高考物理复习:洛伦兹力

合集下载

高考物理总复习 第十一章磁场安培力与洛伦兹力

高考物理总复习 第十一章磁场安培力与洛伦兹力

第十一章磁场安培力与洛伦兹力【核心素养】物理观念:1.理解磁感应强度、磁感线、安培力、洛伦兹力等概念;2.掌握安培定则、左手定则的应用方法;3.建立磁场的物质观念,运动与相互作用及能量观念.科学思维:1.通过电场与磁场的类比,培养科学思维;2.掌握安培力、洛伦兹力的应用方法;3.构建带电粒子在匀强磁场中做匀速圆周运动的模型;4.运用力学观点、能量观点分析求解带电粒子在复合场中的运动,培养分析推理能力及数学知识的应用能力.科学探究:1.通过实验探究安培力和洛伦兹力的大小和方向;2.通过实验探究电子在磁场中的偏转.科学态度与责任:认识本专题知识在科技上的应用,让学生逐渐形成探索自然的动力.【命题探究】1.命题分析:本专题是高考的热点之一,磁场叠加及简单的磁偏转问题多以选择题的形式考查.计算题几乎每年都考,多以压轴题形式出现,考查带电粒子在复合场中的力学问题,对综合分析能力、空间想象及建模能力、利用数学处理物理问题的能力要求非常高.2.趋势分析:预测此后高考对本专题会结合最新科技及生活实际,根据左手定则考查通电导体在磁场中的加速运动以及考查带电粒子在磁场中运动的匀速圆周运动模型的构建与应用.以此培养学生的物理观念、科学思维及科学态度.【试题情境】生活实践类:在日常生产生活和科技方面的主要试题情境有地磁场、电磁炮、电流天平、超导电磁船、回旋加速器、质谱仪、速度选择器、磁流体发电机、电磁流量计和霍尔元件等.学习探索类:学习探索类涉及的主要试题情境有通电导体在安培力作用下的平衡与加速问题、运动粒子在磁场中的运动问题.第1讲磁场及磁场对通电导线的作用力【必备知识·自主排查】一、磁场1.磁感应强度(1)物理意义:表征磁场________的物理量.(2)大小:B=________(通电导线垂直于磁场).单位是特斯拉,符号是T.(3)方向:小磁针的________极所受磁场力的方向,也就是小磁针________时N极所指的方向.(4)叠加:磁感应强度是矢量,叠加时遵守平行四边形定则.2.匀强磁场(1)定义:磁感应强度的大小处处相等、方向________的磁场.(2)磁感线特点:疏密程度相同、方向相同的平行直线.二、磁感线、通电直导线和通电线圈周围磁场的方向1.磁感线及其特点(1)磁感线:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的________的方向一致.(2)特点:①描述磁场的方向:磁感线上某点的________方向就是该点的磁场方向.②描述磁场的强弱:磁感线的疏密程度表示磁场的________,在磁感线较密的地方磁场________;在磁感线较疏的地方磁场________.③是闭合曲线:在磁体外部,从________指向________;在磁体内部,由________指向________.④不相交:同一磁场的磁感线永不________、不相切.⑤是假想线:磁感线是为了形象描述磁场而假想的曲线,客观上并不存在.2.电流的磁场直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强磁场,且距导线越远处磁场________与条形磁铁的磁场相似,管内为________磁场,管外为非匀强磁场环形电流的两侧是N极和S极,且离圆环中心越远,磁场________安培定则立体图三、安培力1.安培力的大小(1)磁场方向和电流方向垂直时:F=________.(2)磁场方向和电流方向平行时:F=0.2.安培力的方向——左手定则判断(1)伸出左手,使拇指与其余四个手指______,并且都与手掌在同一个平面内.(2)让磁感线从掌心垂直进入,并使四指指向________的方向.(3)______所指的方向就是通电导线在磁场中所受安培力的方向.四、磁通量1.定义:设在磁感应强度为B的匀强磁场中,有一个与磁场方向________的平面,面积为S(如图所示),我们把B与S的乘积叫作穿过这个面积的磁通量,简称磁通,用字母Φ表示.2.物理意义:可表示穿过某一面积的磁感线净条数(磁通量的代数和).3.表达式:Φ=________.4.单位:韦伯(weber),简称________,符号Wb.________=1T·m2.5.B=,表示磁感应强度的大小等于穿过垂直磁场方向的单位面积的磁通量.【生活、科技情境】1.我们居住的地球是一个大磁体,如图所示,地磁场的分布类似于条形磁铁的磁场.(1)地磁的N极在地理南极附近,S极在地理北极附近.()(2)在赤道平面上,距离地球表面高度相等的各点,磁感应强度相等,且方向水平向北.()2.全球性“超导热”的兴起,使超导电磁船的制造成为可能.如图是电磁船的简化原理图,MN和CD是与电源相连的两个电极,MN与CD之间部分区域有垂直纸面向内的匀强磁场(磁场由超导线圈产生,其独立电路部分未画出),两电极之间的海水会受到安培力的作用,船体就在海水的反作用力推动下向前行驶,下列说法正确的是()(1)要使船前进,图中MN导体棒应接直流电源的正极.()(2)改变电极的正负或磁场方向,可控制船前进或后退.()(3)增大电极间的电流,可增大船航行的速度.()(4)增大匀强磁场的磁感应强度,可减小船体的推动力.()【教材拓展】3.[人教版必修第三册P111的图13.2-4改编]如图所示的磁场中垂直磁场放置两个面积相同的闭合线圈S1(左)、S2(右),由图可知穿过线圈S1、S2的磁通量大小关系正确的是()A.穿过线圈S1的磁通量比较大B.穿过线圈S2的磁通量比较大C.穿过线圈S1、S2的磁通量一样大D.不能比较【关键能力·分层突破】考点一安培定则的应用和磁场的叠加1.安培定则的应用:在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.磁场原因(电流方向)结果(磁场方向)直线电流的磁场大拇指四指环形电流的磁场四指大拇指2.(1)磁感应强度是矢量,计算时与力的计算方法相同,遵守平行四边形定则,可以用正交分解法进行合成与分解.(2)两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.3.磁场叠加问题的一般解题思路:(1)确定磁场场源,如通电导线.(2)定位空间中需求解磁场的磁感应强度的点,利用安培定则判定各个场源在这一点上产生的磁场的磁感应强度.如图所示为M、N在c点产生的磁场的磁感应强度.(3)应用平行四边形定则进行合成,如图中的合磁感应强度.例1[2021·全国甲卷,16]两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示.若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为()A.B、0 B.0、2BC.2B、2B D.B、B[解题心得]【跟进训练】1.[2021·浙江1月,8]如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图.若通电螺线管是密绕的,下列说法正确的是()A.电流越大,内部的磁场越接近匀强磁场B.螺线管越长,内部的磁场越接近匀强磁场C.螺线管直径越大,内部的磁场越接近匀强磁场D.磁感线画得越密,内部的磁场越接近匀强磁场2.[2021·山东泰安统考]已知通电的长直导线在周围空间某位置产生的磁感应强度大小与电流大小成正比,与该位置到长直导线的距离成反比.如图所示,现有通有电流大小相同的两根长直导线分别固定在正方体的两条棱dh和hg上,彼此绝缘,电流方向分别由d流向h、由h流向g,则顶点e和a两处的磁感应强度大小之比为()A.2∶B.1∶C.2∶D.1∶1考点二安培力及安培力作用下导体的平衡问题角度1安培力的分析与计算1.用公式F=BIL计算安培力大小时应注意(1)B与I垂直.(2)L是有效长度.①公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I平行时,F=0.②弯曲导线的有效长度L等于在垂直磁场平面内的投影两端点所连线段的长度(如图所示),相应的电流方向沿L由始端流向末端.③闭合线圈通电后,在匀强磁场中受到的安培力的矢量和为零.2.安培力方向的判断(1)判断方法:左手定则.(2)方向特点:F既垂直于B,也垂直于I,所以安培力方向一定垂直于B与I决定的平面.例2[2021·浙江6月,15](多选)如图所示,有两根用超导材料制成的长直平行细导线a、b,分别通以80A和100A流向相同的电流,两导线构成的平面内有一点p,到两导线的距离相等.下列说法正确的是()A.两导线受到的安培力F b=1.25F aB.导线所受的安培力可以用F=ILB计算C.移走导线b前后,p点的磁感应强度方向改变D.在离两导线所在的平面有一定距离的有限空间内,不存在磁感应强度为零的位置[解题心得]命题分析试题情境属于基础性题目,以电流形成的磁场为素材创设学习探索问题情境必备知识考查力的作用是相互的、磁场的叠加、安培力公式等知识关键能力考查理解能力、推理能力.要求学生从空间角度理解磁场的叠加学科素养考查物理观念、科学思维.要求考生理解安培力公式F=ILB、定性推断空间磁场的叠加问题角度2安培力作用下导体的平衡问题例3某兴趣小组制作了一个可以测量电流的仪器,其主要原理如图所示.有一金属棒PQ放在两金属导轨上,导轨间距L=0.5m,处在同一水平面上,轨道置于竖直向下的匀强磁场中,磁感应强度B=2T.棒中点两侧分别固定有劲度系数k=100N/m的相同弹簧.闭合开关S前,两弹簧为原长,P端的指针对准刻度尺的“0”处;闭合开关S后,金属棒PQ 向右移动,静止时指针对准刻度尺1.5cm处.下列判断正确的是()A.电源N端为正极B.闭合开关S后,电路中电流为1.5AC.闭合开关S后,电路中电流为3AD.闭合开关S后,将滑动变阻器的滑片向右移动,金属棒PQ将继续向右移动[解题心得][思维方法]解决安培力作用下平衡问题的两条主线(1)遵循平衡条件基本解题思路如下:(2)遵循电磁学规律,受力分析时,要注意准确判断安培力的方向.【跟进训练】3.一个各边电阻相同、边长均为L的正六边形金属框abcdef放置在磁感应强度大小为B、方向垂直金属框所在平面向外的匀强磁场中.若从a、b两端点通以如图所示方向的电流,电流大小为I,则关于金属框abcdef受到的安培力的判断正确的是()A.大小为BIL,方向垂直ab边向左B.大小为BIL,方向垂直ab边向右C.大小为2BIL,方向垂直ab边向左D.大小为2BIL,方向垂直ab边向右4.[2022·河北保定调研]如图所示,空间有与竖直平面夹角为θ的匀强磁场,在磁场中用两根等长轻细金属丝将质量为m的金属棒ab悬挂在天花板的C、D两处,通电后导体棒静止时金属丝与磁场方向平行.已知磁场的磁感应强度大小为B,接入电路的金属棒长度为l,重力加速度为g,以下关于导体棒中电流的方向和大小正确的是()A.由b到a,B.由a到b,C.由a到b,D.由b到a,电流元法分割为电流元安培力方向→整段导体所受合力方向→运动方向特殊位置法在特殊位置→安培力方向→运动方向等效法环形电流⇌小磁针条形磁铁⇌通电螺线管⇌多个环形电流结论法同向电流互相吸引,异向电流互相排斥,两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势转换研究对象法先分析电流所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力例4[2021·广东卷,5]截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线.若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1≫I2,电流方向如图所示.下列截面图中可能正确表示通电后长管发生形变的是()[解题心得]命题分析试题情境属于基础性题目,以通电直导线产生磁场为素材创设学习探索问题情境必备知识考查电流周围的磁场、通电直导线受力等知识关键能力考查理解能力、推理能力.要求学生理解电流磁场的产生学科素养考查物理观念、科学思维.要求考生会判断通电直导线在电流形成的磁场中的受力方向【跟进训练】5.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将()A.不动B.顺时针转动C.逆时针转动D.在纸面内平动6.[2022·广东深圳月考]如图所示,一平行于光滑斜面的轻弹簧一端固定于斜面上,一端拉住条形磁铁,条形磁铁处于静止状态,磁铁中垂面上放置一通电导线,导线中电流方向垂直纸面向里且缓慢增大,下列说法正确的是()A.弹簧弹力逐渐变小B.弹簧弹力先减小后增大C.磁铁对斜面的压力逐渐变小D.磁铁对斜面的压力逐渐变大考点四与安培力相关的STSE问题——核心素养提升情境1磁式电流表(多选)实验室经常使用的电流表是磁电式电流表,这种电流表的构造如图甲所示,蹄形磁铁和铁芯间的磁场是均匀辐向分布的.若线圈中通以如图乙所示的电流,则下列说法中正确的是()A.在量程内指针转至任一角度,线圈平面都跟磁感线平行B.线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C.当线圈在如图乙所示的位置时,b端受到的安培力方向向上D.当线圈在如图乙所示的位置时,安培力的作用使线圈沿顺时针方向转动情境2电子天平(多选)某电子天平原理如图甲所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一总电阻为R的均匀导线绕成的正方形线圈套于中心磁极,其骨架与秤盘连为一体,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后线圈两端C、D与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流可确定重物的质量.为了确定该天平的性能,某同学把该天平与电压可调的直流电源(如图乙)相接,经测量发现,当质量为M的重物放在秤盘上时,直流电源输出电压为U即可使秤盘和线圈恢复到未放重物时的位置并静止,重力加速度为g.则下列说法正确的是()A.当线圈两端C、D与外电路接通对线圈供电时,线圈的C端应与外电路中的H端相接,D端应与G端相接B.线圈的匝数为C.当质量为2M的重物放在秤盘上时,直流电源输出电压为2UD.若增加线圈的匝数,则能增大电子天平能称量的最大质量情境3“电磁炮”“电磁炮”是利用电磁力对弹体加速的新型武器,具有速度快、效率高等优点.如图是“电磁炮”的原理结构示意图.光滑水平加速导轨电阻不计,轨道宽为L=0.2m;在导轨间有竖直向上的匀强磁场,磁感应强度B=1×102T;“电磁炮”弹体总质量m=0.2kg,其中弹体在轨道间的电阻R=0.4Ω;可控电源的内阻r=0.6Ω,电源的电压能自行调节,以保证“电磁炮”匀加速发射;在某次试验发射时,电源为加速弹体提供的电流是I=4×103A,不计空气阻力.求:(1)弹体所受安培力大小;(2)弹体从静止加速到4km/s,轨道至少要多长?(3)弹体从静止加速到4km/s过程中,该系统消耗的总能量.第十一章磁场安培力与洛伦兹力第1讲磁场及磁场对通电导线的作用力必备知识·自主排查一、1.(1)强弱(2)(3)N静止2.(1)处处相同二、1.(1)磁感应强度(2)①切线②强弱较强较弱③N极S极S极N极④相交2.越弱匀强越弱三、1.(1)BIL 2.(1)垂直(2)电流(3)拇指四、1.垂直 3.BS 4.韦1Wb生活、科技情境1.答案:(1)√(2)√2.答案:(1)×(2)√(3)√(4)×教材拓展3.解析:穿过线圈S1的磁感线条数多,故穿过线圈S1的磁通量比较大,B、C、D错误,A正确.答案:A关键能力·分层突破例1解析:两直角导线可以等效为如图所示的两直导线,由安培定则可知,两直导线分别在M处的磁感应强度方向为垂直纸面向里、垂直纸面向外,故M处的磁感应强度为零;两直导线在N处的磁感应强度方向均垂直纸面向里,故N处的磁感应强度为2B,B正确.答案:B1.解析:根据螺线管内部的磁感线分布可知,在螺线管的内部,越接近中心位置,磁感线分布越均匀,越接近两端,磁感线越不均匀,可知螺线管越长,内部的磁场越接近匀强磁场.故B正确,A、C、D错误.答案:B2.解析:设正方体棱长为L,其中一根长直导线的电流在e点产生的磁感应强度为B0,则e点的磁感应强度大小为B e==0处于hg边的长直导线到a点的距离为,在a点产生的磁感应强度大小为B0;处于dh边的长直导线到a点的距离为L,在a点产生的磁感应强度大小为B0,所以a点的磁感应强度大小为B a=B0,B e∶B a=2∶,A项正确.答案:A例2解析:两导线受到的安培力是相互作用力,大小相等,A错误;导线所受的安培力可以用F=ILB计算,因为磁场与导线垂直,B正确;移走导线b前,b的电流较大,则p 点磁场方向与b产生磁场方向同向,向里,移走b后,p点磁场方向与a产生磁场方向相同,向外,C正确;在离两导线所在的平面有一定距离的有限空间内,两导线在任意点产生的磁场均不在同一条直线上,故不存在磁感应强度为零的位置,D正确.答案:BCD例3解析:闭合开关S后,金属棒PQ向右移动,根据左手定则可知,电流方向为从P到Q,电源的M端为正极,选项A错误;静止时,则2k·Δx=BIL,解得I==3A,选项B错误,C正确;闭合开关S后,将滑动变阻器的滑片向右移动,则电路中电阻增大,电流减小,金属棒PQ所受安培力减小,将向左移动,故选项D错误.答案:C3.解析:电流从a点流入金属框后,可认为金属框的ab与afedcb部分并联,设ab边的电阻为R,则afedcb部分的电阻为5R,则通过ab边的电流为,通过afedcb部分的电流为,可将afedcb部分等效为长度为L、方向与ab相同的导线,根据左手定则可知,两部分所受安培力大小分别为、,方向均垂直ab边向左,故金属框受到的安培力为BIL,方向垂直ab边向左,选项A正确,B、C、D错误.答案:A4.解析:对导体棒进行受力分析,导体棒静止,则其受力如图所示.根据左手定则可知,导体棒中的电流方向为由a到b,根据平衡条件可知安培力的大小为:F=BIl=mg sinθ,所以感应电流的大小为:I=,故A、B、D错误,C正确.答案:C例4解析:根据“同向电流相互吸引,异向电流相互排斥”的作用规律可知,左、右两导线与长管中心的长直导线相互吸引,上、下两导线与长管中心的长直导线相互排斥,C 正确.答案:C5.解析:方法一(电流元法)把线圈L1沿水平转动轴分成上下两部分,每一部分又可以看成由无数段直线电流元组成,电流元处在I2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看,线圈L1将顺时针转动.方法二(等效法)把线圈L1等效为小磁针,该小磁针刚好处于环形电流I2的中心,小磁针的N极应指向该点环形电流I2的磁场方向,由安培定则知I2产生的磁场方向在其中心处竖直向上,而L1等效成小磁针后,转动前,N极指向纸内,因此小磁针的N极应由指向纸内转为向上,所以从左向右看,线圈L1将顺时针转动.方法三(结论法)环形电流I1、I2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L1将顺时针转动.答案:B6.解析:本题考查安培力作用下的动态平衡问题.磁铁外部的磁感线从N极出发回到S 极,则此时在导线处磁感线平行于斜面向下,如图所示,根据左手定则可以判断导线受到的安培力方向垂直斜面向上,因电流增大,所以安培力增大,安培力与斜面垂直,根据牛顿第三定律与受力平衡可知磁铁对斜面的压力逐渐变大,弹簧弹力不变,选项A、B、C错误,D正确.答案:D情境1解析:指针在量程内线圈一定处于磁场之中,由于线圈与铁芯共轴,线圈平面总是与磁感线平行,故A正确.电表的调零使得当指针处于“0”刻线时,螺旋弹簧处于自然状态,所以无论线圈向哪一方向转动都会使螺旋弹簧产生阻碍线圈转动的力,故B正确.由左手定则知,b端受到的安培力方向向下,a端受到的安培力方向向上,安培力将使线圈沿顺时针方向转动,故C错误,D正确.答案:ABD情境2解析:线圈两端C、D与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,说明线圈受到的安培力向上,根据左手定则可知,电流应该从D端流入线圈,故线圈的D端应与外电路电源的正极(H端)相接,C端应与外电路中的G端(负极)相接,故选项A错误;设线圈的匝数为n,外电路接通使秤盘和线圈恢复到未放重物时的位置并静止时根据平衡条件得:Mg=2nBIL,其中I=,联立上述两式得Mg=2nB L,解得n =,故选项B正确;根据Mg=2nB L知,当质量为2M的重物放在秤盘上时,直流电源输出电压为2U,选项C正确;设线圈电阻的电阻率为ρ,导线的横截面积为S,则R=ρ,可得M=,可见增加线圈的匝数,无法增大电子天平能称量的最大质量,故选项D错误.答案:BC情境3解析:(1)由安培力公式F=IBL=8×104N(2)方法一由动能定理Fx=m v2弹体从静止加速到4km/s,代入数值得x=20m方法二由牛顿第二定律F=ma得加速度a=4×105m/s2由=2asv=4km/s代入数值得x=20m(3)根据F=ma,v=at知发射弹体用时t==1×10-2s发射弹体过程产生的焦耳热Q=I2(R+r)t=1.6×105J弹体的动能E k=m v2=1.6×106J系统消耗的总能量E=E k+Q=1.76×106J答案:(1)8×104N(2)20m(3)1.76×106J。

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力(含解析)

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力(含解析)

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力一、单选题1.如图所示,一带负电的粒子(不计重力)进入磁场中,图中的磁场方向、速度方向及带电粒子所受的洛伦兹力方向标示正确的是( )A.B.C.D.2.速度选择器是质谱仪的重要组成部分,工作时电场和磁场联合作用,从各种速率的带电粒子中选择出具有一定速率的粒子。

下列结构能成为速度选择器的是( )A. B.C. D.3.图是简化的某种旋转磁极式发电机原理图。

定子是仅匝数n 不同的两线圈,,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O 的距离相等,且均连接阻值为R 的电阻,转子是中心在O 点的条形磁铁,绕O 点在该平面内匀速转动时,两线圈输出正弦式交变电流。

不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是( )12n nA.两线圈产生的电动势的有效值相等B.两线圈产生的交变电流频率相等C.两线圈产生的电动势同时达到最大值D.两电阻消耗的电功率相等4.某同学搬运如图所示的磁电式电流表时,发现表针晃动剧烈且不易停止。

按照老师建议,该同学在两接线柱间接一根导线后再次搬运,发现表针晃动明显减弱且能很快停止。

下列说法正确的是( )A.未接导线时,表针晃动过程中表内线圈不产生感应电动势B.未接导线时,表针晃动剧烈是因为表内线圈受到安培力的作用C.接上导线后,表针晃动过程中表内线圈不产生感应电动势D.接上导线后,表针晃动减弱是因为表内线圈受到安培力的作用5.如图所示,为高中物理实验室常用的磁电式电流表的内部结构,基本组成部分是磁体和放在磁体两极之间的线圈,其物理原理就是通电线圈因受安培力而转动。

电流表的两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。

关于磁电式电流表,下列说法正确的是( )A.铁质圆柱内部磁感应强度为零B.线圈的磁通量始终为零C.线圈转动时,螺旋弹簧变形,反抗线圈转动D.电流不为零,线圈停止转动后不再受到安培力6.如图所示,一段长方体金属导电材料,左右两端面的边长为a 和b 内有带电量为的自由电子,已知该导电材料单位体积内自由电子数为n ;导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度为B 。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

洛伦兹力作用下的力学问题-高考物理知识点

洛伦兹力作用下的力学问题-高考物理知识点

洛伦兹力作用下的力学问题-高考物理知识点洛伦兹力作用下的力学问题1.涉及洛伦兹力的动力学问题中,因洛伦兹力的大小和方向与物体的运动状态有关,在分析物体的运动过程时,需将运动对受力的影响、受力对运动的影响综合考虑来确定物体的运动性质及运动过程,此类问题中往往还会出现临界状态,需分析临界状态下满足的条件。

2.在设计洛伦兹力(详情查看高考物理知识点总结)的能量问题中,因洛伦兹力不做功,系统能量的转化取决于其他力做功的情况,但需要考虑洛伦兹力对最终运动状态的影响。

3,在定性判定设计洛伦兹力的非匀变速运动过程中,可利用运动的合成与分解来定性地判断通过的位移、运动的时间等问题。

高考物理一轮复习(新教材新高考)第52讲《洛伦兹力与现代科技》

高考物理一轮复习(新教材新高考)第52讲《洛伦兹力与现代科技》
A.保持B、U和T不变,该回旋加速器可以加速质子 B.只增大加速电压U, H粒子获得的最大动能增大 C.只增大加速电压U, H粒子在回旋加速器中运动的时间变短 D.回旋加速器只能加速带正电的粒子,不能加速带负电的粒子
提升·必备题型归纳
02 电磁叠加场中的各类仪器
夯基·必备基础知识 知识点 电磁叠加场中的各类仪器、规律和共性
知识点1 质谱仪
夯基·必备基础知识 知识点1 质谱仪
(1)作用测量带电粒子质量和分离同位素的仪器。(2) 原理(如图所示)
夯基·必备基础知识
知识点2 回旋加速器
(1)构造如图所示,D1、D2是半圆形金属盒,D形盒处于匀强磁场中,D形盒的缝隙处 接交流电源。
夯基·必备基础知识
知识点2 回旋加速器
夯基·必备基础知识 知识点 电磁叠加场中的各类仪器、规律和共性
提升·必备题型归纳
考向1 速度选择器
D
提升·必备题型归纳
提升·必备题型归纳
考向2 磁流体发电机
B
提升·必备题型归纳
提升·必备题型归纳
考向3 电磁流量计
CD
提升·必备题型归纳
提升·必备题型归纳
考向4 霍尔元件
D
提升·必备题型归纳
夯基·必备基础知识
知识点2 回旋加速器
提升·必备题型归纳
考向1 质谱仪
AD
提升·必备题型归纳
提升·必备题型归纳
考向2 回旋加速器
2.如图所示为回旋加速器示意图,利用回旋加速器对H粒子进行加速,此时D形盒中 的磁场的磁感应强度大小为B,D形盒缝隙间电场变化周期为T,加速电压为U。忽略
相对论效应和粒子在D形盒缝隙间的运动时间,下列说法正确的是( C )

高考物理点睛洛伦兹力的应用汇总

高考物理点睛洛伦兹力的应用汇总

高考物理点睛洛伦兹力的应用汇总洛伦兹力公式推导02特点洛伦兹力的方向与电荷运动方向和磁场方向都垂直,洛伦兹力只改变带电粒子的运动方向,不改变速度的大小,对电荷不做功。

03洛伦兹力与安培力的关系安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观解释。

电流是带电粒子定向运动形成的,通电导线在磁场中受到磁场力(安培力)的作用,揭示了带电粒子在磁场中运动时要受磁场力作用的本质。

大小关系F安=NF洛。

式中的N是导体中的定向运动的电荷数。

04洛伦兹力的方向洛伦兹力的方向可用左手定则来判断:伸开左手,使大拇指与其余四指垂直,并且都与手掌在同一平面内;让磁感线垂直穿过手心,若四指指向正电荷运动的方向,则大拇指所指的方向就是正电荷所受的洛伦兹力的方向。

若沿该方向运动的是负电荷,则它所受的洛伦兹力的方向与正电荷恰好相反。

说明1、我们只研究电荷的运动方向与磁场方向垂直的情况,由左手定则可知,洛伦兹力的方向既与磁场方向垂直,又与电荷的运动方向垂直,即洛伦兹力垂直于v和B两者所决定的平面。

2、由于洛伦兹力F总是跟运动电荷的速度方向垂直,所以洛伦兹力对运动电荷不做功,洛伦兹力只能改变电荷速度的方向,不能改变速度的大小。

例1:质量为m、带电荷量为q的小物块,从倾角为的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是()A.小物块一定带正电荷B.小物块在斜面上运动时做匀加速直线运动C.小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D.小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为C试题分析:已知小物块下滑某时刻对斜面作用力恰好为零,由左手定则可知小物块带负电,A错误;对小物块下滑过程受力分析如图所示,物块向下加速v增大,F洛也在增大,例2:质量为m、电荷量为q的带正电小球,从倾角为θ的粗糙绝缘斜面(µ<tan θ)上由静止下滑,斜面足够长,整个斜面置于方向水平向外的匀强磁场中,其磁感强度为b,如图所示。

磁场(解析版)—2025年高考物理一轮复习知识清单

磁场(解析版)—2025年高考物理一轮复习知识清单

磁场带电粒子在匀强电场中做类抛体运动的相关计算掌握磁场和磁感应强度的概念,会用磁感线描述磁场,熟悉几种常见磁场模型的磁感线分布图;会判断安培力的方向,能够计算安培力的大小,会分析计算安培力作用下导体的平衡与加速问题;掌握洛伦兹力的概念,会分析和计算带电粒子在有界磁场中运动的临界、极值问题,会分析计算带电粒子在组合场、叠加场中的问题;掌握带电粒子在磁场中的多解问题、交变磁场和立体空间中的问题;了解与磁场相关的仪器,重点掌握质谱仪、回旋加速器和霍尔效应的原理。

核心考点01 磁场中的概念一、磁场 (4)二、磁感线 (4)三、磁感应强度 (6)四、磁通量 (8)核心考点02 安培力 (10)一、安培力的方向 (10)二、安培力的大小 (11)三、安培力作用下导体的平衡与加速问题 (12)核心考点03 洛伦兹力 (14)一、洛伦兹力 (14)二、带电粒子在匀强磁场中的运动 (15)三、有界匀强磁场的运动模型 (18)四、动态圆模型 (22)五、带电粒子在组合场中的运动 (24)六、带电粒子在叠加场中的运动 (27)七、带电粒子在交变磁场的运动 (30)八、带电粒子在磁场中的多解问题 (32)九、带电粒子在立体空间的运动 (34)核心考点04 与磁场相关的仪器 (36)一、速度选择器 (36)二、质谱仪 (37)三、回旋加速器 (39)四、磁流体发电机 (41)五、电磁流量计 (42)六、霍尔效应模型 (43)01一、磁场1、磁性物质吸引铁、钴、镍等物质的性质。

2、磁体具有磁性的物体,如磁铁。

3、磁极磁体上磁性最强的区域。

任何磁体都有两个磁极,一个叫北极(N极),另一个叫南极(S极)。

并且,任何一个磁体都有两个磁极,无论怎样分割磁体,磁极总是成对出现,不存在磁单极。

【注意】同名磁极相互排斥,异名磁极相互吸引。

4、磁场的定义磁体或电流周围存在的一种特殊物质,能够传递磁体与磁体之间、磁体与电流之间、电流与电流之间的相互作用。

北京专用高考物理总复习第十一章第2讲洛伦兹力带电粒子在匀强磁场中的运动课件

北京专用高考物理总复习第十一章第2讲洛伦兹力带电粒子在匀强磁场中的运动课件

a带负电,粒子b、c带正电 c在磁场中运动的时间最长 c在磁场中的加速度最大 c在磁场中的动量最大
答案 B 由左手定则可知,带电粒子进入磁场中,向左偏的a带正电荷,
向右偏的b、c带负电荷,故A错误;三个粒子在磁场中做圆周运动的周期
T= 2 m 都相同,而c的轨迹圆弧所对的圆心角θ最大,由t= θ T得c在磁场
v
R
Bq
通过调节“励磁电流调节旋钮” 改励磁电流改变从而改变了磁感应强度大小,则电子沿①、②轨迹
运动一周所用时间之比 T1 = B2 = I2 = 2
T2 B1 I1 1
(或由周期T= 2 R ,通过调节“励磁电流调节旋钮”改变径迹的情况中,
v
“加速电压调节旋钮”位置保持不变,说明电压U不变,即电子速率v不
考点二 带电粒子做圆周运动的分析思路
2-1 在垂直纸面的匀强磁场中,有不计重力的甲、乙两个带电粒子,在 纸面内做匀速圆周运动,运动方向和轨迹如图所示。则下列说法中正确 的是 ( )
A.甲、乙两粒子所带电荷种类不同 B.若甲、乙两粒子所带电荷量及运动的速率均相等,则甲粒子的质量 较大 C.若甲、乙两粒子的动量大小相等,则甲粒子所带电荷量较大
变,因此可得 T1 = R1 = 2 )
T2 R2 1
考点三 带电粒子在有界匀强磁场中的运动
(1)已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于 入射方向和出射方向的垂线,两条垂线的交点就是圆弧轨迹的圆心(如 图甲所示,P为入射点,M为出射点)。 (2)已知入射点和出射点的位置及入射方向时,可以通过入射点作入射 方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是 圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点)。

高考物理复习冲刺压轴题专项突破—洛伦兹力(含解析)

高考物理复习冲刺压轴题专项突破—洛伦兹力(含解析)

高考物理复习冲刺压轴题专项突破—洛伦兹力(含解析)一、选择题(1-9题只有一个选项正确,10-12题有多个选项符合条件)1.如图所示,甲、乙两个带等量异种电荷而质量不同的带电粒子,以相同的速率经小孔P 垂直磁场边界MN,进入方向垂直纸面向外的匀强磁场,在磁场中做匀速圆周运动,并垂直磁场边界MN射出磁场,运动轨迹如图中虚线所示.不计粒子所受重力、空气阻力和粒子间的相互作用,下列说法正确的是()A.甲带负电荷,乙带正电荷B.甲的质量大于乙的质量C.洛伦兹力对甲做正功D.甲在磁场中运动的时间等于乙在磁场中运动的时间【答案】B【解析】A.在P点,带电粒子速度向下,磁场向外,甲受向左的洛伦兹力,根据左手定则可得甲带正电荷;同理在P点,乙受向右的洛伦兹力,根据左手定则可得乙带负电荷;故A错误;B.粒子在磁场中做匀速圆周运动,根据牛顿第二定律,有:2vqvB m=R解得:mvR=qB由于q 、v 、B 均相同,甲的轨道半径比乙的轨道半径大,则有甲的质量大于乙的质量,故B 正确;C.根据左手定则,洛伦兹力与速度垂直,故洛伦兹力永不做功,故C 错误;D.带电粒子在磁场中做圆周运动的周期:22R m T v qBππ==在磁场中运动的时间:122m t T qBπ==由于q 、B 均相同,甲的质量大于乙的质量,故甲运动时间大于乙运动的时间,故D 错误.2.如图所示,质量为m ,带电荷量为−q 的微粒以速度v 与水平方向成45°角进入正交的匀强电场和匀强磁场,磁场方向垂直纸面向里,电场方向水平向左,重力加速度为g .如果微粒做直线运动,则下列说法正确的是A .微粒一定做匀速直线运动B .微粒受电场力、洛伦兹力两个力作用C .匀强电场的电场强度2mgE q=D .匀强磁场的磁感应强度=mgB qv 【答案】A【解析】由于粒子带负电,电场力向右,洛伦兹力垂直于OA 线斜向左上方,而重力竖直向下,粒子做直线运动,则说明洛伦兹力不变,即电场力、洛伦兹力和重力能平衡,粒子做匀速直线运动.故A 正确,B 错误.由图qE=mgtanθ解得E=mg/q ,故C 错误.qvBcosθ=mg ,mg B qvcos qvθ==,故D 错误;故选A .3.如图所示,水平放置平行金属板间存在相互垂直的匀强电场和匀强磁场,电场强度为E ,磁感应强度为B .一带电量为+q ,质量为m 的粒子(不计重力)以速度v 水平向右射入,粒子恰沿直线穿过,则下列说法正确的是A .若只将带电粒子带电量变为+2q ,粒子将向下偏转B .若只将带电粒子带电量变为-2q ,粒子仍能沿直线穿过C .若只将带电粒子速度变为2v 且粒子不与极板相碰,则从右侧射出时粒子的电势能减少D .若带电粒子从右侧水平射入,粒子仍能沿直线穿过【答案】B【解析】粒子恰沿直线穿过,电场力和洛伦兹力均垂直于速度,故合力为零,粒子做匀速直线运动;根据平衡条件,有qvB qE =,解得E v B=,只要粒子速度为E B ,就能沿直线匀速通过选择器;若带电粒子带电量为+2q ,速度不变,仍然沿直线匀速通过选择器,A 错误;若带电粒子带电量为-2q,只要粒子速度为EB,电场力与洛伦兹力仍然平衡,仍然沿直线匀速通过选择器,B正确;若带电粒子速度为2v,电场力不变,洛伦兹力变为2倍,故会偏转,克服电场力做功,电势能增加,C错误;若带电粒子从右侧水平射入,电场力方向不变,洛伦兹力方向反向,故粒子一定偏转,D错误.4.如图表示水平方向的匀强磁场和竖直方向的匀强电场叠加区域,一个质量是m,带电量是q的质点B恰好能静止在区域中间,另一个质量为2m,带电量也为q的质点A恰好能以某一速度沿着垂直于磁场、电场方向做匀速直线运动,且正好与静止的质点B发生正碰,碰后两质点粘在一起运动,碰撞的过程无电量损失,则下列正确的是A.碰后两质点的运动向下偏且动能增加B.碰后两质点的运动向上偏且动能增加C.碰后两质点的运动向上偏且动能减少D.碰后两质点的运动向下偏且动能减少【答案】C【解析】一个质量是m带电量是q的质点B恰好能静止在区域中间,该质点受重力和向上的电场力.mg=Eq;带电量也为q的质点A恰好能以某一速度沿着垂直于磁场、电场方向做匀速直线运动,该质点受重力和向上的电场力、洛伦兹力.2mg=Eq+Bqv;且正好与静止的质点B发生正碰,碰后两质点粘在一起运动,根据动量守恒定律列出等式2mv=3mv′,解得v′=2v/3此时系统受重力3mg,向上的电场力2Eq,洛伦兹力4Bqv/3,此时系统的合力向上.由于洛伦兹力做功为零,系统重力与向上的电场力合力向下,做负功,所以系统动能减小.故选C.5.托卡马克(Tokamak)是一种复杂的环形装置,结构如图所示.环心处有一欧姆线圈,四周是一个环形真空室,真空室外部排列着环向场线圈和极向场线圈.当欧姆线圈中通以变化的电流时,在托卡马克的内部会产生巨大的涡旋电场,将真空室中的等离子体加速,从而达到较高的温度.再通过其他方式的进一步加热,就可以达到核聚变的临界温度.同时,环形真空室中的高温等离子体形成等离子体电流,与极向场线圈、环向场线圈共同产生磁场,在真空室区域形成闭合磁笼,将高温等离子体约束在真空室中,有利于核聚变的进行.已知真空室内等离子体中带电粒子的平均动能与等离子体的温度T 成正比,下列说法正确的是A .托卡马克装置中核聚变的原理和目前核电站中核反应的原理是相同的B .极向场线圈和环向场线圈的主要作用是加热等离子体C .欧姆线圈中通以恒定电流时,托卡马克装置中的等离子体将不能发生核聚变D .为了约束温度为T 的等离子体,所需要的磁感应强度B 必须正比于温度T【答案】C【解析】A 、目前核电站中核反应的原理是核裂变,原理不同,故A 错误;B 、极向场线圈、环向场线圈主要作用是将高温等离子体约束在真空室中,有利于核聚变的进行,故B 错误;C 、欧姆线圈中通以恒定的电流时,产生恒定的磁场,恒定的磁场无法激发电场,则在托卡马克的内部无法产生电场,等离子体无法被加速,因而不能发生核聚变,故C 正确.D 、带电粒子的平均动能与等离子体的温度T 成正比,则212T mv ∝,由洛伦兹力提供向心力,则2v qvB m R=,则有B ∝D 错误.6.如图所示,光滑的水平面上有竖直向下的匀强磁场,水平面上平放着一个试管,试管内壁光滑,底部有一个带电小球.现在对试管施加一个垂直于试管的水平拉力F,在拉力F作用下,试管向右做匀速运动,带电小球将从管口飞出.下列说法正确的是A.小球带负电B.小球离开试管前,洛伦兹力对小球做正功C.小球离开试管前的运动轨迹是一条抛物线D.维持试管做匀速运动的拉力F应为恒力【答案】C【解析】A.小球能从管口处飞出,说明小球受到指向管口洛伦兹力,根据左手定则判断,小球带正电;故A错误.B.洛伦兹力是不做功的,因为在向上的洛伦兹力产生的同时,还产生了与F方向相反的一个洛伦兹力,两个洛伦兹力抵消,不做功;故B错误.C.设管子运动速度为v1,小球垂直于管子向右的分运动是匀速直线运动.小球沿管子方向受到洛伦兹力的分力F1=qv1B,q、v1、B均不变,F1不变,则小球沿管子做匀加速直线运动.与平抛运动类似,小球运动的轨迹是一条抛物线;故C正确.D.设小球沿管子的分速度大小为v2,则小球受到垂直管子向左的洛伦兹力的分力F2=qv2B,v2增大,则F2增大,而拉力F=F2,则F逐渐增大;故D错误.7.导线中带电粒子的定向运动形成了电流。

高考物理备考重点磁学与电磁感应中的洛伦兹力与感应电动势

高考物理备考重点磁学与电磁感应中的洛伦兹力与感应电动势

高考物理备考重点磁学与电磁感应中的洛伦兹力与感应电动势高考物理备考重点:磁学与电磁感应中的洛伦兹力与感应电动势在高考物理中,磁学与电磁感应是重要的考点之一。

其中,洛伦兹力与感应电动势是这两个领域中的核心内容。

本文将介绍洛伦兹力与感应电动势的概念、原理以及在物理学领域的应用。

一、洛伦兹力洛伦兹力是指当带电粒子在有磁场存在的空间内运动时,受到磁场力的作用。

根据洛伦兹力的定义,可以得到其表达式为F=qvBsinθ,其中F表示洛伦兹力的大小,q为带电粒子的电荷量,v为带电粒子的速度,B为磁场的大小,θ为带电粒子速度与磁场方向之间的夹角。

洛伦兹力在物理学中有着广泛的应用。

在电磁感应中,洛伦兹力是感应电动势的产生原因之一。

在电磁感应中,当一个闭合线圈中的导体相对于外部磁场运动,导体内部的自由电子将受到洛伦兹力的作用,从而产生感应电流。

除此之外,在粒子加速器、电子束仪器等领域,洛伦兹力也扮演着重要的角色。

二、感应电动势感应电动势是指当磁场的变化导致闭合线圈中的自由电子受到洛伦兹力作用后,产生的电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁场变化的速率和线圈的匝数有关。

感应电动势在日常生活中有着广泛的应用。

例如,发电机利用感应电动势将机械能转化为电能;变压器通过感应电动势将电能转化为不同电压水平的电能输出。

此外,感应电动势也在电磁铁、电动机等设备中起到关键作用。

三、洛伦兹力与感应电动势的联系通过洛伦兹力和感应电动势的研究,我们可以发现它们之间存在密切的联系。

当磁场的变化导致感应电动势产生时,洛伦兹力将引导电荷在导体中运动,从而产生感应电流。

这种相互作用不仅在基础物理理论中占据重要地位,也在实际应用中有着众多的应用。

在高考物理备考中,磁学与电磁感应是一个重要的考点。

深入理解洛伦兹力和感应电动势的概念和原理,对于解答与磁学和电磁感应相关的题目具有很大的帮助。

在备考过程中,可以通过多做相关试题,加深对概念的理解和灵活运用,提高解题能力。

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题73 洛伦兹力(解析版)

2023届高考物理一轮复习知识点精讲与2022高考题模考题训练专题73  洛伦兹力(解析版)
(3).两个观点求时间
观点一:由运动弧长计算,t= (l为弧长);
观点二:由旋转角度计算,t= T 。
7.三类边界磁场中的轨迹特点
(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:等角进出,沿径向射入必沿径向射出。
8。对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点。
第二部分最新高考题精选
1.(2022高考湖北物理)在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角。已知离子比荷为k,不计重力。若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )
b.在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图乙所示。
甲 乙
⑤带电粒子在有界磁场中运动的规律
a.直线边界(进出磁场具有对称性),如图所示。
b.平行边界(存在临界条件,即轨迹与边界相切时),如图所示。
c.圆形边界(沿径向射入必沿径向射出),如图所示。
【特别提醒】分析带电粒子在磁场中做圆周运动的易错点在于分析运动轨迹找出几何关系,计算出半径。
A. kBL,0°B. kBL,0°
C.kBL,60°D.2kBL,60°
【参考答案】BC
【命题意图】本题考查带电粒子在匀强磁场中的运动。
【解题思路】若粒子通过下部分磁场直接到达P点,如图
根据带电粒子在直线边界运动的对称性可知,若从P点的出射方向与右侧边界向上的夹角为60°,

安培力、洛伦兹力

安培力、洛伦兹力

【本讲教育信息】一、教学内容:高考第一轮复习——安培力、洛伦兹力问题归纳1、加深和强化安培力及洛伦兹力的知识体系的理解。

2、掌握安培力作用下的物体的平衡问题、极值问题的解法。

3、重点掌握带电粒子在有界磁场中运动的典型题型及其处理方法。

二、学习目标:考点地位:安培力问题、磁场对于运动电荷的作用问题均是每年高考的重点和难点,是每年高考的必考内容,其中,安培力问题的考查突出了与平衡、运动学、能量等多方面的知识的综合,体现了把安培力的知识背景与实际物理模型的综合,磁场对运动电荷的作用问题,重点突出对于带电粒子在磁场中的运动规律的考查,带电粒子在有界磁场、无界磁场中的运动问题,这些题目可以很好的考查学生的空间想象能力及对物理过程和规律的综合分析能力,考题的形式既可以通过选择题的形式,也可以通过计算题的形式出现,且所占分值比重较大。

三、重难点解析:(一)磁场、磁现象的电本质1. 磁场:是存在于磁体、电流和运动电荷周围的一种物质。

变化的电场也能产生磁场。

2. 磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时,不受磁场力作用)。

3. 磁场的方向:在磁场中的任意一点,小磁针北极所指的方向,即能够自由转动的小磁针静止时北极所指的方向,就是那一点的磁场方向。

4. 磁现象的电本质磁体、电流和运动电荷的磁场都产生于电荷的运动。

(二)磁感应强度:1. 磁场的最基本的性质是对放入其中的电流有磁场力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2. 在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度,即ILFB。

(1)磁感应强度是矢量,其方向是小磁针静止时N极的指向,不是磁场中电流所受磁场力方向。

(2)磁感应强度B是由磁场自身性质决定的,与磁场中是否存在电流及IL乘积大小无关。

备战近年年高考物理考点46洛伦兹力带电粒子在磁场中的运动(含解析)(最新整理)

备战近年年高考物理考点46洛伦兹力带电粒子在磁场中的运动(含解析)(最新整理)
一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于沿途空气电离而使粒子的动能逐渐 减小,轨迹如图所示。假设粒子的电荷量不变,下列有关粒子的运动方向和所带电性的判断正 确的是
A.粒子由 a 向 b 运动,带正电 B.粒子由 b 向 a 运动,带负电 C.粒子由 b 向 a 运动,带正电 D.粒子由 a 向 b 运动,带负电 【参考答案】B 【详细解析】由题意可知,带电粒子沿垂直于磁场方向射入匀强磁场,粒子的能量逐渐减 小,速度减小,则由公式 r mv 得知,粒子的半径应逐渐减小,由图看出,粒子的运动方向是
二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值. (2)两种方法 一是物理方法: ①利用临界条件求极值; ②利用问题的边界条件求极值; ③利用矢量图求极值。 二 是数学方法: ①利用三角函数求极值; ②利用二次方程的判别式求极值; ③利用不等式的性质求极值; ④利用图象法等. (3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、 “不相撞”、“不脱离”等词语对临界状态给以暗示.审 题时,一定要抓住这些特定的词语挖 掘其隐藏的规律,找出临界条件。

方法二:由弧长求, t R v
4.带电粒子在有界匀强磁场中运动时的常见情形 直线边界(粒子进出磁场具有对称性)
平行边界(粒子运动存在临界条件)
圆形边界(粒子沿径向射入,再沿径向射出)
5.带电粒子在有界磁场中的常用几何关系 (1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。 (2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的 2 倍。 6.求解带电粒子在匀强磁场中运动的临界和极值问题的方法 由于带电粒子往往是在有界磁场中运动,粒子在磁场中只 运动一段圆弧就飞出磁场边 界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几 何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零; ②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切),然后应用数学知识 和相应物理规律分析求解。 (1)两种思路 一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分 析、讨论临界条件下的特殊规律和特殊解;

2025高考物理总复习洛伦兹力与现代科技

2025高考物理总复习洛伦兹力与现代科技
目录
研透核心考点
2.(2023·广东卷,5)某小型医用回旋加速器,最大回旋半径为0.5 m,磁感应强度 大小为1.12 T,质子加速后获得的最大动能为1.5×107 eV。根据给出的数据, 可计算质子经该回旋加速器加速后的最大速率约为(忽略相对论效应,1 eV=
1.6×10-19 J)( C )
A.3.6×106 m/s B.1.2×107 m/s C.5.4×107 m/s D.2.4×108 m/s 解析 质子在回旋加速器的磁场中做匀速圆周运动,由洛伦兹力提供向心力, 有 qvB=mvR2,质子加速后获得的最大动能为 Ek=12mv2,解得最大速率约为 v =5.4×107 m/s,故 C 正确。
第十章 磁 场
专题强化十九 洛伦兹力与现代科技
学习目标
1.理解质谱仪和回旋加速器的原理,并能解决相关问题。 2.会分析电场和磁场叠加的几种实例。
目录
目录
CONTENTS
01 研透核心考点 02 提升素养能力
目录
研透核心考点
1
考点一 质谱仪
考点二 回旋加速器
考点三 电场与磁场叠加的应用实例
目录
研透核心考点
图2
目录
研透核心考点
(1)粒子进入速度选择器的速度v;
解析 粒子加速过程,根据动能定理有 qU1=21mv2 解得 v= 2qmU1。
答案
2qU1 m
目录
研透核心考点
(2)速度选择器的两极板间电压U2; 解析 粒子经过速度选择器过程,由平衡条件有 qUd2=qvB1 解得 U2=B1d 2qmU1。
回旋加速器,其原理如图 5 所示,这台
加速器由两个铜质 D 形盒 D1、D2 构成,
其间留有空隙,现对氚核(31H)加速,所

新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件

新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件

电荷处在电场中
大小
F=qvB(v⊥B)
F=qE
方向
F⊥B且F⊥v
正电荷受力与电场方向相同,负电 荷受力与电场方向相反
可能做正功,可能做负功,也可能 做功情况 任何情况下都不做功
不做功
(二) 半径公式和周期公式的应用(固基点)
[题点全练通]
1.[半径公式、周期公式的理解]
(选自鲁科版新教材)(多选)在同一匀强磁场中,两带电量相等的粒子,仅受磁
[答案] D
类型(二) 平行直线边界的磁场 1.粒子进出平行直线边界的磁场时,常见情形如图所示:
2.粒子在平行直线边界的磁场中运动时存在临界条件,如图a、c、d所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间
[答案] BD
[例 3] 如图所示,平行边界区域内存在匀强磁场,比荷相同 的带电粒子 a 和 b 依次从 O 点垂直于磁场的左边界射入,经磁场 偏转后从右边界射出,带电粒子 a 和 b 射出磁场时与磁场右边界 的夹角分别为 30°和 60°,不计粒子的重力,下列判断正确的是( )
A.粒子 a 带负电,粒子 b 带正电 B.粒子 a 和 b 在磁场中运动的半径之比为 1∶ 3 C.粒子 a 和 b 在磁场中运动的速率之比为 3∶1 D.粒子 a 和 b 在磁场中运动的时间之比为 1∶2
(三) 带电粒子在有界匀强磁场中的圆周运动(精研点) 类型(一) 直线边界的磁场
1.粒子进出直线边界的磁场时,常见情形如图所示:
2.带电粒子(不计重力)在直线边界匀强磁场中的运动时具有两个特性: (1)对称性:进入磁场和离开磁场时速度方向与边界的夹角相等。 (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运

2021高考人教版物理一轮复习讲义:第9章第2讲磁场对运动电荷的作用(含解析)

2021高考人教版物理一轮复习讲义:第9章第2讲磁场对运动电荷的作用(含解析)

第2讲磁场对运动电荷的作用主干梳理对点激活知识点1 洛伦兹力、洛伦兹力的方向 I洛伦兹力公式 n 1.定义:_01运动电荷在磁场中所受的力称为洛伦兹力。

2. 方向(1) 判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动 的反方向。

⑵方向特点:F 丄B , F 丄V 。

即F 垂直于02 B 和 v 所决定的平面。

(注意B 和 v 可以有任意夹角)。

由于F 始终03垂直于v 的方向,故洛伦兹力永不做功。

3. 洛伦兹力的大小:F = qvBsin B其中B 为电荷运动方向与磁场方向之间的夹角。

⑴当电荷运动方向与磁场方向垂直时, F = qvB 。

(2) 当电荷运动方向与磁场方向平行时,F = 0。

(3) 当电荷在磁场中静止时,F = 0。

知识点2 带电粒子在匀强磁场中的运动 n1. 两种特殊运动⑴若v // B ,带电粒子以入射速度v 做丽匀谏直线运动(2)若v 丄B ,带电粒子在垂直于磁感线的平面内,以入射速度 周运动。

2. 基本公式向心力公式: qvB = m* = m 罕2「。

3. 导出公式注意:T 、f 和①的大小与轨道半径r 和运行速率v 无关,只与磁场的[03 磁感v 做l~02匀速圆(1)轨道半径:mvBq (2)周期: 2 n r qB应强度B和粒子的「04比荷m有关。

比荷m相同的带电粒子,在同样的匀强磁场中----- m mT、f、3相同。

「双基夯实一堵点疏通1 .带电粒子在磁场中运动时,一定会受到磁场力的作用。

()2. 洛伦兹力的方向垂直于B和v决定的平面,洛伦兹力对带电粒子永远不做功。

()2 n3. 根据公式T=晋,说明带电粒子在匀强磁场中的运动周期T与v成反比。

()4. 用左手定则判断洛伦兹力方向时,四指指向电荷的运动方向。

()5. 带电粒子在磁场中运动时的轨道半径与粒子的比荷成正比。

()6. 当带电粒子进入匀强磁场时,若v与B夹角为锐角,带电粒子的轨迹为螺旋线。

2025高考物理总复习洛伦兹力与现代科技

2025高考物理总复习洛伦兹力与现代科技

考点二 回旋加速器
如此周而复始,速度越来越大,运动半径也越来越大, 最后到达D形盒的边缘,以最大速度被引出。已知某粒子 所带电荷量为q,质量为m,加速时电极间电压大小恒为 U,磁场的磁感应强度大小为B,D形盒的半径为R,设狭 缝很窄,粒子通过狭缝的时间可以忽略不计。设该粒子从粒子源发出时 的初速度为零,不计粒子重力和粒子间的相互作用力,忽略相对论效 应,求:
考点二 回旋加速器
4.运动时间的计算 (1)粒子在磁场中运动一个周期,被电场加速两次,每次增加动能 qU,加速 次数 n=EqUkm,粒子在磁场中运动的总时间 t1=n2T=2EqkUm ·2qπBm=__π2_BU_R_2__。 (2)粒子在各狭缝中的运动连在一起为匀加速直线运动,运动时间为 t2=vam
返回
< 考点二 >
回旋加速器
考点二 回旋加速器
1.构造 如图所示,D1、D2是半圆金属盒,D形盒处于匀 强磁场中,D形盒的缝隙处接交流电源。 2.原理 交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D形盒缝 隙就被加速一次。
考点二 回旋加速器
3.最大动能 由 qvmB=mRvm2、Ekm=12mvm2得Ekm=__q_22B_m2_R_2__,粒子获得的最大动能由 磁感应强度B 和 盒半径R 决定,与加速电压 无关 。
答案
q2B2R2 2m
考点二 回旋加速器
粒子在D 形盒内做圆周运动,轨迹半径达到最大时被引出,具有最大动能。 设此时的速度为 vm,有 qvmB=mRvm2,解得 vm=qmBR 设粒子的最大动能为Ekm, 则 Ekm=12mvm2=q22Bm2R2
考点二 回旋加速器
(3)粒子在回旋加速器中运动的总时间。
第十一章

(完整版)洛伦兹力问题及解题策略

(完整版)洛伦兹力问题及解题策略

洛伦兹力问题及解题策略《磁场》一章是高中物理的重点内容之一.历年高考对本章知识的考查覆盖面大,几乎每个知识点都考查到,纵观历年高考试题不难发现,实际上单独考查磁场知识的题目很少,绝大多数试题的考查方式为磁场中的通电导线或带电的运动粒子在安培力或洛伦兹力作用下的运动,尤其以带电粒子在洛伦兹力作用下在匀强磁场中做匀速圆周运动的问题居多,侧重于知识应用方面的考查,且难度较大,对考生的空间想象能力及物理过程、运动规律的综合分析能力要求较高.从近十年高考物理对洛伦兹力问题的考查情况可知,近十年高考均涉及了洛伦兹力问题,并且1994年、1996年、1999年还以压轴题的形式出现,洛伦兹力问题的重要性由此可见一斑;自1998年以来,此类问题连续以计算题的形式出现,且分值居高不下,由此可见,洛伦兹力问题是高考命题的热点之一,可谓是高考的一道“大餐”.全国高考情况是这样,近年开始实施的春季高考及理科综合能力测试也是这样,甚至对此类问题有“一大一小”的现象,即一个计算题,同时还有一个选择题或填空题,故对洛伦兹力问题必须引起高度的重视.本文将对有关洛伦兹力问题的类型做一大致分类,并指出各类问题的求解策略.一、带电粒子在磁场中做匀速圆周运动的圆心、半径及周期1.圆心的确定:因为洛伦兹力指向圆心,根据F⊥v,只要画出粒子运动轨迹上的两点(一般是射入和射出磁场的两点)的洛伦兹力方向,沿两个洛伦兹力方向做其延长线,两延长线的交点即为圆心.2.半径和周期的计算:带电粒子垂直磁场方向射入磁场,只受洛伦兹力,将做匀速圆周运动,此时应有qvB=m,由此可求得粒子运动半径R=,周期T=2π m/qB,即粒子的运动周期与粒子的速率大小无关.这几个公式在解决洛伦兹力的问题时经常用到,必须熟练掌握.在实际问题中,半径的计算一般是利用几何知识,常用解三角形的知识(如勾股定理等)求解.[例1]长为L,间距也为L的两平行板间有垂直纸面向里的匀强磁场,如图1所示,磁感强度为B,今有质量为m、带电荷量为q的正离子,从平行板左端中点以平行于金属板的方向射入磁场,欲使离子恰从平行板右端飞出,入射离子的速度应为多少?解析应用上述方法易确定圆心O,则由几何知识有L2+(R-)2=R2又离子射入磁场后,受洛伦兹力作用而做匀速圆周运动,且有qvB=m由以上二式联立解得v=5qBL/4m.[例2]如图2所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E.一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出.(带电粒子的重力和粒子之间的相互作用力均可忽略)(1)判断所加的磁场方向;(2)求分别加电场和磁场时,粒子从e孔射出时的速率;(3)求电场强度E与磁感应强度B的比值.解析(1)根据粒子在电场中的偏转方向,可知粒子带正电,根据左手定则判断,磁场方向垂直纸面向外.(2)设带电粒子的电荷量为q,质量为m,盒子的边长为L,粒子在电场中沿ad方向的位移为L,沿ab方向的位移为,在电场中,有L=,=v0t 由动能定理EqL=mv2-mv02由以上各式解得E=,v=v0.在电场中粒子从e孔射出的速度为v0,在磁场中,由于粒子做匀速圆周运动,所以从e孔中射出的速度为v0.(3)带电粒子在磁场中做匀速圆周运动,在磁场中v=v0,轨道半径为R,根据牛顿第二定律得qvB=m,解出R=又根据图3所示的几何关系,应有(L-R)2+()2=R2解得轨道半径为R=L故得磁场的磁感应强度B=因此=5v0.二、带电粒子在磁场中的运动时间带电粒子在磁场中做圆周运动,利用圆心角与弦切角的关系,只要设法求出运动轨迹的圆心角大小,由t=T或者t=T即可求出.[例3]一束电子以速度v垂直射入宽为d的匀强磁场B中,穿出磁场时速度方向发生了60°的偏转,求电子穿出磁场所用的时间.解析由几何关系,易求得本题电子在磁场中运动时的圆心角为60°,而非120°,则由图4,得r=而电子在磁场中运动时满足evB=m故可得电子穿出磁场所用时间为t=.[例4]如图5所示一个质量为m电荷量为q的粒子从A孔以速度v0垂直AO进入磁感应强度为B的匀强磁场并恰好从C孔垂直于OC射入匀强电场中,已知电场方向跟OC平行,OC⊥AD,OD=2OC,粒子最后打在D点(不计粒子重力).求:(1)粒子从A点运动到D点所需的时间t;(2)粒子抵达D点的动能E k.解析(1)由题意可知,带电粒子在磁场中运动了1/4圆周进入电场,则R=OC=OD/2,这时有qv0B=m即R=而t B=T/4=进入电场后,做类平抛运动,到达D点时,用时t E=故粒子从A点运动到D点所需的时间t=t B+t E=m.(2)带电粒子在磁场中运动时洛伦兹力与速度方向垂直,因而不做功.而在电场中运动时电场力要做功,即在整个运动过程中只有电场力做功,所以可用动能定理求解.即有qER=E k-mv02又在电场中OC=()2==R即E=Bv0/2故粒子抵达D点的动能E k=mv02+qER=mv02.三、范围类问题所谓范围类问题,即问题所示的答案属于某一范围,如粒子运动速度的范围、磁场磁感强度的范围及带电粒子荷质比的范围等.在解这类问题时要谨慎考虑限制条件,避免解答的片面性.[例5]如图6所示,在铅板AB上有一个放射源S,可向各个方向射出速率v=2.04×107m/s的β射线.CD为荧光屏(足够大),AB、CD间距d=10cm,其中存在磁感应强度B=6.0×10-4T的匀强磁场,方向垂直纸面向里.已知β粒子的荷质比e/m=1.7×1011C/kg,试求这时在竖直方向上能观察到荧光屏亮斑区的长度.解析粒子进入匀强磁场后,满足qv0B=m,则R==0.2m由于β粒子可向各个方向射出,容易看出向上方射出的β粒子及向右方射出的β粒子打在荧光屏上的位置P、Q之间即为亮斑区,这是求解本题之关键.由图7知PO=OQ,故在竖直方向上能观察到荧光屏亮斑区的长度为PQ=2PO=2=0.2≈0.35m.四、复合场问题所谓复合场,即重力、电场力、洛伦兹力共存或洛伦兹力与电场力同时存在等.当带电粒子所受合外力为零时,所处状态是匀速直线运动或静止状态,当带电粒子所受合力只充当向心力时,粒子做匀速圆周运动,当带电粒子所受合力变化且速度方向不在同一直线上时,粒子做非匀变速曲线运动.[例6]在某空间同时存在着互相正交的匀强电场和匀强磁场,电场的方向竖直向下,如图8,一带电体A带负电,电荷量为q1,恰能静止于此空间的a点;另一带电体B也带负电,电荷量为q2,正在过a点的竖直平面内做半径为r的匀速圆周运动,结果A、B在a外碰撞并粘合在一起,试分析其后的运动情况.[解析]设A、B的质量分别为m1、m2,B的速率为v,对电荷A q1E=m1g对电荷B q2E=m2g,且Bq2v=m2二者碰撞时系统动量守恒,有m2v=(m1+m2)v′, 且此时总电荷量为q1+q2,总质量为m1+m2, 显然仍有(q1+q2)E=(m1+m2)g故它们将以速率v′在竖直平面内做匀速圆周运动,并且有(q1+q2)v′B=(m1+m2)由以上方程,可得R=q2r/(q1+q2),此即碰撞后二者共同的运动半径.[例7]有一电子束穿过具有匀强电场和匀强磁场的空间区域,该区域的电场强度和磁感强度分别为E和B,如图9所示.(1)如果电子束的速度为v0,要使电子束穿过上述空间区域不发生偏转,电场和磁场应满足什么条件?(2)如果撤去磁场,电场区域的长度为l,电场强度的方向和电子束初速度方向垂直,电场区域边缘离屏之间的距离为d,要使电子束在屏上偏移距离为y,所需加速电压为多大?解析(1)要使电子不发生偏转,则应有电场力与洛伦兹力相等,即eE=ev0B,则E=v0B.(2)电子在电场中向上偏转量s=t2,且tanθ==,而在加速电场中,有eU=mv02,且l=v0t,又偏移距离y=s+dtanθ,解以上方程得U=.五、带电粒子在电磁场中的动态运动问题顾名思义,在处理带电粒子或带电物体,在电磁场中的动态问题时,要正确进行物体的运动状况分析,找出物体的速度、位置及其变化,分清运动过程,注意正确分析其受力,此乃求解之关键.[例8] 如图10所示,套在很长的绝缘直棒上的小球,其质量为m,带电荷量为+q,小球可在棒上滑动,将此棒竖直放在互相垂直且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的动摩擦因数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电荷量不变) 解析小球的受力情况如图10所示,且有N=qE+qvB因而F合=mg-μ(qE+qvB),显然随着v的增大,F合减小,其加速度也减小,即小球做加速度减小的变加速度运动,当a=0时,速度达最大值,故可解得v=0时,a m==g-a=0时,即mg-μ(qE+qvB)=0时,v m=.六、极值问题求极值是物理学中的一类重要问题,可以通过对物理过程准确分析反映学生分析问题的能力,一般地首先要建立合理的物理模型,再根据物理规律确定极端情况而求极值,此即所谓的物理方法求极值.当然根据需要也可以采用其他方法如几何方法、三角方法、代数方法等.[例9]如图11所示,真空的狭长的区域内有宽度为d,磁感强度为B的匀强磁场,质量为m、电荷量为q的带负电的粒子,从边界AB垂直磁场方向以一定的速率v射入磁场,并能从磁场边界CD穿出磁场,则粒子入射速度跟边界AB成角θ=_________时,粒子在磁场中运动时间最短.(不计重力,结果用反三角函数表示)解析带电粒子以一定的速率射入磁场时,其运动半径是一定的.当粒子在磁场中运动时间最短时,圆周的圆心角应最小,即对应的弧长(或弦长)也最短.显然,最短的弦长为磁场宽度d,由图12,则有cosθ=时,即R=,又qvB=m,则有R=,故cosθ=.因此,粒子入射速度跟边界AB成角θ=arccos时,粒子在磁场中运动时间最短.[例10]顶角为2θ的光滑圆锥置于方向竖直向下的匀强磁场中,小球质量为m,带电荷量为q,磁场的磁感强度为B,小球沿圆锥面做匀速圆周运动,则:(1)顺着磁场方向看,小球如何运动?(2)小球运动的最小半径是多少?[解析]小球此时受重力及弹力作用,要使小球能绕圆锥运动,当小球处于图13位置时还须受水平方向向右的洛伦兹力,由左手定则可判知小球由图示位置向外运动,即顺着磁场方向看,小球逆时针运动.在水平方向有qvB-Ncosθ=m在竖直方向有Nsinθ=mg故qvB-mgcotθ=m即mv2-qvBR+m gRcotθ=0当该方程有解时,则必有(qBR)2-4m2gRcotθ≥0解之得R≥4m2g/q2B2tanθ,因此小球运动的最小半径为R=4m2g/q2B2tanθ.七、洛伦兹力在实际中的应用电场可以对带电粒子有电场力的作用,而磁场对运动的带电粒子有洛伦兹力作用.当电场和磁场共同存在时,对带电粒子也会施加影响,这一知识在现代科学技术中有着广泛的应用.1.带电粒子在电场力和洛伦兹力同时作用下的运动主要有三种应用,即速度选择器、磁流体发电机和霍尔效应.2.带电粒子在电场力与洛伦兹力递次作用可交替作用下的运动也有三种应用,即电视显像管、质谱仪和回旋加速器.[例11]质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图14所示,离子源S产生的一个质量为m电荷量为q的正离子,离子产生时速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆周运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是( )A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大;B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小解析离子加速时,有qU=,在匀强磁场中,做圆周运动,有qvB=m,而x=2R,由以上方程,得x2=,可见本题正确选项为D.[例12] 磁流体发电技术是一种目前世界上正在研究的新兴技术,它可以直接把内能转化为电能,同时具有效率高(可达45%~55%,火力发电效率为30%),污染少等优点.其原理如图15所示,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)以声速的0.8~2.5倍的速度喷射入磁场中,磁场中有两块金属板A、B,这时A、B上就积聚电荷产生电压,设粒子所带电荷量为q,进入磁场的喷射速度是v,磁场的磁感应强度为B,两块金属板的面积为S,AB间的距离为d.(1)该磁流体发电机的电动势有多大?(2)设磁流体发电机内阻为r,当外电阻R是多少时输出功率最大?并求最大输出功率.(3)为使等离子体以恒定速度v通过磁场必须使通道两端保持一定的压强差,压强差为多大?解析(1)磁流体发电机的电动势即为S断开时,电源两极板间的电势差,在洛伦兹力作用下,等离子体中的正、负电荷分别向上、下板偏转,使两极板间产生电势差,且电势差随着电荷在两极板上的积累而增大,当电荷不偏转时,两极板间电势差达到最大值.此时有qvB=qE=q,则U=Bdv.该磁流体发电机的电动势E=Bdv.(2)发电机的输出功率P=I2R=()2R==显然,当外电阻R=r时输出功率最大,且P m=.(3)当等离子体受到的洛伦兹力与等离子压力差相等时方可以恒定速度通过磁场,即有△p=又F=BId,I==解之得△p=.八、与力学的综合题这类问题是以洛伦兹力为载体,本质上可看作是力学题,故解题中在考虑洛伦兹力的前提下,可以利用解决力学问题的三大方法处理之,即动力学观点,包括牛顿三大定律和运动学规律;动量观点,包括动量定理和动量守恒定律;能量观点,包括动能定理和能量守恒定律.在上述方法中,应首选能量观点和动量观点,对多个物体组成的系统,优先考虑两大守恒定律.[例13]一小球质量为m,带负电,电荷量为q,由长l的绝缘丝线系住,置于匀强磁场中,丝线的另一端固定在A点,提高小球,使丝线拉直与竖直方向成60°角,如图16所示.调节磁场的磁感强度B0,释放小球,球能沿圆周运动,到最低点时,丝线的张力为零,且继续摆动,求:(1)摆球至最低点时的速度;(2)B0的值;(3)小球在摆动过程中丝线受的最大拉力.解析(1)小球在磁场中受到重力、弹力及洛伦兹力作用,但从释放到运动至最低点只有重力做功,由动能定理,则有mgl(1-cos60°)=mv2解之得v=.(2)在最低点时,洛伦兹力与重力的合力提供向心力,即有qvB0-mg=m,由以上二式,解得B0=.(3)由于小球运动方向的不同而使洛伦磁力方向改变,不难判断当小球从右边开始运动时,张力较大,且最低处张力最大,此时有T-qvB0-mg=m 解之得T=4mg.[例14]一带电液滴在互相垂直的匀强电场和匀强磁场中运动,已知E和B,若此液滴在垂直磁场的平面内做半径为R的匀速圆周运动,如图17所示.求:(1)液滴速度的大小,绕行方向;(2)液滴运动到轨道最低点A分裂为质量、电荷量都相等的两液滴,其中一个液滴仍在原运动平面内做半径R1=3R的匀速圆周运动,绕行方向不变,且这个圆周最低点仍为A,则另一个液滴如何运动?解析本题文字叙述较长,但只要理解题意,求解仍是较简单的.(1)据题意,应有qE=mg,由此可判断液滴带负电,且qvB=m,则v=BqR/m=BgR/E,方向为顺时针方向.(2)分裂后,有.则v1=3BqR/m=3BgR/E由动量守恒定律,则有mv=故v2=2v-v1=-BgR/E这说明,另一液滴做反方向的圆周运动,且半径不变.[例15]一个质量m,带有+q电荷量的小球,悬挂在长为L的细线上,放在匀强磁场中,其最大摆角为α,为使摆的周期不受磁场影响,磁感应强度B 应有何限制?解析由左手定则易判断:小球向左摆动时,所受洛伦兹力背离悬点,将使悬线张力增加,但不影响摆的周期,而向右摆动时,如B足够大,小球可能向悬点移动进而破坏其正常摆动.设小球处于图中的位置时摆球速度为v,当周期不受磁场影响时由机械能守恒定律,有=mgL(cosβ-cosα)据牛顿第二定律,有T+qvB-mgcosβ=m由以上二式可求得T=0时的B值,且B=,可见,T=0时B的取值与小球运动的速度v有关.由有关数学方法可以求得当时,B有最小值,即v=时,最小值B min=.这说明了当B=B min时,其他位置上悬线的张力均大于零,故使摆周期不受影响的磁感应强度应满足条件B min≤.[例16]如图19所示,在某一足够大的真空室中虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E,方向水平向左的匀强电场.在虚线PH上的一点O处有质量为M,电荷量为Q的镭核().某时刻原来静止的镭核水平向右放出一个质量为m,电荷量为q的α粒子而衰变为氡核(Rn),设α粒子与氡核分离后它们之间的作用力可忽略不计,涉及动量问题时,亏损的质量可不计.(1)写出镭核衰变为氡核的核反应方程;(2)经过一段时间α粒子刚好垂直到达虚线PH上的A点,测得OA=L,求此刻氡核的速度.解析(1)根据核衰变的特点可知,镭核衰变为氡核时满足电荷数守恒和质量数守恒,故有.(2)镭核衰变时遵守动量守恒定律,则(M-m)v0=mvα粒子在匀强磁场做匀速圆周运动,在磁场中运动了圆周,则到达A点需时t=且有qvB=m,R=L/2而氡核在电场中做匀加速直线运动,t时刻速度v t=v0+at,同时满足牛顿第二定律,即(Q-q)E=(M-m)a,联立以上各式解得所求氡核速度为v t=.。

2024届高考一轮复习物理教案(新教材粤教版):洛伦兹力与现代科技

2024届高考一轮复习物理教案(新教材粤教版):洛伦兹力与现代科技

专题强化十九 洛伦兹力与现代科技目标要求 1.理解质谱仪和回旋加速器的原理,并能解决相关问题.2.会分析电场和磁场叠加的几种实例.题型一 质谱仪1.作用测量带电粒子的质量和分析同位素. 2.原理(如图所示)(1)粒子由静止被加速,由动能定理可得qU =12m v 2,由此可得v =2qUm. (2)粒子经过速度选择器时:q v B 1=qE , 可得v =EB 1.(3)粒子进入磁感应强度为B 2的匀强磁场区域做匀速圆周运动, 有q v B 2=m v 2r ,可得q m =E B 1B 2r.例1 (多选)(2023·广东茂名市第一中学模拟)如图甲所示,质谱仪是分离和检测同位素的仪器.用质谱仪测量氢元素的同位素,让氢元素的三种同位素氕、氘、氚的离子流从容器A 下方的小孔,无初速度飘入电势差为U 的加速电场,加速后垂直进入磁感应强度大小为B 的匀强磁场,最后打在照相底片D 上,形成a 、b 、c 三条质谱线,如图乙所示.不计所有粒子受到的重力及粒子间作用力.下列说法正确的是( )A .在进入磁场时,氕的动能最大B .氚在磁场中运动的时间最长C .a 质谱线对应氢元素的氚D .a 质谱线对应氢元素的氕 答案 BC解析 设氢元素某一种同位素的电荷量为q 、质量为m ,加速后获得的速度大小为v ,动能为E k ,根据动能定理有E k =12m v 2=qU ,由于氢元素的三种同位素所带电荷量相同,所以进入磁场时,三种同位素的动能一样大,选项A 错误;由题图乙可知三种同位素都运动半个周期,由T =2πm qB 知,同位素的比荷越小,T 越大,运动时间越长,所以同位素氚在磁场中运动的时间最长,选项B 正确;由上述表达式及R =m v qB 可得R =1B2mUq,可知同位素的比荷越小,R 越大,所以a 、b 、c 三条质谱线分别对应氚、氘、氕,选项C 正确,D 错误.题型二 回旋加速器1.构造如图所示,D 1、D 2是半圆金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙就被加速一次. 3.最大动能由q v m B =m v m 2R 、E km =12m v m 2得E km =q 2B 2R 22m ,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关.4.总时间粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.(忽略粒子在狭缝中运动的时间)例2 (2023·北京市首都师范大学附属中学模拟)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过狭缝的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( )A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为1∶ 2 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器也能加速α粒子 答案 A解析 质子出回旋加速器的速度最大,此时的半径为R ,则v =2πRT =2πRf ,所以最大速度不超过2πRf ,故A 正确;根据Bq v =m v 2R ,知v =BqR m ,则最大动能E km =12m v 2=B 2q 2R 22m ,与加速电压无关,故B 错误;质子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据v =2ax 知,质子第二次和第一次经过D 形盒狭缝的速度之比为2∶1,根据r =m vBq ,则半径之比为2∶1,故C 错误;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmBq 知,换用α粒子,粒子的比荷变化,周期变化,改变交流电的频率才能加速α粒子,故D 错误. 例3 回旋加速器被广泛应用于科学研究和医学设备中.如图甲所示为回旋加速器的工作原理示意图,D 1盒中心A 处有离子源,它不断发出质子.加在狭缝间的交变电压如图乙所示,电压值的大小为U 0、周期为T .已知质子电荷量为q ,质量为m ,D 形盒的半径为R .设狭缝很窄,粒子通过狭缝的时间可以忽略不计.设质子从离子源发出时的初速度为零,不计质子重力.求:(1)匀强磁场的磁感应强度B ;(2)质子在回旋加速器中获得的最大动能及加速次数;(3)质子在回旋加速器中运动的时间(假设质子经加速后在磁场中又转过半周后射出). 答案 (1)2πm qT (2)2m π2R 2T 2 2π2mR 2qU 0T 2 (3)π2mR 2qU 0T解析 (1)质子在D 形盒内做圆周运动,轨道半径达到D 形盒半径R 时被导出,此时具有最大动能.设此时的速度大小为v m ,由牛顿第二定律得q v m B =m v m 2R ,交变电压的周期T 与质子在磁场中运动的周期相同,有T =2πRv m联立解得B =2πmqT(2)质子的最大动能为E km =12m v m 2=2m π2R 2T 2,质子每加速一次获得的能量为E 0=qU 0 加速次数为n =E km E 0,联立解得n =2π2mR 2qU 0T 2(3)质子通过狭缝的时间忽略不计,则质子在回旋加速器中运动的时间为t =n T 2=π2mR 2qU 0T题型三 叠加场在科技中的四种应用中学阶段经常考察四种科研装置,这四种装置的共同特点:带电粒子在叠加场中受到的电场力和洛伦兹力平衡(即q v B =qE 或q v B =q Ud ),带电粒子做匀速直线运动.考向1 速度选择器(1)平行板间电场强度E 和磁感应强度B 互相垂直.(如图)(2)带电粒子能够沿直线匀速通过速度选择器的条件是洛伦兹力与电场力平衡q v B =qE ,即v =EB.(3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性.例4 (2023·广东省模拟)如图所示,M 、N 为速度选择器的上、下两个带电极板,两极板间有匀强电场和匀强磁场.匀强电场的电场强度大小为E 、方向由M 板指向N 板,匀强磁场的方向垂直纸面向里.速度选择器左右两侧各有一个小孔P 、Q ,连线PQ 与两极板平行.某种带电微粒以速度v 从P 孔沿PQ 连线射入速度选择器,从Q 孔射出.不计微粒重力,下列判断正确的是( )A .带电微粒一定带正电B .匀强磁场的磁感应强度大小为v EC .若将该种带电微粒以速率v 从Q 孔沿QP 连线射入,不能从P 孔射出D .若将该带电微粒以2v 的速度从P 孔沿PQ 连线射入后将做类平抛运动 答案 C解析 若带电微粒带正电,则受到的洛伦兹力向上,电场力向下,若带电微粒带负电,则受到的洛伦兹力向下,电场力向上,微粒沿PQ 运动,洛伦兹力等于电场力,因此微粒可以带正电也可以带负电,故A 错误;对微粒受力分析有Eq =q v B ,解得B =Ev ,故B 错误;若带电微粒带负电,从Q 孔沿QP 连线射入,受到的洛伦兹力和电场力均向上,若带电微粒带正电,从Q 孔沿QP 连线射入,受到的洛伦兹力和电场力均向下,不可能做直线运动,故不能从P 孔射出,故C 正确;若将该带电微粒以2v 的速度从P 孔沿PQ 连线射入后,洛伦兹力大于电场力,微粒做曲线运动,由于洛伦兹力是变力,不可能做类平抛运动,故D 错误. 考向2 磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出正离子偏向B 板,图中的B 板是发电机的正极. (3)发电机的电动势:当发电机外电路断路时,正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U ,则q Ud =q v B ,得U =Bd v ,则E =U =Bd v .当发电机接入电路时,遵从闭合电路欧姆定律.例5 (多选)(2023·广东深圳市福田区外国语高级中学模拟)如图所示是磁流体发电机的示意图,两平行金属板P 、Q 之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电离子)沿垂直于磁场的方向喷入磁场.把P 、Q 与电阻R 相连接,下列说法正确的是( )A .Q 板的电势高于P 板的电势B .R 中有由a 到b 方向的电流C .若只改变磁场强弱,R 中电流保持不变D .若只增大离子入射速度,R 中电流增大 答案 BD解析 根据左手定则可知,正电荷向上偏转, P 板的电势高于Q 板的电势,流过R 的电流由a 到b 方向,A 错误,B 正确;发电机未接通时,内部电场力与洛伦兹力平衡有q =E d =Bq v ,因此电动势的大小E =Bd v ,若只改变磁场强弱,电动势大小改变,R 中电流大小发生变化;若只增大离子入射速度,电动势增大,R 中电流增大,C 错误,D 正确. 考向3 电磁流量计(1)流量(Q ):单位时间流过导管某一截面的导电液体的体积. (2)导电液体的流速(v )的计算:如图所示,一圆柱形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的正、负离子在洛伦兹力作用下发生偏转,a 处积累正电荷,b 处积累负电荷,使a 、b 间出现电势差,φa >φb .当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d =q v B ,可得v =UBd .(3)流量的表达式:Q =S v =πd 24·U Bd =πdU4B .(4)电势高低的判断:根据左手定则可得φa >φb .例6 某化工厂的排污管末端安装了如图所示的流量计,测量管由绝缘材料制成,其长为L 、直径为D ,左右两端开口,在前后两个内侧面a 、c 固定有金属板作为电极,匀强磁场方向竖直向下.污水(含有大量的正、负离子)充满管口从左向右流经该测量管时,a 、c 两端的电压为U ,显示仪器显示污水流量Q (单位时间内排出的污水体积).则( )A .a 侧电势比c 侧电势低B .污水中离子浓度越高,显示仪器的示数越大C .污水流量Q 与U 成正比,与L 、D 无关 D .匀强磁场的磁感应强度B =πDU4Q答案 D解析 污水中正、负离子从左向右移动,受到洛伦兹力,根据左手定则,正离子向后表面偏转,负离子向前表面偏转,所以a 侧电势比c 侧电势高,故A 错误;最终正、负离子会在电场力和洛伦兹力作用下处于平衡状态,有qE =q v B ,即UD =v B ,则污水流量Q =v πD 24=U DB ·πD 24=πUD4B,可知Q 与U 、D 成正比,与L 无关,显示仪器的示数与离子浓度无关,匀强磁场的磁感应强度B =πUD4Q ,故D 正确,B 、C 错误.考向4 霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.(2)电势高低的判断:如图,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压:导体中的自由电荷(电荷量为q )在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由q v B =q Uh ,I =nq v S ,S =hd ,联立解得U =BI nqd =k BI d ,k =1nq称为霍尔系数.例7 生活中可以通过霍尔元件来测量转动物体的转速.如图甲,在一个圆盘边缘处沿半径方向等间隔地放置四个小磁体,其中两个N 极向外,两个S 极向外.在圆盘边缘附近放置一个霍尔元件,其尺寸如图乙所示.当电路接通后,会在a 、b 两端产生电势差(霍尔电压),当圆盘转动时,电压经电路放大后得到脉冲信号.已知脉冲信号的周期为T ,若忽略感应电动势的影响,则( )A .圆盘转动的转速为n =1TB .改变乙图中的电源正负极,不影响ab 间电势差的正负号C .脉冲信号的最大值与霍尔元件的左右宽度L 无关D .圆盘转到图示位置时,如果a 点电势高,说明霍尔元件中定向移动的电荷带负电 答案 D解析 由题意可知,圆盘转动的周期是脉冲信号周期的2倍,可得n =12T,故A 错误;改变题图乙中的电源正负极,ab 间电势差的正负号相反,故B 错误;由公式q v B =q Uh 可知U =B v h ,所以霍尔元件所在处的磁场越强,脉冲信号的最大值就越大,与转速无关,结合公式I =nqS v =nq v Lh ,可得U =BInqL ,所以脉冲信号的最大值与霍尔元件的左右宽度L 有关,故C错误;圆盘转到题图所示位置时,由左手定则可知,定向移动的电荷向下偏转,若a 点电势高,则定向移动的电荷为负电荷,故D 正确.课时精练1.关于洛伦兹力的应用,下列说法正确的是( )A .图a 速度选择器中筛选出的粒子沿着PQ 做匀加速直线运动B .图b 回旋加速器接入的工作电源是直流电C .图c 是质谱仪的主要原理图,其中11H 、21H 、31H 在磁场中偏转半径最大的是31H D .图d 是磁流体发电机,将一束等离子体喷入磁场,A 、B 两板间会产生电压,且A 板电势高 答案 C解析 题图a 速度选择器中筛选出的粒子运动时受到电场力和洛伦兹力,二力平衡,粒子沿着PQ 做匀速直线运动,故A 错误;回旋加速器接入的工作电源是交流电,故B 错误;题图c 是质谱仪的主要原理图,由qU =12m v 2和q v B =m v 2R 得R =1B2mUq,可知在磁场中偏转半径最大的是比荷(qm )最小的粒子,故C 正确;将一束等离子体喷入磁场,根据左手定则可知,正离子向下偏转,负离子向上偏转,所以B 板电势高,故D 错误.2.(2021·福建卷·2)一对平行金属板中存在匀强电场和匀强磁场,其中电场的方向与金属板垂直,磁场的方向与金属板平行且垂直纸面向里,如图所示.一质子(11H)以速度v 0自O 点沿中轴线射入,恰沿中轴线做匀速直线运动.下列粒子分别自O 点沿中轴线射入,能够做匀速直线运动的是(所有粒子均不考虑重力的影响)( )A .以速度v 02射入的正电子(01e) B .以速度v 0射入的电子(0-1e) C .以速度2v 0射入的核(21H) D .以速度4v 0射入的α粒子(42He) 答案 B解析 根据题述,质子(11H)以速度v 0自O 点沿中轴线射入,恰沿中轴线做匀速直线运动,可知质子所受的电场力和洛伦兹力平衡,即eE =e v 0B .因此满足速度v =EB =v 0的粒子才能够做匀速直线运动,所以选项B 正确.3.(多选)(2023·广东广州市模拟)如图甲是霍尔效应的模型图,导体的宽度、长度、厚度分别为a 、b 、c ,磁感应强度为B 的匀强磁场垂直导体的前、后表面向里,与磁场垂直向右的电流I 是正电荷的运动形成的,已知霍尔电压为U H =K BIH ,U H 与通过导体的电流I 成正比,与沿着磁场方向导体的厚度H 成反比,K 是常数;如图乙是电磁流量计的模型图,长方形管道的宽度、长度、厚度分别为a 、b 、c ,磁感应强度为B 的匀强磁场垂直管道的上表面向下,带负离子的液体向右运动的速度v 与磁场垂直.液体的流量指单位时间内流过管道横截面的液体体积,则下列说法正确的是( )A .对甲图,导体下端面的电势低于上端面的电势B .对甲图,霍尔电压与c 成正比C .对乙图,管道后端面与前端面的电势差为Ba vD .对乙图,液体的流量为ab v 答案 AC解析 由左手定则可知,正电荷向右运动时受到的洛伦兹力方向向上,所以导体下端面的电势低于上端面的电势,故A 正确;由霍尔电压 U H =K BIH 可知,霍尔电压与c 无关,与a 成反比,故B 错误;负离子在管道内运动,根据平衡条件有Bq v =Eq ,又E =Ua,由于是负离子,受到的洛伦兹力从后端面指向前端面,则受到的电场力从前端面指向后端面,故管道后端面与前端面的电势差为U =B v a ,故C 正确;由题意可得,液体的流量为Q =S v =ac v ,故D 错误.4.劳伦斯制成了世界上第一台回旋加速器(如图甲所示),其原理如图乙所示,加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,现对氚核(31H)加速,所需的高频电源的频率为f ,已知元电荷为e ,下列说法正确的是( )A .被加速的带电粒子在回旋加速器中做圆周运动的周期随半径的增大而增大B .高频电源的电压越大,氚核最终射出回旋加速器的速度越大C .氚核的质量为eB 2πfD .该回旋加速器接频率为f 的高频电源时,也可以对氦核(42He)加速 答案 C解析 根据T =2πmeB 可知,被加速的带电粒子在回旋加速器中做圆周运动的周期不变,A 错误;设D 形盒的半径为R ,则最终射出回旋加速器的速度满足e v B =m v 2R ,即有v =ReBm ,最终射出回旋加速器的速度与电压无关,B 错误;根据T =2πm eB 可知m =TeB 2π=eB2πf,C 正确;因为氚核(31H)与氦核(42He)的比荷不同,所以不能用来加速氦核(42He),D 错误.5.(2023·浙江省柯桥中学模拟)在实验室中有一种污水流量计如图甲所示,其原理可以简化为如图乙所示模型:废液内含有大量正、负离子,从直径为d 的圆柱形容器右侧流入,左侧流出.流量Q 等于单位时间通过横截面的导电液体的体积.空间有垂直纸面向里且磁感应强度大小为B 的匀强磁场,并测出M 、N 间的电压U ,则下列说法正确的是( )A .正、负离子所受洛伦兹力方向是相同的B .容器内液体的流速为v =UBdC .污水流量计也可以用于测量不带电的液体的流速D .污水流量为Q =πUd2B答案 B解析 离子进入磁场后受到洛伦兹力作用,根据左手定则可知,正离子受到的洛伦兹力向下,负离子受到洛伦兹力向上,故A 错误;当达到平衡时有U d q =q v B ,解得v =UBd ,故B 正确;不带电的液体在磁场中不受力的作用,M 、N 两点没有电势差,无法计算流速,故C 错误;污水流量为Q =v S =14πd 2·U Bd =πUd4B,故D 错误.6.如图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被限制在AC 板间,虚线中间不需加电场,带电粒子从P 0处以速度v 0沿电场线方向射入加速电场,经加速后再进入D 形盒中做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是( )A .加速粒子的最大速度与D 形盒的尺寸无关B .带电粒子每运动一周被加速一次C .带电粒子每运动一周P 1P 2等于P 2P 3D .加速电场方向需要做周期性的变化 答案 B解析 带电粒子只有经过AC 板间时被加速,即带电粒子每运动一周被加速一次,电场的方向没有改变,则在AC 间加速,电场方向不需要做周期性的变化,故B 正确,D 错误;根据q v B =m v 2r 和nqU =12m v 2(n 为加速次数),联立解得r =2nmqUBq ,可知P 1P 2=2(r 2-r 1)=2(2-1)2mqU Bq ,P 2P 3=2(r 3-r 2)=2(3-2)2mqU Bq,所以P 1P 2≠P 2P 3,故C 错误;当粒子从D 形盒中出来时,速度最大,根据r =m vBq知加速粒子的最大速度与D 形盒的尺寸有关,故A错误.7.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .144 答案 D解析 由qU =12m v 2得带电粒子进入磁场的速度为v =2qUm,结合带电粒子在磁场中运动的轨迹半径R =m v Bq ,联立得到R =1B2mUq,由题意可知,该离子与质子在磁场中具有相同的轨道半径和电荷量,故该离子和质子的质量之比m 离子m 质子=144,故选D.8.磁流体发电机的原理如图所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、正对面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两金属板间均匀分布,电阻率为ρ.忽略边缘效应,不计离子的重力及离子间相互作用,下列说法正确的是( )A .上板为正极,a 、b 两端电压U =Bd vB .上板为负极,a 、b 两端电压U =Bd 2v ρSRS +ρdC .上板为正极,a 、b 两端电压U =Bd v RSRS +ρdD .上板为负极,a 、b 两端电压U =Bd v RSRd +ρS答案 C解析 根据左手定则可知,等离子体射入两金属板之间时,正离子偏向a 板,负离子偏向b 板,即上板为正极;稳定时满足U ′d q =Bq v ,解得U ′=Bd v ;根据电阻定律可知两金属板间的电阻为r =ρdS ,根据闭合电路欧姆定律有I =U ′R +r ,a 、b 两端电压U =IR ,联立解得U =Bd v RSRS +ρd,故选C.9.(多选)“天问一号”火星探测器由地火转移阶段进入火星俘获阶段后,环绕火星飞行三个月,反复对首选着陆区进行预先探测.“天问一号”环绕器携带磁强计等探测仪器.目前有一种磁强计,用于测定磁场的磁感应强度,原理如图所示.电路有一段金属导体,它的横截面是宽为a 、高为b 的长方形,放在沿y 轴正方向的匀强磁场中,导体中通有沿x 轴正方向、大小为I 的电流.已知金属导体单位长度中的自由电子数为n ,电子电荷量为e ,金属导电过程中,自由电子的定向移动可视为匀速运动.两电极M 、N 分别与金属导体的前后两侧接触,用电压表测出金属导体前后两个侧面间的电势差为U .则关于磁感应强度的大小和电极M 、N 的正负说法正确的是( )A .M 为正、N 为负B .M 为负、N 为正C .磁感应强度的大小为neUaID .磁感应强度的大小为nebUI答案 BD解析 由左手定则可知,金属中的自由电子所受洛伦兹力方向指向M ,则电子偏向M ,即M 为负、N 为正,选项A 错误,B 正确;当达到平衡时有U a e =e v B ,I =Δq Δt =ab v Δt ·ne Δt =n v eab ,联立解得B =nebUI,选项D 正确,C 错误.10.(2023·广东潮州市模拟)在芯片制造过程中,离子注入是芯片制造的重要工序.甲图是我国自主研发的离子注入机,乙图是离子注入机的部分工作原理示意图.从离子源发出的离子经电场加速后沿水平方向先通过速度选择器,再进入磁分析器,磁分析器是中心线半径为R 的四分之一圆环,其两端中心位置M 和N 处各有一个小孔,利用磁分析器选择出特定比荷的离子后经N 点打在硅片(未画出)上,完成离子注入.已知速度选择器和磁分析器中的匀强磁场的磁感应强度大小均为B 、方向均垂直纸面向外;速度选择器中匀强电场的电场强度大小为E .整个系统置于真空中,不计离子重力.求:(1)能从速度选择器中心线通过的离子的速度大小v ;(2)能通过N 打到硅片上的离子的比荷qm ,并判断该离子的带电性质.答案 (1)E B (2)EB 2R离子带正电荷解析 (1)离子通过速度选择器时,有qE =q v B 解得v =EB(2)离子在磁分析器中,有q v B =m v 2R解得q m =E B 2R对离子受力分析可知,离子在磁分析器中受到的洛伦兹力指向圆心O ,根据左手定则可知离子带正电荷.11.(2023·广东东莞市调研)一种质谱仪的结构可简化为如图所示,粒子源释放出初速度可忽略不计的质子,质子经直线加速器加速后由D 形通道的中缝MN 进入磁场区.该通道的上、下表面为内半径为2R 、外半径为4R 的半圆环.整个D 形通道置于竖直向上的匀强磁场中,正对着通道出口处放置一块照相底片,它能记录下质子从通道射出时的位置.若已知直线加速器的加速电压为U ,质子的比荷(电荷量与质量之比)为k ,且质子恰好能击中照相底片的正中间位置.(1)求匀强磁场的磁感应强度大小B ;(2)若粒子源产生比荷不同的带正电的粒子,且照相底片都能接收到粒子,求粒子比荷最大值k 1与最小值k 2的比值. 答案 (1)13R2U k (2)4925解析 (1)由题意可知,当质子恰好能击中照相底片的正中间位置时,其运动半径为 r =2R +4R2=3R设质子经过加速后获得的速度大小为v ,根据动能定理有qU =12m v 2根据牛顿第二定律有q v B =m v 2r由题意可知qm =k联立解得 B =13R2U k(2)根据前面分析可知粒子运动半径R 0与比荷k 0的关系满足R 0=1B2U k 0,则k 0∝1R 02 当粒子恰好打在底片最左端时,其半径最小,比荷最大,且 R 1=4R +R 2=52R当粒子恰好打在底片最右端时,其半径最大,比荷最小,且 R 2=8R -R 2=72R。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理复习:洛伦兹力
1.如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点。

在电子经过a 点的瞬间。

条形磁铁的磁场对该电子的作用力的方向 ( A ) A .向上 B.向下 C.向左 D.向右
解析:条形磁铁的磁感线方向在a 点为垂直P 向外,电子在条形磁铁的磁场中向右运动,所以根据左手定则可得,电子受到的洛伦兹力方向向上,选项A 正确。

2. 图中a ,b ,c ,d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。

一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是 A .向上 B .向下 C .向左 D .向右 答案:B
解析:通电导线b 和d 在O 点产生的磁场相互抵消,通电导线a 和c 在O 点产生的磁场水平向左,一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,根据左手定则可判定粒子所受洛伦兹力的方向是向下,故B 对,A 、C 、D 错。

3. 空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。

一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射。

这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。

不计重力。

下列说法正确的是( ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同
D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答:B D
【解析】在磁场中半径,Bq
mv
r =
运动时间:,Bq m t θ=
(θ为转过圆心角),故BD 正确,当粒子从O 点所在的边上射出的粒子时:轨迹可以不同,但圆心角相同为1800,因而AC 错。

4.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。

一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿过铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力。

铝板上方和下方的磁感应强度大小之比为( )
A. 2
B.2
C. 1
D. 22
【答案】D
【解析】根据 ,r
v m
qvB 2
= 有 211221v r v r B B =, 穿过铝板后粒子动能减半,则
2
1222
12121mv mv ⋅= ,得 221=v v ,
穿过铝板后粒子运动半径减半,则
2112=r r ,因此2
2
21=B B ,选项D 正确. 5. 利用如图所示装置可以选择一定速度范围内的带电粒子。

图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L 。

一群质量为m 、电荷量为q ,具有不同速度的的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度d 的缝射出的粒子,下列说法正确的是 A .粒子带正电
B .射出粒子的最大速度为
m
d L qB 2)
3(+
C .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大
D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大 答:BC
【解析】由左手定则可判断粒子带负电,故A 错误; 由题意知:粒子的最大半径23max d L r +=、粒子的最小半径2
min L
r =, 根据qB mv r =
,可得m d L qB v 2)3(max +=、m
qBL
v 2min =, 则m
qBd
v v 23min max =
-,故可知B 、C 正确,D 错误。

6.图为某磁谱仪部分构件的示意图。

图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹。

宇宙射线中有大量的电子、正电子和质子。

当这些粒子从上部垂直进入磁场时,下列说法正确的是: ( ) A.电子与正电子的偏转方向一定不同 B.电子和正电子在磁场中的运动轨迹一定相同
C.仅依据粒子的运动轨迹无法判断此粒子是质子还是正电子
D.粒子的动能越大,它在磁场中运动轨迹的半径越小 【答案】AC
【解析:由于电子与正电子的电性相反,所以它们以相同的方向进入磁场时,受到的洛伦兹力的方向相反,偏转的方向一定相反,故A 正确;根据带电粒子的半径公

故B 错误;质子与正电子的电性相同,所以它们以相同的方向进入磁场时,受到的洛
7.发电机和电动机具有装置上的类似性,源于它们机理上的类似性。

直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景。

在竖直向下的磁感应强度为B 的匀强磁场中,两根光滑平行金属轨道MN 、PQ 固定在水平面内,相距为L ,电阻不计。

电阻为R 的金属导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好,以速度v (v 平行于MN )向右做匀速运动。

图1轨道端点MP 间接有阻值为r 的电阻,导体棒ab 受到水平向右的外力作用。

图2轨道端点MP 间接有直流电源,导体棒ab 通过滑轮匀速提升重物,电路中的电流为I 。

(1)求在Δt 时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能。

(2)从微观角度看,导体棒ab 中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用。

为了方便,可认为导体棒中的自由电荷为正电荷。

a .请在图3(图1的导体棒a
b )、图4(图2的导体棒ab )中,分别画出自由电荷所受洛伦兹力的示意图。

b .我们知道,洛伦兹力对运动电荷不做功。

那么,导体棒ab 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明。

答:答案(1)t r
R v L B E ∆⋅+=2
22
1
,E 2=ILBv Δt ;
(2)①见答图1,
②电荷移动的速度可分解为沿ba 方向和垂直于ab 方向,各自由电荷因
f 洛2
答图1
图1 a
a
图3
图4
b
B b B
这两个分速度引起的洛伦兹合力可分解成垂直ab 方向和平行ab 方向,垂直ab 方向的分力做正功,平行ab 方向的分力做负功。

解析:(1)图1中,电路中的电流 1BL I R r
=
+v
,棒ab 受到的安培力 1F BI L =1 在∆t 时间内,“发电机”产生的电能等于棒ab 克服安培力做的功: 222ΔΔB L t
E F t R r
=⋅=
+1电v v 图2中,棒ab 受到的安培力 F BIL =2
在∆t 时间内,“电动机”输出的机械能等于安培力对棒ab 做的功: 2ΔΔE F t BIL t =⋅=机v v (2)a .如答图3、答图4所示。

b .设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u 。

如答图4所示,沿棒方向的洛伦兹力1f q B '=v ,做负功
11ΔΔW f u t q Bu t '=-⋅=-v
垂直棒方向的洛伦兹力2f quB '=,做正功
22ΔΔW f t quB t '=⋅=v v
所以12W W =-,即导体棒中一个自由电荷所受的洛伦兹力做功为零。

1f '做负功,
阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电能;2f '做正功,宏观上表现为安培力做正功,使机械能增加。

大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用。

答图
3 b
f 答图
4
b

2′。

相关文档
最新文档