紫外-可见分光光度法

合集下载

仪器分析课件 第3章 紫外分光光度法

仪器分析课件 第3章 紫外分光光度法

检流计、数字显示、微机进行仪器自动控制
和结果处理
记录装置
二、分光光度计的类型
(一)单光束分光光度计
光源 单色器
参比 样品
检测器
显示器
• 只有一条光路,通过变换参比池和样品池的位 置,使它们分别置于光路来进行测定
国产751型、752型、721型、722型、UV-1100 型、英国SP-500型
E2a ca E2b
(3) 图计算法----两组分吸收光谱完全重叠--混合样品测定 (3)图中,a,b 吸收光谱双向重迭,互相干扰,在最大波长处互相
吸收。处理方法如下:
解线性方程组 过程:
(三)示差分光光度法(示差法)
普通分光光度法一般只适于测定微量组分,当待测组分含量 较高时,将产生较大的误差。需采用示差法。
第三节 紫外-可见分光光度计
依据朗伯-比尔定律,测定待测液吸光度A的仪器。(选择不同波
长单色光λ、浓度) 分光光度计外观 分光光度原理图:
0.575
光源
单色器
吸收池
检测器 信号处理及显示
信号处理 显示器
单色器
分光光度计外观
吸收池 检测器
光源
721型可见分光光度计
一、主要部件
1. 光源 在整个紫外光区或可见光谱区可以发射连续光
浓度C及液层厚度L的乘积成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度A具有加和性。Aa+b+c= Aa &光系数
A=k c L
k = A /c L
1、摩尔吸光系数或Em: 在一定λ下,c=1mol/L,L=1cm时的吸光度。单位:L/(mol.cm)

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。

该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。

在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。

本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。

通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。

希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。

1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。

紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。

随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。

通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。

掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。

在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。

通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。

1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。

本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。

紫外-可见分光光度法 标准曲线相关系数 小木虫

紫外-可见分光光度法 标准曲线相关系数 小木虫

紫外-可见分光光度法是一种广泛应用的分析化学技术,它通过测量物质在紫外-可见光波段的吸收或透射来确定样品中特定物质的浓度。

该方法具有灵敏度高、分辨率好、操作简便等优点,在化学、生物化学、环境监测等领域都有着重要的应用价值。

一、紫外-可见分光光度法的原理紫外-可见分光光度法是利用物质对紫外-可见光的吸收或透射特性来进行定量分析的一种方法。

当紫外-可见光照射到物质上时,如果物质吸收了部分光能,则其吸收的光强与物质浓度成正比。

根据比尔定律,可以得到吸光度与浓度的线性关系:A = εlc其中A为吸光度,ε为摩尔吸光系数,l为光程,c为物质浓度。

通过建立标准曲线,测定样品的吸光度,并根据标准曲线确定样品中特定物质的浓度。

二、标准曲线的建立标准曲线是指在已知条件下,一系列不同浓度物质对应的吸光度值所构成的曲线。

标准曲线的建立通常需要进行以下步骤:1.准备一系列不同浓度的标准溶液,通常从低浓度到高浓度逐渐增加;2.分别测定各标准溶液的吸光度,并绘制吸光度-浓度曲线;3.通过线性回归等方法,拟合出标准曲线的方程,确定吸光度与浓度的线性关系。

三、标准曲线相关系数标准曲线相关系数是用来评价标准曲线拟合程度的指标。

相关系数越接近1,表示拟合效果越好,曲线与实际数据的吻合程度越高;而相关系数接近0,则表示拟合效果较差,曲线与实际数据的吻合程度较低。

在紫外-可见分光光度法中,标准曲线相关系数的计算通常是依靠计算吸光度与浓度的线性回归方程的确定系数R^2来实现。

R^2的取值范围在0~1之间,越接近1表示拟合效果越好,常用于评价标准曲线的可靠性和稳定性。

四、标准曲线相关系数的影响因素标准曲线相关系数的大小受多种因素影响,包括仪器精度、操作技术、环境条件等。

其中,标准曲线的线性范围和斜率对其相关系数影响较大。

线性范围如果选择不当,可能导致数据偏离线性区域,造成拟合效果不佳;而斜率的大小则直接影响到吸光度与浓度的线性关系,进而影响相关系数的结果。

紫外可见分光光度法

紫外可见分光光度法
ΔT =1%, 溶液浓度相对误差Δc/c 与其透光度T 的关系曲线如右图。
由图可见ΔT =1%, T 在20%~ 65%之间时, 浓度相对误差较小, 此为 最佳读数范围。
所以要求选择适宜的吸光度范围 (0.2-0.7), 以使测量结果的误差最 小。
2024/10/5
措施: (a)控制溶液的浓度;(b) 选择不同厚度的比色
2024/10/5
2
溶液颜色与光吸收的关系
当一束太阳光照射某一溶液时, 太阳光中某一颜色的光 被吸收, 其互补色光透过溶液, 刺激人的眼睛, 使人感觉到它 的颜色。
实例:
1)高锰酸钾吸收绿光显紫 红色;
2)重铬酸钾吸收蓝光显黄 色;
3)邻菲罗啉铁溶液吸收蓝 绿光显红色。
2024/10/5
可见光波长及其互补光
(如国产710型,730型); 3.双波长双光束分光光度计
(如国产WFZ800-5型)
2024/10/5
20
紫外可见分光光度的使用
2024/10/5
21
2024/10/5
22
721分光光度计操作步骤
➢ 1.预热仪器。为使测定稳定, 将电源开关打开, 使仪器预热20min, 为了防止光电管疲劳, 不要连续光照。预热仪器和不测定时应将比 色皿暗箱盖打开, 使光路切断。
ε: 摩尔吸收系数,单位L·mol -1·cm-1。(讲解78页 例题)
摩尔吸收系数越大表明该物质的吸光能力越强,用光度法测
定该物质的灵敏度越高。
ε > 105: 超高灵敏;
ε = (6~10)×104 : 高灵敏;
ε < 2×104
: 不灵敏。
2024/10/5
10
吸光度的加和性

第四章紫外-可见分光光度法

第四章紫外-可见分光光度法
3. 红移和紫移:吸收带的最大吸收波长发生移动, 向长波方向移动称为红移,向短波方向移动称为 紫移。
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm

紫外可见分光光度法

紫外可见分光光度法
E— 吸光系数(absorptivity)
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。

紫外可见分光光度法

紫外可见分光光度法
长在 200nm 左右 5 电荷迁移跃迁 电荷迁移跃迁:是指用电磁辐射照射化合物时,电子从给予体向接受体相联系的轨道上跃迁 电荷迁移实质是一个内氧化还原过程,其相应的吸收光谱称为电荷迁移吸收光谱 某些化合物如取代芳烃可产生这种分子内电荷迁移吸收 许多无机络合物也有电荷迁移跃迁产生的电荷迁移吸收光谱(不少过渡金属与含生色团的试剂反应所生成的络 合物以及许多水合无机离子均可产生电荷迁移跃迁) 电荷迁移吸收出现的波长位置取决于电子给予体和电子接受体相应电子轨道的能量差 若中心离子的氧化能力越强或配体的还原能力越强(相反,若中心离子还原能力越强或配体的氧化能力越强) 则发生电荷迁移时吸收的辐射能量越小 电荷迁移吸收光谱最大的特点是:摩尔吸光系数较大,一般εmax>104,用于定量分析,可以提高检测的灵敏 度 6.配位场跃迁 配位场跃迁:跃迁必须在配体的配位场作用下才有可能产生,称为配位场跃迁 与电荷迁移跃迁比较,由于选择规则的限制,配位场跃迁吸收的摩尔吸光系数较小,一般εmax<102,位于可 见光区 (二) 紫外-可见吸收光谱中一些常用术语
吸收光谱:又称吸收曲线,是以波长λ(nm)为横坐标,以吸光度 A(或透光率 T)为纵坐标所描绘的曲线 1 吸收峰:曲线上吸收最大的地方,它所对应的波长称最大吸收波长(λmax) 2 谷:峰与峰之间的部位叫谷,该处的波长称最小吸收波长(λmin) 3 肩峰:在一个吸收峰旁边产生的一个曲折,称为~ 4 末端吸收:在图谱短波端只呈现强吸收而不成峰形的部分称为~ 5 生色团:有机化合物分子结构中含有π→ π*跃迁或 n→ π*跃迁的基团,如 C=C;C=O;C=N;—N= N—,—NO2 等,能在紫外可见范围内产生吸收的原子团 6 助色团:含有非键电子的杂原子饱和基团,如—OH,—OR,—NH—,—NR2—,—X 等,当它们与生色团 或饱和烃相连时,能使该生色团或饱和烃的吸收峰向长波方向移动,并使吸收强度增加的基团 7 红移:由于化合物结构改变,如发生共轭作用、引入助色团以及溶剂改变等,使吸收峰向长波方向的移动 8 蓝(紫)移:当化合物的结构改变时或受溶剂影响使吸收峰向短波方向移动 9 增色效应:由于化合物结构改变或其他原因,使吸收强度增加称增色效应或浓色效应 10 减色效应:由于化合物结构改变或其他原因,使吸收强度减弱称减色效应或淡色效应 11 强带:化合物的紫外可见吸收光谱中,凡摩尔吸光系数εmax 值大于 104 的吸收峰称为~ 12 弱带:化合物的紫外可见吸收光谱中,凡摩尔吸光系数εmax 值小于 103 的吸收峰称为~ (三) 吸收带及其与分子结构的关系(考过简答)

紫外-可见分光光度法

紫外-可见分光光度法

单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。 吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
4 检测器 检测器的作用是检测光信号,并将光 信号转变为电信号。现今使用的分光光度 计大多采用光电管或光电倍增管作为检测 器。 5 信号显示系统 常用的信号显示装置有直读检流计, 电位调节指零装置,以及自动记录和数用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统 ↑ 样品
1 光源
在紫外可见分光光度计中,常用的光 源有两类:热辐射光源和气体放电光源
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
2 单色器
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。
4 要点与注意事项 4.1 开机前将样品室内的干燥剂取出, 仪器自检过程中禁止打开样品室盖。 4.2 比色皿内溶液以皿高的2/3~4/5为 宜,不可过满以防液体溢出腐蚀仪器。 测定时应保持比色皿清洁,池壁上液 滴应用滤纸擦干,切勿用手捏透光面。 测定紫外波长时,需选用石英比色皿。
4.3 测定时,禁止将试剂或液体物质放在 仪器的表面上,如有溶液溢出或其它原因 将样品槽弄脏,要尽可能及时清理干净。 4.4 如果仪器不能初始化,关机重启。 4.5 如果吸收值异常,依次检查:波长设 置是否正确(重新调整波长,并重新调 零)、测量时是否调零(如被误操作,重 新调零)、比色皿是否用错(测定紫外波 段时,要用石英比色皿)、样品准备是否 有误(如有误,重新准备样品)。
2.1.2 按数字[1]键进入%T/ABS(透过率/吸 光度测定)子菜单,选中对应的数字键来 设定测定条件:①NUM WL(设定测试波长 的数目,最多可设定6个不同波长);②WL Setting (设定测试波长具体数值)③ Data Mode( 选择测定吸光度或透光率 ) ,设定完 毕后点击 [Enter] 键确定,所有项目设定完 毕后按数字[0] 键确定,等待仪器调整至准 备状态。

【仪器分析】紫外-可见分光光度法

【仪器分析】紫外-可见分光光度法

用紫外-可见分光光度计测定物质对紫外-可
见光的吸收程度并进行定性、定量分析。
一、光的基本性质
波动性
1、光的波粒二象性
粒子性
光的波动性
光以波的形式传播,可用波长、频率来表示。 波长 :两个相邻波峰或波谷间的距离(nm) 频率 :单位时间里通过一固定点处波的数目(S-1) = c/ c = 3×1010 cm/s
六、紫外-可见分光光度法的应用
一、定性分析
定性分析的方法


无机物、有机物吸收光谱的特点
定性分析的方法

纯物质对照

与标准谱图对照
返回
back
标准吸收光谱谱图
Sadtler. Sdandard Spectra (Ultraviolet).
Heyden, London, 1978. 共收集了46000种化合物的紫外吸收光谱 Aromatic Compounds, Wiley, New York, 1951. 共收集了 579种芳香化合物的紫外吸收光谱
返回
光的粒子性 光由光子组成,具有能量。
△E = h = hc/
h为普朗克常数 6.63×10-34J.s根据Fra bibliotek=hc/ 可知
E越大,越小。
E越小,越大。
波谱分区 能量 大

紫、蓝、青、绿、黄、橙、红 书上P5
可见光波长范围400-760nm
光谱分区
能 波 量 长 大 200nm 400nm 小 760nm 2.5um 25um 中红外
1、朗伯—比耳定律 吸光度A:表征物质对光吸收程度的量。
A = lgI0/It = -lgT = kbc
T--透过率
A--吸光度

第二章 紫外-可见分光光度法

第二章 紫外-可见分光光度法

1、光源
作用:供给符合要求的入射光。 (1)可见光光源 常见的可见光光源有:钨丝灯和卤钨灯。 (2)紫外光光源 常见的紫外光光源有:氢灯和氘灯。 •另外,为了使光源发出的光在测量时稳定,光 源的供电一般都要用稳压电源,即加有一个稳 压器。
2、单色器
作用:把光源发出的连续光谱分解成单色光,并 能准确方便地“取出”所需要的某一波长的光, 它是分光光度计的心脏部分。 组成:单色器一般由狭缝、色散元件(棱镜和光 栅)、透镜系统组成。 (1)棱镜单色器 •玻璃棱镜:可吸收紫外光,只能用于可见光区域。 •石英棱镜:用于紫外、可见和近红外三个光区域。 (2)光栅单色器 •可用于紫外、可见及红外光区域,目前生产的紫外可见分光光度计大多采用光栅作为色散元件。
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
四、分光光度计的维护 1、仪器对工作环境的要求
•稳固、温度15~28℃、干燥、无腐蚀性气体、 光线不宜过强
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。
2、紫外-可见分光光度计——双光束
•/vlabcq/flash/分光光度计/分光光度 计.html
二、紫外-可见分光光度计的类型及特点 1、按使用的波长范围分
•可见分光光度计:使用波长范围是400~780nm, 只能用于测量有色溶液的吸光度 •紫外-可见分光光度计:使用波长范围是200~ 1000nm,可测量在紫外、可见、近红外有吸收 的物质的吸光度。

紫外可见分光光度法

紫外可见分光光度法
模块二
紫外-可见分光光度法
第一节 紫外-可见吸收光谱 第二节 朗伯-比尔定律 第三节 紫外-可见分光光度计 第四节 分析条件的选择
第五节 测定方法


紫外可见分光光度法(Ultraviolet-Visible Spectrophotometry),又称:紫外-可见分子 吸收光谱法(Ultraviolet-Visible Molecular Absorption Spectrometry)是利用被测物质 对光的吸收特征和吸收强度对物质进行定 量和定性的分析方法。
形成的溶液具有良好的化学和光化学稳定性;
在样品的吸收光谱区无明显吸收;
如果要与标准品的吸收光谱相比较,须用相同的溶剂。
5.pH值的影响
很多化合物都具有酸性或碱性可解离基团,在不同 pH的溶液中,分子的解离形式可能发生改变,其 吸收光谱的形状、λmax和吸收强度可能不一样。
OH O-
OHH+
λmax 210.5nm ,270nm
完全透过
无色
吸收黄色光
2014-12-23
蓝色
13
课堂互动
1.紫外-可见光的波长范围是 A.200~400nm B.400~780nm C.200~780nm D.360~800nm 2.下列叙述错误的是 A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈 C.物质对光的吸收有选择性 D.光的能量与其频率成反比
2mg/ml的溶液,在1cm吸收池中,于310nm处测
定吸光度A。规定A≤0.05。
(三)、结构分析
有机化合物的紫外吸收光谱 可以推定分子骨架,判断发色团之间的共轭关系
和估计共轭体系中取代基的种类、位置和数目 。
1.饱和碳氢化合物 只产生ơ→ơ*跃迁,所需能量很大, 200-400nm没有吸收,常作为溶剂。

4紫外-可见分光光度法

4紫外-可见分光光度法
在进行光度测量时,调节仪器的零点,消除由于吸收池壁及溶剂对 入射光的反射和吸收带来的误差,有时还可以扣除干扰的影响
• 2.参比溶液的选择原则:
• (1)溶剂参比:试样组成简单、共存组份少(基体干扰少)、显色剂 不吸收时,直接采用溶剂(多为蒸馏水)为参比;
• (2) 试样参比:如试样基体在测定波长处有吸收,但不与显色剂反 应时,可以试样作参比(不能加显色剂)。
紫外-可见分光光度法
紫外-可见分光光度法
一、紫外-可见分光光度法原理 二、紫外-可见分光光度计 三、紫外-可见分光光度法应用
紫外-可见分光光度法
分子的能量变化E为各种形式能量变化的总和:
ΔΕ ΔΕe ΔΕv ΔΕr
电子能级间隔比振动能级和转 动能级间隔大1~2个数量级, 在发生电子能级跃迁时,伴有 振-转能级的跃迁,形成所谓的 带状光谱。
第一节 基本原理
二 Lambert- Beer 定律
Lambert-Beer 定律适用范围: ①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。
吸光度具有加和性:
不仅适用于紫外光、可见光,也适用红外光;在同一波长下, 各组分吸光度具有加和性
A=A1+A2++An
(1)入射光必须为单色光 (2)被测样品必须是均匀介质 (3)在吸收过程中吸收物质之间不能发生相
偏离Lambert-Beer 定律的因素 1. 样品性质影响
1)待测物高浓度--吸收质点间隔变小—质点间相互作用—对特定辐射的吸收 能力发生变化--- 变化;
2)溶剂的影响:对待测物生色团吸收峰强度及位置产生影响; 3)被测溶液不均匀导致的偏离
第一节 基本原理
二 Lambert- Beer 定律

紫外可见分光光度法名词解释

紫外可见分光光度法名词解释

紫外可见分光光度法名词解释
紫外-可见分光光度法(UV-Vis)是一种测试物质吸收、透射和反射光的方法,它包括紫外光(200-400纳米波长)和可见光(400-800纳米波长)范围。

这项技术用于定量分析物质的浓度,因为物质特定波长的吸收特性可以与其浓度成正比。

吸收光谱由吸光度(A)表示,其中A与光通过溶液时被吸收的光量成正比。

紫外-可见分光光度法可以广泛应用于许多领域,如生物化学、生物医学、环境科学、食品和饮料分析等。

它可以用于定量分析和质量控制,检测溶液中的有机和无机物质,分析颜料和染料的浓度,以及研究溶液中的化学反应和光化学过程。

在实验中,通常使用紫外-可见分光光度计来测量样品溶液在不同波长的吸光度。

通过与空白溶液进行比较,可以确定吸光度与浓度之间的关系,并计算出样品的浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2 基本原理7.2.1 光的基本特性物质呈现的颜色与光有着密切的关系。

光是一种电磁波,如果按照波长或频率排列,则可得电磁波谱图(四师P.275表10-1)。

光具有两象性:波动性和粒子性。

波动性就是指光按波动形式传播。

例如:光的折射、衍射、偏振和干涉现象,就明显地表现其波动性。

λ·ν= c式中:λ—波长(cm);ν—频率(赫兹);c—光速(≈3×1010cm/s)光的粒子性:如光电效应就明显地表现其粒子性。

光是由“光微粒子”(光量子或光子)所组成。

光量子的能量与波长的关系为:E = hν=hc /λ式中:E—光量子的能量(尔格);ν—频率(赫兹);h—普朗克常数(6.6262×10-34J·秒).光色的互补关系首先要明确什么叫单色光、复合光、可见光。

理论上将具有单一波长的光称为单色光;由不同波长的光组合而成的光称为复合光;人眼能感觉到的光称为可见光(其波长范围大约在400~750nm 之间)。

日光、白炽灯光等可见光都是复合光。

如果让一束白光(日光)通过棱镜,于是发生折射作用,便分解为红、橙、黄、绿、青、蓝、紫等颜色的光。

(各色光之间没有明显的界限)。

各种色光的近似波长(见课件)。

反之,这些颜色的光按一定强度比例混合便能形成白光。

如果把两种适当颜色的单色光按一定强度比例混合后,就能得到白光。

我们便称这两种单色光为互补色光。

日光、白炽灯光等就是一对对互补色光按一定适当比例组合而成的。

互补色光的关系可用右图表示。

7.2.2. 物质对光的选择吸收对固体物质来说,当白光照射到物质上时,如果物质对各种波长的光完全吸收,则呈现黑色;如果完全反射,则呈现白色;如果对各种波长的光均匀吸收,则呈现灰色;如果选择地吸收某些波长的光,则呈现反射或透射光的颜色。

对溶液来说,溶液呈现不同的颜色是由于溶液中的质点(离子或分子)对不同波长的光具有选择性吸收而引起的。

当白光通过某种溶液时,如果它选择性地吸收了白光中某种色光,则溶液呈现透射光的颜色,也就是说,溶液呈现的是它吸收光的互补色光的颜色。

例如:当一束白光通过硫氰酸铁(Fe(SCN)3)溶液时,它选择性地吸收了白光中的蓝青色光,其它色光均透过溶液。

铜铵络离子的溶液因选择地吸收了白光中的黄色光而呈现蓝色。

溶液呈现不同颜色乃是由于物质对光的选择吸收所造成的。

当一束白光(强度为I0)通过下列几种溶液,溶液呈现的颜色和吸收光的关系如下图:如果将各种波长的单色光依次通过某一固定浓度的有色溶液,测定每一波长下有色溶液对光的吸收程度(即吸光度A),然后以波长为横坐标,吸光度为纵坐标作图,得一曲线,称为吸收光谱曲线(简称吸收曲线)。

是四个不同浓度KMnO4溶液的光吸收曲线。

从图上可以看到:⑴ KMnO4溶液对不同波长的光吸收程度不同。

⑵不同浓度KMnO4溶液的吸收曲线形状相似,最大吸收波长不变。

⑶同一物质不同浓度的溶液,在一定波长处吸光度随浓度增加而增大(这个特性可作为物质定量分析的依据)。

若在最大吸收波长处测定吸光度,灵敏度最高。

7.2.3光吸收的基本定律—朗伯-比尔定律1、 示意图图 朗伯-比尔定律示意图当一束平行单色光照射到任何均匀、非散射的介质(固体、液体或气体),例如溶液时,光的一部分被吸收,一部分透过溶液,一部分被器皿的表面反射。

如果入射光的强度为I 0,吸收光的强度为I a ,透过光的强度为I t ,反射光的强度为I r ,则I 0 = I a + I t + I r • (1)在吸光光度法中,测量时都是采用同样质料的比色皿,反射光的强度基本上是不变的,其影响可以相互抵消,于是⑴式可简化为:I 0 = I a + I t (2)透过光强度I t 与λ射光强度I 0之比称为透光度或透光率。

用T 表示。

即⑶溶液的透光度愈大,说明对光的吸收愈小;相反,透光度愈小,则溶液对光的吸收愈大。

实践证明,溶液对光的吸收程度,与溶液的浓度、液层厚度以及入射光的波长等因素有关。

如果保持入射光的波长不变,光吸收的程度则与溶液的浓度、液层厚度有关。

(朗伯、比耳找出了它们的关系)2、朗伯定律当一束单色光通过溶液后,由于溶液吸收了一部分光能,光的强度就要减弱。

0tI I T设入射光的强度为I 0,透过浓度为c ,液层厚度为b 的溶液,透过光的强度为I t ,由于一部分光被吸收,所以I t <I 0,如果溶液的浓度保持不变,当液层越厚时,光在溶液中通过的路程越长,则光被溶液吸收的程度就越大,透过光的强度就越小。

照射在薄层上的光强度为I ,当光线通过该薄层后,被吸收的光强度(即减弱的光强度)该式表示当溶液浓度一定时,光的吸收与液层厚度的关系,称为朗伯定律。

A 称为吸光度(也称光密度D 或消光度E ),该式说明了当溶液浓度一定时,光的吸收与液层厚度的关系,称为朗伯定律。

3、 比耳定律对于液层厚度一定而浓度不同的溶液(即颜色深浅不同的溶液)来说,光的吸收是与溶液的浓度(C )及入射光的强度成正比,即入射光的强度减弱的情况与浓度固定而改变厚度的情况完全相似。

如图所示:如果用I 表示透过光强度,则上式改为:或式中k 4为比例常数,与入射光波长及溶液的性质、温度有关。

比耳定律表明:当入射光的波长、液层厚度和溶液温度一定时,溶液的吸光度与溶液的浓度成正比。

4、 朗伯-比尔定律表达式b k T1lg I I lg A 20⋅===c k I Ilg 40⋅=c k T1lg I I lg A 40⋅===abc I I A t ==0lg 或者 ,其中透光度 0I I T = (透射光强度I 与入射光强度I 0之比) TA 1lg = 5、吸光系数、摩尔吸光系数和桑德尔灵敏度朗伯—比耳定律中的常数K 值随c 、b 所用单位不同而不同,有两种表示方式。

1. 吸收系数a当浓度c 的单位为g/L ,液层厚度b 用“cm ”表示时,常数K 以a 表示,称为吸光系数。

单位为L/g ·cm 。

此时,朗伯—比耳定律变为:A = a·b·c2. 摩尔吸收系数κ当浓度c 的单位为mol/L ,液层厚度b 用“cm ”表示时,则K 用另一符号κ表示。

κ称为摩尔吸光系数,单位为L/mol ·cm 。

此时,朗伯—比耳定律为:A = κ·b·cκ表示浓度为1mol/L 的有色溶液在1cm 的比色皿中,在一定波长下溶液对光的吸收能力(即在一定波长下测得的吸光度数值)。

它是每个有色化合物在一定波长下的特征常数,在比色分析中用它来衡量显色反应的灵敏度,κ值越大,则该显色反应越灵敏。

例:已知含Fe 2+浓度为500微克/升的溶液,用邻二氮菲比色测定铁,比色皿长度为2cm ,在波长508nm 处测得吸光度A=0.19,计算摩尔吸光系数。

解:Fe 原子量为55.856 偏离朗伯—比尔定律的原因1) 工作曲线:(mol/L)108.955.8510500][Fe 662--+⨯=⨯=6108.92κκbc 0.19A -⨯⨯⨯===46101.1108.920.19κ⨯=⨯⨯=-根据朗伯-比尔定律,当波长和强度一定的人射光通过光程长度固定的有色溶液时,吸光度与有色溶液浓度成正比。

通常在比色分析及可见光分光光度分析中,需要绘制标准曲线(工作曲线),即在固定液层厚度及人射光的波长和强度的情况下,测定一系列不同浓度标准溶液的吸光度,以吸光度为纵坐标,标准溶液浓度为横坐标作图。

这时应得到一条通过原点的直线。

该直线称为标准曲线或工作曲线。

在溶液浓度较高时,标准曲线不一定为直线。

图分光光度工作曲线2) 非单色光引起的偏离。

非单色光引起的偏离朗伯-比尔定律的基本假设条件是入射光为单色光。

但目前仪器所提供的入射光实际上是由波长范围较窄的光带组成的复合光。

由于物质对不同波长光的吸收程度不同,因而引起了对比耳定律的偏离。

3) 化学因素引起的偏离。

朗伯-比耳定律的基本假设,除要求入射光是单色光外,还假设吸收粒子是独立的,彼此之间无相互作用,因此稀溶液能很好地服从该定律。

在高浓度时(通常>0.01mol/L)由于吸收组分粒子间的平均距离减小,以致每个粒子都可影响其邻近粒子的电荷分布,这种相互作用可使它们的吸光能力发生改变。

一般认为比耳定律仅适用于稀溶液。

7.3紫外-可见分光光度计7.3.1、分光光度计及其基本部件将使用光电比色计测定溶液的吸光度以进行定量分析的方法称为光电比色法。

将使用分光光度计进行测定的方法称为分光光度法。

两种方法的测定原理是相同的,所不同的仅在于获得单色光的方法不同,前者采用滤光片,后者采用棱镜或光栅等单色器。

由于两者均基于吸光度的测定,所以它们统称为光度分析法。

光度计基本部件:光源、单色器、吸收池、检测系统图光度计的一般结构图721型分光光度计的构造⑵双硫腙(即二苯硫腙)属于含S的显色剂,是分光光度分析中最重要的显色剂,是目前萃取比色测定Cu2+、Pb2+、Zn2+、Cd2+、Hg2+等很多重金属离子的重要试剂。

⑶二甲酚橙(缩写为XO,结构式三师P.325)二甲酚橙属三苯甲烷显色剂,是配位滴定中常用的指示剂,也是光度分析中良好的显色剂。

在酸性溶液中能与多种金属离子生成红色或紫红色的配合物。

⑷偶氮胂Ⅲ(又称为铀试剂Ⅲ)属偶氮类螯合显色剂。

它可以在强酸性溶液中,与Th(Ⅳ)、Zr(Ⅳ)、U(Ⅳ)等生成特别稳定的有色络合物。

在此酸度下金属离子的水解现象可不考虑,因而简化了操作手续,提高了测定结果的重现性和可靠性。

目前偶氮胂Ⅲ已广泛用于矿石中铀、钍、锆以及钢铁和各种合金中稀土元素的测定。

⑸铬天蓝S(也称铬天菁S,简称为CAS)属于三苯甲烷类螯合显色剂,是测量铝的很好试剂。

㈡影响显色反应的因素1. 显色剂用量生成有色配合物的显色反应一般可用下式表示:对稳定性较高的配合物,只要加入稍过量的试剂,显色反应即能定量进行。

对于有些显色反应,显色剂如果加入太多,有时反而会引起副反应,对测定不利。

必须严格控制试剂的用量。

例如:以SCN -作显色剂测定钼时,是要求生成红色的Mo(SCN)5配合物,当SCN-浓度过高时,可生成浅红色的Mo(SCN)6-配合物,反而使其吸光度降低。

Mo(SCN)32+Mo(SCN)5Mo(SCN)6-(浅红) (橙红) (浅红)而以SCN -作显色剂测定Fe3+时,随SCN -浓度增大,逐步生成颜色更深的不同配位数的配合物,使吸光度值增大。

对上述两种情况,就必须严格控制显色剂的用量,才能得到准确的结果。

在实际工作中,通常根据实验结果来确定显色剂的用量。

通常有下列三种情况:⑴该曲线较常见。

⑵该曲线与第一种曲线不同的地方是曲线的平坦区域较窄。

⑶该曲线与前两种情况完全不同。

2. 溶液的酸度酸度对显色反应的影响主要有以下几方面:⑴影响显色剂的浓度和颜色MeR + H+Me++ HR⑵影响被测金属离子的存在状态Al(H2O)63+Al(H2O)5OH2+ + H+2Al(H2O)5OH2+Al2(H2O)6(OH)33+⑶影响配合物的组成对于某些生成逐级配合物的显色反应,酸度不同,配合物的配位比不同,其色调也不同。

相关文档
最新文档