列一元一次方程解决相遇问题
一元一次方程应用题(很系统,附答案)
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
相遇问题
应用题专练三相遇追及问题学习目标:1、利用路程、时间和速度三个量之间的关系,列出行程中关于相遇问题的一元一次方程解简单的应用题。
2、学会同时出发相向而行和不同时出发相向而行的相遇问题,列出一元一次方程。
学习导航:相遇问题公式:速度和×相遇时间=总路程追及问题公式:追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间相遇问题甲、乙两站间路程为450公里,一列慢车从甲站出发,每小时行65公里,一列快车从乙站出发,每小时行85公里;①两车同时开出,相向而行,多少小时相遇?②快车先开30分钟,两车相向而行,慢车行驶了多少小时两车相遇?变式:A、B两村相距2800m,小明从A村出发向B村步行5min后,小军骑自行车从B村向A村出发,又经过10min两人相遇,小军骑自行车比小明步行每分钟多走130m,小明每分钟步行多少米?追及问题问题:小明、小亮两个人相距40km,小明先出发1.5h,小亮再出发,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?变式1:一队学生去军训营地,每小时走4千米,某学生因公晚出发30分钟,为了赶上队伍,每小时6千米的速度追赶,该学生用了多少小时追上了队伍,所行路程为多少千米?变式2:在高速公路上,一辆长4米,速度为110千米/小时的轿车准备追一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间是多少?当堂测评:同学们小时候都听过龟兔赛跑的故事,知道乌龟最后是战胜了小白兔。
如果在第二次赛跑中,小白兔知而后勇,在落后乌龟1千米,以101米/分的速度奋起直追,而乌龟仍以1米/分的速度爬行,那么小白兔大概需要______分钟就能追上乌龟1. 元代朱世杰所著的《算学启蒙》里有这样的一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:设x日可追上良马,则可列方程为_____________________________3.甲乙两人在400米的环形跑道上跑步,甲的速度是5米每秒,乙的速度是3米每秒.1)如果两人同时同地背向而行,两人多久第一次相遇?2)如果两人同时同地同向而行,两人多久第一次相遇?课堂小结:_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________。
一元一次方程应用题-相遇及追击问题
一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
一元一次方程解决问题公式大全
一元一次方程应用题公式大全1、行程问题 *基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
2、工程问题 *一、工程问题中的数量关系:(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率=(3)工作效率工作总量工作时间= (4)各队工作量之和全部工作量之和=(5)各队工作效率之和各队合作工作效率=二、考点归纳考点1 工作总量 = 工作效率×工作时间一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙的工作效率分别为x 1、y 1;甲、乙合作m 天可以完成的工作量为y m x m +或 m y x ⎪⎪⎭⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和相等关系:全部工作量=甲独做工作量+甲、乙合作工作量考点3 甲完成工作量+乙完成工作量=1变式:甲x 天完成的工作量 + 乙y 天完成的工作量 = 13、利润问题 *?利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,?【知识点一】折扣问题常用数量:原价, 现价?,折扣,常用数量关系:现价=原价×折扣折扣=现价÷原价【知识点二】通过了解利润问题的数量关系解决实际问题 ?利润中常用数量及等量关系:.进价(成本)、售价(定价。
标价。
)、利润、利润率 的关系式:利润 = 售价 —售价=标价×折扣数 ()利润 ×100%=利润率 定价=进价×(1+利润率)利润=进价×利润率4、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
一元一次方程(行程问题)
一元一次方程(行程问题)考点1、相遇问题:【基础知识回顾】相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车还是物体的移动,总是要涉及到三个量--------路程、速度、时间。
相遇问题的核心就是速度和。
路程、速度、时间三者之间的数量关系,不仅可以表示成:路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路程÷速度.一般的相遇问题: 甲从A地到B地,乙从B地到A地,然后两人在A地到B地之的某处相遇,实质上是甲,乙两人一起走了AB这段路程,如果两人同时出发,那有:(1) 甲走的路程+乙走的路程= 全程(2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间相遇问题的基本题型1、同时出发(两段)2、不同时出发(三段)相遇问题的等量关系S甲+S乙=S总(全程)S先+S甲+S乙=S总(全程)【典型例题】1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?[变式训练]1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?考点2、追及问题【基础知识回顾】两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程。
追及问题的核心就是速度差。
追及问题追及问题的基本题型1、不同地点同时出发2、同一地点不同时出发追及问题的等量关系1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间【典型例题】1. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?[变式训练]1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为________________.2、某人从家里骑自行车到学校。
一元一次方程应用题公式大全
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
初一一元一次方程相遇问题经典应用题
初一一元一次方程相遇问题经典应用题一、甲、乙两人从两地同时出发相向而行,甲每分钟走60米,乙每分钟走50米,经过15分钟两人相遇。
两地相距多少米?A. 1650米B. 1500米C. 1350米D. 1800米(答案:A)二、A、B两地相距480千米,甲、乙两车分别从A、B两地相对开出,经过4小时相遇。
已知甲车每小时行65千米,乙车每小时行多少千米?A. 55千米B. 60千米C. 65千米D. 70千米(答案:A)三、小明和小华从两地同时出发,相向而行。
小明每分钟走50米,小华每分钟走70米,经过12分钟两人相遇。
小明比小华少走多少米?A. 120米B. 140米C. 240米D. 280米(答案:C)四、两地相距900千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车每小时行70千米,两车经过几小时相遇?A. 6小时B. 8小时C. 10小时D. 12小时(答案:C)五、小红和小绿从两地同时出发,相向而行。
小红每分钟走45米,小绿每分钟走55米,两人相遇时,小红比小绿少走了100米。
两人相遇用了多少时间?A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、A、B两地相距600千米,甲车从A地出发,每小时行60千米,乙车从B地出发,每小时行90千米。
两车相向而行,甲车先行1小时后,乙车才出发,乙车出发几小时后与甲车相遇?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C)七、甲、乙两人分别从两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走40米。
相遇时,甲比乙多走了200米。
两人相遇用了多少时间?A. 10分钟B. 15分钟C. 20分钟D. 25分钟(答案:A)八、两地相距800千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车的速度是甲车的1.2倍。
两车经过几小时相遇?A. 4小时B. 5小时C. 6小时D. 7小时(答案:B)。
相遇问题一元一次方程应用题
相遇问题一元一次方程应用题
当涉及到物体以不同的速度移动,并在某一时刻相遇的问题时,可以使用一元一次方程来求解。
例如,假设两个人从不同的地点同时开始以不同的速度往某个目的地移动。
我们可以设其中一个人的速度为v1(m/s),另一个人的速度为v2(m/s)。
他们之间的距离为d(m)。
如果我们知道起始的时间t0(s),我们可以用一元一次方程来解决他们相遇的时间t(s)。
根据速度等于距离除以时间的公式,我们可以得到以下方程:
v1 * t + d = v2 * t
将方程变形,得到一元一次方程:
(v1 - v2) * t = -d
然后,我们可以解这个方程,计算出相遇的时间t。
行程问题--一元一次方程经典应用题
行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
一元一次方程相遇问题
一元一次方程相遇问题
用一元一次方程解决相遇问题,关键是要熟记相遇问题的等量关系式,设两个速度量分别为速度甲,速度乙,两者的路程为路程甲,路程乙,则有以下等量关系式:
①(速度甲+速度乙)×相遇时间=总路程;
②速度甲×相遇时间+速度乙×相遇时间=总路程;
③路程甲+路程乙=总路程;
④路程甲÷速度甲=路程乙÷速度乙;
解题时,先读题,审题清楚后,确定用哪个等量关系列方程,再设未知数,然后把等量关系的各个量用含有未知数字母的代数式表达出来,最后代入等量关系式,即可完成列方程,最后的计算就简单了,但是一定记着要进行验算。
一元一次方程解决实际问题(分类)
一元一次方程解决实际问题(分类)实用文档:一元一次方程解决实际问题一、行程问题一)一般行程问题在行程问题中,需要找到三个基本量:路程、速度和时间,并且它们之间有着明确的关系。
具体来说,路程等于速度乘以时间,时间等于路程除以速度,速度等于路程除以时间。
我们也可以通过变形得到速度等于路程除以时间,时间等于路程除以速度。
二)相遇问题(相向而行)在相遇问题中,需要注意以下三个关键点:快行距加慢行距等于原距,快行距减慢行距等于路程差,快行距加慢行距减路程差等于原距。
举例来说,如果甲、乙两车同时从A、B两地相向而行,两车相遇点距A、B两地中点处8km,已知甲车速度是已车的1.2倍,求A、B两地的路程,我们可以利用方法一找出甲乙两车的路程差,也可以利用方法二将甲乙的速度看成是1和1.2.例2中,XXX、XXX从相距50千米的两地相向而行,XXX下午2时出发步行,每小时行4.5千米。
XXX下午3时半骑自行车出发,经过2.5小时两人相遇。
我们需要求出XXX骑自行车每小时行多少千米。
例3中,XXX的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,XXX走了两村间路程的一半还多0.75千米,此时恰好与XXX相遇。
已知小王的速度是每小时3.7千米,需要求出XXX每小时行多少千米。
例4中,一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
需要求出行了几小时后两车相距51千米,以及再行几小时两车又相距51千米。
三)追及问题(同向而行)在追及问题中,需要注意以下三个关键点:快行距减慢行距等于原距(从不同点出发),追及路程除以速度差等于追及时间,速度差乘以追及时间等于追及路程。
例1中,A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,需要求出几小时后甲车能追上乙车。
我们可以根据题意得知要追及的路程是28千米,每行1小时,甲车可追上32-25=7千米,即速度差。
一元一次方程相遇问题
相遇问题的分类
01
02
03
直线相遇
两个物体在同一直线上运 动,直到相遇。
曲线相遇
两个物体在平面上沿着不 同的路径运动,直到相遇。
立体相遇
两个或多个物体在三维空 间中运动,直到相遇。
相遇问题的应用场景
交通问题
如两辆车在同一条路上相向而行,直 到相遇。
运动问题
天文学问题
如两个行星在太空中相向而行,直到 相遇。
成本与收益分析
在制定商业策略时,企业经常需要考虑成本和收益的关系。这可以通过一元一次方程的相遇问题来描述,例如找 到使利润最大的成本和收入关系。
生活中的其他相遇问题
时间规划
在日常生活中,我们经常需要规划时间以完成各种任务。例如,我们需要找到一个时间点,使得我们 能够按时完成所有任务。这也可以通过一元一次方程的相遇问题来描述。
详细描述
设前车的速度为v1,后车的速度为v2, 相遇时间为t,则后车的总行程等于两车 初始距离,即(v2 - v1)t = d。
两车环形跑道问题
总结词
两车在同一起点出发,在环形跑道上行驶,直到相遇。
详细描述
设两车的速度分别为v1和v2,相遇时间为t,则两车的总行程等于跑道长度,即(v1 - v2)t = L。
资源分配
当我们需要将有限的资源分配给不同的任务或项目时,我们可以通过一元一次方程的相遇问题来找到 最佳的分配方案。
06 练习题及解析
基础练习题
总结词
考察基础概念和解题方法
题目1
甲、乙两人在长400米的环形跑道上跑步,他们同时从同一地点出发朝相反方向跑,从第 一次相遇到第二次相遇间隔40秒,甲每秒跑6米,乙每秒跑多少米?
题目2
苏教版七年级上用一元一次方程解决问题
一元一次方程应用题行程问题基本关系式:路程=时间×速度相遇问题:相遇路程=相遇时间×(乙甲V V +)(速度和) 追及问题:路程差=追及时间×(慢快V V -)(速度差)行船/航行问题:()()⎩⎨⎧÷+=÷-=⇒⎭⎬⎫-=+=22逆流顺水静水逆流顺流水流水流静水逆流水流静水顺流V V V V V V V V V V V V 例1、甲乙两人在一条长400m 的环形跑道上跑步,甲的速度为360 m/min ,乙的速度为240m/min(1)两人同时同地同向跑,问第一次相遇时,两人共跑了几圈? (2)两人同时同地反向跑,问多长时间两人第一次相遇?例2、甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?例3、公共汽车原来从甲地到乙地需匀速行驶7小时,开通高速公路后,车速平均提高了30km/h,只需4小时即可到达。
求甲、乙两地间的距离。
例4、一艘船在两个码头之间航行,水流速度是12千米每小时,顺水航行需要4小时,逆水航行需要6小时,求两码头的之间的距离?习题1、五一长假,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现要带给外婆的礼品忘在了家里,刻带上礼品以每小时6千米的速度去追。
如果弟弟和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?习题2、一列火车匀速行驶经过一条长300m隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度。
提高1、某校运动会在400米环形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是多少分钟?工程问题基本关系式:工作总量=工作效率×工作时间题目中未给出工作总量时,设工作总量为单位1如果工作分成几阶段完成,则各阶段的工作总和=1例1、一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合做8天,余下的工程由甲队单独做,还需几天完成?变式、一项工程,甲队独做10小时完成,乙队独做要15小时完成,丙队独做要20小时完成,开始时三队一起做,中途甲队有任务离开,由乙、丙完成,从开始到结束共用了6小时,问甲队实际做了多少小时?例2、整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?例3、有一个蓄水池,装有甲、乙两个进水管和一个排水管,单独开甲管12小时可把空池注满,单独开乙管16小时可把空池注满,单独开排水管15小时可把满池的水放完,现甲乙两管同时开6小时后关闭乙管,打开排水管,问再过几个小时可把水注满呢?利润问题常用公式:利润=售价-进价利润率=进价利润×100%=进价进价售价 ×100%打折销售中的售价=标价×10折数售价=成本+利润=成本×(1+利润率) 利息=本金×利率例1、商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?变式1、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?例2、国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息税4.5元,则小明一年前存入银行的钱为多少元?变式2、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。
七年级数学:如何用一元一次方程来解行程问题中的相遇问题?
七年级数学:如何用一元一次方程来解行程问题中的相遇问题?这几天,有很多同学给我留言说,要讲行程问题。
之前发过一篇《七年级:一元一次方程是初中数学的基础,学不好整个初中都很累》后面持续发布了工程问题,配套问题,数字问题,商品销售和利润率问题。
之前我有讲到过,行程问题是最基础的,但是行程问题又分为相遇问题,追及问题,航行问题,环形跑道问题等四大类,然后每一类里面又分有几个小类别。
其实不管怎么样,行程问题的总数量关系就是:速度X时间=路程。
相遇问题又是行程问题里面最简单的最基础的一种,首先得把相遇问题学好。
相遇问题简单的说,就是甲和乙从路程的两端相向而行,然后甲的路程乙的路程等于总路程。
认真读题,然后根据题目来设未知数。
例1,甲乙两列火车,从两地相向而行。
甲走的路程乙所走的路程=两地之间的总路程。
已知两车的速度,求相遇时间。
我们设x小时候相遇。
则甲走的路程为85x,乙走的路程是90x,然后85x 90x=700总路程。
但是我的答案里用的是另外一个专门的相遇问题的公式:速度和x时间=总路程。
例2,这和第1题一样,甲的路程乙的路程=总路程,已知相遇时间,则设速度。
依据题意,设乙的速度为x千米/小时,则甲的速度为(x 1)千米/小时。
同学可以用甲的路程乙的路程=总路程,也可以用速度和x时间=总路程的公式解题。
例3,此题和前面两题一样。
但是唯一的区别就是他们的速度间的数量关系。
摩托车的速度为x千米/小时,则自行车的速度为1/3X千米/小时。
例4,这个道题多转了一个弯,题意中的相遇路程其实不是A村到B村之间的总路程2800米,因为小明先走了5分钟。
所以,依据题意,小明走了5分钟的路程两人一起走完剩下的路程=总路程2800米,列出方程解方程即可。
例5,此题很多同学会为问,他们还没有相遇呀?怎么算他们的相遇问题呀?亲爱的同学呀,如果所有的题目都像例1一样,那还叫考试吗?考试会把板上钉钉的题目给你们做?其实,这个题目也很简单。
一元一次方程行程问题例题练习
一元一次函数—行程问题例题一、相遇问题:例1:甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.例2:甲、乙两人在400米环形跑道上练竞走,乙每分钟走80米,甲的速度是乙的1倍,现在甲乙两人相距100米,问多少分钟后两人首次相遇?练习:1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?2.大街上有一辆车身长12米的公共汽车由东向西行驶,车速为每小时18千米,人行道上有甲乙两人相向跑步,某一时刻,汽车追上甲,6秒钟之后汽车离开甲,90秒后汽车遇到跑来的乙,又经过1.5秒钟,汽车离开了乙,问再过多少秒甲乙两个人相遇?3.小王的速度是每小时4.8千米,小张的速度是每小时5.4千米,他们两人从甲地到乙地去。
小李骑车的速度是每小时10.8千米,从乙地到甲地去,他们三人同时出发,在小张跟小李相遇后五分钟,小王又与小李相遇,问:小李骑车从乙地到甲地需多长时间?二、追击问题例1:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙?例2:小明每天要在7:30之前赶到离家1000米远的学校上学。
一天,他以80米/分的速度从家里出发,5分钟后小明的爸爸发现他忘带了数学书,于是爸爸立即以150米/分的速度去追小明,并在途中追上了他,问爸爸追上他用了多少时间?追到时离学校还有多远?例3:某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1.甲、乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米;同时,一列快车由乙站开出,每小时行驶70千米;两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?2.某班学生列队从学校到一个农场去参加劳动,以每小时4千米的速度行进.走完1千米时,一个学生奉命回学校取一件东西,他以每小时5千米的速度跑回学校,取了东西后又立即以同样的速度跑步追赶队伍,结果在距农场1.5千米的地方追上队伍.求学校到农场的距离.。
一元一次方程追及相遇问题
一元一次方程追及相遇问题追及问题两个运动着的物体从不同的地点出发,同向运动。
慢的在前,快的在后,经过若干时间,快的追上慢的。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。
解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。
解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。
如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
一元一次方程应用汇总及答案解析
一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。
老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由题意得 60x+90x=200
解得
x= 4
3
经检验,符合题意
4 ×60=80(千米) 3
答:两车相遇的地方离A地80千米。
你想间接设还 是直接设?
a
10
拓 展:
小提示:狗跑 的时间与人走
的时间……
元旦放假,在大学就读的小明准备回家,小明爸爸接到消
息后打算带上家养的宠物小狗到车站接小明.已知车站到家500
答:两车出发3小时后相遇。
a
5
变式训练2:
两车同时从A,B两站出发,相向而行,问:出发 多长时间后两车相距98千米?
解:设出发x小时后两车相距98千米
①相遇前相距98千米
①相遇后相距98千米
由题意可得 60x+80x=448-98
解得
x=2.5
经检验,符合题意
由题意可得 60x+80x=448+98
列一元一次方程解决相遇问题
a
1
复习回顾
列二元一次方程组解应用 题的一般步骤是什么?
一分二设三列四解 五检验六作答
a
2
行程问题
路程= 速度 × 时间 速度= 路程 ÷ 时间 时间= 路程 ÷ 速度
a
3
新知探究
相遇问题
: A,B两地间的距离为448千米,一列慢车从A站出发,每小时行驶60千米,一
列快车从B站出发,每小时行驶80千米.问:两车同时出发,相向而行,出发后多
11谢谢指导a源自12米,小明和爸爸步行前往,小明的步行速度为3米/秒,小明爸
爸的步行速度为2米/秒.期间小明爸爸从开始出发时,小明家
的宠物小狗以5米/秒的跑步速度跑向小明,当小狗遇到小明后
以原速度跑向小明爸爸,小狗遇到小明爸爸后又以原速度跑向
小明,如此往返在小明与其爸爸之间,问当小明与其爸爸相遇
时,小狗跑了多少路程.
a
解:设出发x小时后相遇
经检验,符合题意
由题意得 60x+80x=448
答:两车出发3.2小时后相遇。
解得
x=3.2
a
4
变式训练1 两:车相向而行,若慢车先开28分钟,那
么快车开出多长时间后两车相遇?
解:设快车出发x小时后两车相遇
由题意得 60(x + 28 )+80x=448 60
解得
x=3
经检验,符合题意
长时间相遇?
分析:设出发x小时后相遇, 相遇时快车、慢车行驶时间
相同
相同),慢车速度是60千米/小时,行驶时间是
(x相同小或时不,
行驶路程为
60x ;快车速度是80千米/小时,行驶时
间是
小x时,行驶路程为
80x;快车和慢
车行驶路程和为
60x+80x ,即为A,B两地间的距
离。可列方程为:
60x+80x=448
解得
x= 39
10
经检验,符合题意
答:出发2.5小时或 39 小时后两车相
距98千米。
10
a
6
思考: 列方程解决“相遇问题” 依据
的等量关系是什么?
快行距+慢行距=原距
a
7
课堂小结:
这节课你学到了什么?
a
8
当堂检测:
(1)甲、乙两地相距217.5km,一列快车和一列慢车分别从甲、 乙两地出发,相向而行.已知慢车每小时行35km,快车每小时 行65km,如果慢车先开0.5h,问慢车开出后几小时两车相遇?
解:设慢车出发x小时后两车相遇
由题意得 35x+65(x-0.5)=217.5
解得
x=2.5
经检验,符合题意
答:两车出发2.5小时后相遇。a
9
(2)甲列车A地开往B地,速度是60千米/时,乙列车 同时从B地开往A地,速度是90千米/时,已知A,B两 地相距200千米,两车相遇的地方离A地多远?
解:设甲车出发x小时后两车相遇