真晴/石川佳纯,夺得冠军。
因此比的后项可以是0。
( )2.比的前项越大,比值就越大。
( )3.丁丁和笑笑的年龄比是8:9,5年后,他们的年龄比不变。
( )4.5分米:1米=5:1。
( )5.正方形的周长和边长比是4:1。
( ) 三、反复比较,合理选择。
(共10分,每题2分。
) 1.如果a ÷b=87,那么b 和a 的比是( )。
A.7:8 B.8:7 C.7:152. 最简比的前项和后项的最大公因数是( )。
A.1B.比的前项C.比的后项3.把8克糖放到80克水里,糖与糖水的比是( )。
A.8:80B.1:10C.1:114.两个正方形的边长比是2:3,那么它们的面积比是( )。
A.2:3 B. 1:2 C.4:95.某工厂,男职工比女职工多51,女职工与男职工人数的比是( )。
A.4:5 B.5:6 C.6:5四、看清要求,准确计算。
(共28分)1.帮小动物找朋友(把比值相等的两个比连起来)。
(8分)2. 将计算结果填在表格里。
(20分)比 3.6:1.2 0.25:4331:2112:8 1.5时:45分最简整数比比值五、联系生活,解决问题。
(共30分,每题10分。
人教版册数学比的意义和基本性质》练习题
人教版册数学《比的意义和基本性质》练习题 The document was prepared on January 2, 202139、比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔只数的31与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( )8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )二、求比值:32:94 : 3321:113 : 48:36 : 52 7: 3: 116 1: 9072 三、解决问题:1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了85小时。
返回时每小时行多少千米2、商店售出2筐橙子,每筐24千克。
售出的橙子占水果总数的116,售出的香蕉占水果总数的41。
售出香蕉多少千克40、比的意义和基本性质(二)一、细心填写:12)叫做比值。
3、43=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。
5、男工人数是女工人数的52,男、女工人数的比是( )。
6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
7、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。
二、求比值:12:8 :5: 41 : 31:65 32:910 :41 4: 41 三、解决问题:1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版小学数学六年级上册
比的意义和比的基本性质练习题
一、填空:
1,一车水果重1.8吨,按2:3:5的比例分配给甲,乙,丙三个水果店,乙水果店分得这批水果的( ).
2,甲数比乙数多,甲数与乙数的比是( ).
3, 甲,乙,丙三个数的平均数是15,甲,乙,丙三个数的比是
2:3:4,甲数是( ).
4、东风小学六年级人数是五年级人数的,五年级与六年级人数的比是( ).
5,把3克盐放入12克水中,盐与盐水重量的最简整数比是( ).
6,把(5平方米):(50平方分米)化成最简整数比是( ),它们的比值是( ).
7,甲数除以乙数的商是1.5,甲数与乙数的最简整数比是( ).
8,写同样多的作业,李莉用12分钟,王祥用15分钟,李莉与王祥的最简单的速度比是( ).
9,把1与它的倒数的比化成最简整数比是( ),比值是( ).
10,4分:时的比值是( ),最简整数比是( ).
11,把:0.75化成最简单的整数比是( ),比值是( ).
12,1:0.75化成最简单的整数比是( ),比值是( ).
13,:0.125化成最简单的整数比是( ),读作( ),比值是( ),读作( ).
二,应用题:
1,一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?
2,永胜小学四,五,六共捐款2040元,其中四年级的捐款是六年级的,六年级捐款额的与五年级刚好相等.六年级捐款多少元?
3,甲,乙,丙三个同学体重总和是110千克,他们的体重比是
6:9:7.最重的一个同学达多少千克
4,甲乙两个小组要在6小时内加工1560个零件.已知甲小组每小时加工120个零件,乙每小时加工零件多少个 (方程解)?
5, 一个养鱼塘按1:2:3养殖草鱼,鲤鱼,白脸鱼,已知鲤鱼养了6666尾,草鱼和白脸鱼各养了多少尾?。