垂直于玄的直径

合集下载

九年级数学垂直于弦的直径

九年级数学垂直于弦的直径

在机械制造中应用
机械制造中的轴心定位
在机械制造中,垂直于弦的直径原理可用于轴心的定位。通过确保轴心与某个参考平面垂直,可以确保机械部件 的精确运动和定位。
机械制造中的切削工具设计
在切削工具的设计中,垂直于弦的直径可用于确定切削刃的角度和形状。这有助于确保切削工具在加工过程中能 够准确地去除材料,并获得所需的表面质量和精度。
九年级数学垂直于弦的直径

CONTENCT

• 垂直于弦的直径基本概念与性质 • 垂直于弦直径在圆中位置关系 • 垂直于弦直径判定方法 • 垂直于弦直径在几何证明中应用 • 垂直于弦直径在解决实际问题中应
用 • 总结回顾与拓展延伸
01
垂直于弦的直径基本概念与性质
定义及性质介绍
01
定义:垂直于弦的直径是指一 个圆的直径,它垂直于给定弦
80%
问题三
探讨垂径定理在解决实际问题中 的应用,如建筑设计、工程测量 等领域中如何利用垂径定理进行 计算和测量。
THANK YOU
感谢聆听
03
D、∵AB是⊙O的直径,AB⊥CD,∴DE=CE,故本选项正确;
04
故选C.
03
垂直于弦直径判定方法
利用垂径定理判定
垂径定理
垂直于弦的直径平分该弦,并且平分该弦所对的两条弧。
判定方法
若一条直径垂直于弦,则该直径平分该弦,且平分该弦所对的两条弧。因此, 我们可以通过观察图形或计算来验证这一条件,从而判断一条直径是否垂直于 弦。
解析
连接AC、FC,由于AB是⊙O的直径且AB⊥CD, 根据垂径定理可知弧AC=弧AD。因此, ∠AFC=∠ACF。又因为∠GFC是弧AC所对的圆周角, ∠ACF是弧AD所对的圆周角,所以∠GFC=∠ACF。 因此,∠AFD=∠GFC。

24.1.2垂直于弦的直径

24.1.2垂直于弦的直径

垂直于弦的直径平分弦, 并且平分弦所对的两条弧
一条直线满足:①过圆心;②垂直于弦; ③平 分弦(不是直径); ④平分弦所对的优弧; ⑤平分弦所对的劣弧.满足其中两个条件就 可以推出其它三个结论(“知二推三”)
两条辅助线: 连半径,作弦心距
基本图形及 构造Rt△利用勾股定 变 式 图 形 理计算或建立方程.
在圆中有关弦长a,半径r, 弦心距d
·O
(圆心到弦的距离),弓形高h的计算题
时,常常通过连半径或作弦心距构造直角 A C
B
ቤተ መጻሕፍቲ ባይዱ
三角形,利用垂径定理和勾股定理求解. C
弓形中重要数量关系
h
弦a,弦心距d,弓形高h,半径r A
D
B
之间有以下关系:
rd
d+h=r
r2
d2
a 2
2
O
课堂小结
垂径定理
内容 推论 辅助线
垂直于弦的直径
二 垂径定理及其推论
问题:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为
E.你能发现图中有那些相等的线段和劣弧? 为什么?
线段: AE=BE
C
弧: A⌒C=⌒BC,⌒AD=B⌒D
理由如下:
·O
把圆沿着直径CD折叠时,CD两侧的
两个半圆重合,点A与点B重合,AE与 A E
B
BE重合,AC⌒和BC⌒,AD⌒与BD⌒重合.
D
归纳总结
垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧. C
推导格式:
∵ CD是直径,CD⊥AB,
∴ AE=BE, A⌒C =⌒BC, A⌒D =B⌒D.
·O AE B
D
温馨提示:垂径定理是圆中一个重要的定理,三种

垂直于弦的直径

垂直于弦的直径

垂直于弦的直径简介在数学几何中,弦是圆上的线段,而直径是连接圆的两个点的线段,且经过圆心。

垂直于弦的直径指的是与弦互相垂直的直径。

本文将介绍垂直于弦的直径的性质和相关定理。

垂直于弦的直径的性质1.垂直性质:垂直于弦的直径与弦互相垂直。

也就是说,如果一条直径与一个弦相交,并且与这个弦的交点互相垂直,那么这条直径就是垂直于该弦的直径。

2.关于圆心的性质:垂直于弦的直径通过圆心。

由弦的性质可知,连接弦的两个端点和圆心的线段形成一个三角形,而垂直于弦的直径正好是这个三角形的高。

3.长度性质:垂直于弦的直径是所有以弦为直径的圆中最长的直径。

垂直于弦的直径的定理1.定理一:垂直于弦的直径平分弦如果一条直径垂直于计圆的一条弦,那么这条直径将会平分该弦。

即弦的两个端点到直径上的交点的距离相等。

2.定理二:以垂直于弦的直径为直径的圆相切于弦以垂直于弦的直径为直径的圆和原有的圆相切于弦的两个端点。

这意味着,以垂直于弦的直径为直径的圆与原有圆恰好有一个公共的切点。

3.定理三:垂直于弦的直径经过圆心垂直于弦的直径经过圆心,也就是说,垂直于弦的直径的两个端点和圆心三个点共线。

应用举例应用一:判定两条弦是否垂直对于给定的两条弦,如果它们的交点和圆心三点共线,那么这两条弦就垂直。

应用二:平分弦当我们需要将一条弦平分为两段时,可以通过构造垂直于弦的直径来实现。

只需在弦的中点上构造垂直于弦的直径,即可将弦平分为两段。

结论垂直于弦的直径在圆的几何性质中扮演着重要的角色。

它具有许多有趣的性质和定理,对于解决几何问题有着重要的作用。

通过理解垂直于弦的直径的性质,我们能够更深入地理解圆的几何特征,提升解题的能力。

Markdown文本格式的输出方便阅读和编辑,使得文档的格式整齐简洁。

你可以使用Markdown编辑器或文本编辑器来查看和编辑本文的Markdown代码。

垂直于弦的直径ppt课件

垂直于弦的直径ppt课件

注意:过圆心和垂直于弦两个条件缺一不可
O
A
进一步,我们还可以得到结论:
B
E
D
平分弦(不是直径)的直径垂直于弦,并且平
分弦所对的两条弧。
•即:如果CD过圆心,且AE=BE
则CD⊥AB, AC= BC, AD= BD
7
C
O
垂径定理:
A
M
B 由
① CD是直径 ② CD⊥AB
可推得
D
推论:
O
由 ① CD是直径 可推得
在Rt △ AOE 中
AO2 OE2 AE2
·
O
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
如上图.若⊙O的半径为10cm,
OE=6cm,则AB= cm。 9
1.下列图形是否具备垂径定理的条件?
C
c
C
C
A
D
B
O
O
O
O
A
E
B
A
E
BA
EB
D

不是

D
不是
注意:定理中的两个条件(直 径,垂直于弦)缺一不可!
OEA 90 EAD 90 ODA 90
∴四边形ADOE为矩形, AE 1 AC,AD 1 AB
2
2
又 ∵AC=AB
C
∴ AE=AD ∴ 四边形ADOE为正方形.
E
·O
A
D
B
17
M
C
D
A
B
A
B
.
O
O.
E AC
DB
.O
N
小结:解决有关弦的问题,经常是过圆心作

24.1.2垂直于弦的直径 垂径定理三种语言

24.1.2垂直于弦的直径  垂径定理三种语言

提示:此中直角三角形AOD中只有A D是已知量,但可以通过弦心距、半径、 拱高的关系来设未知数,利用勾股定理列 出方程。利用垂径定理进行的几何证明
7.2m
37.4m
C A
D
B
O
关于弦的问题,常 常需要过圆心作弦 的垂线段,这是一 条非常重要的辅助 线。 圆心到弦的距离、 半径、弦构成直角 三角形,便将问题 转化为直角三角形 的问题。

解:如图,用AB表示主桥拱,设AB 所在的圆的圆心为O,半径为r.
C
D B
A ⌒ 经过圆心O作弦AB的垂线OC垂足为
D,与AB交于点C,则D是AB的中 点,C是⌒ AB的中点,CD就是拱高.
∴ AB=37.4m,CD=7.2m
∴ AD=1/2 AB=18.7m,OD=OC-CD=r-7.2 ∵ OA OD AD
C M H A E D F B O N
2 2
如图所示,一座圆弧形的拱桥,它所 在圆的半径为10米,某天通过拱桥的 水面宽度AB为16米,现有一小帆船高 出水面的高度是3.5米,问小船能否从 拱桥下通过?
1.已知弧AB,用直尺和圆规求作这条弧的中点。 2. 已知弧AB,用直尺和圆规求作这条弧的四等 分点。
N D
1.作 法 1.连接AB;
2 2 2
O
∴ r 18.7 r 7.2
2 2
2
解得r=27.9(m) 即主桥拱半径约为27.9m.
方法总结
对于一个圆中的弦长a、圆心到弦的 距离d、圆半径r、弓形高h,这四个量 中,只要已知其中任意两个量,就可 以求出另外两个量,如图有:

⑴d + h = r
a 2 ⑵ r d ( ) 2
垂径定理三种语言

课件《垂直于弦的直径》优秀课件完整版_人教版1

课件《垂直于弦的直径》优秀课件完整版_人教版1

∴⊙O的半径为5厘米。
解决求赵州桥拱半径的问题
AB
如图,用A⌒B表示主桥拱,设A⌒B所在圆的圆心为O,半 径为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC 与AB 相交于点D,根据前面的结论,D 是A⌒B 的中点, C是AB的中点,CD 就是拱高.AB=48米,CD=16米
C
A
D
B
R
O
三、
A⌒D=⌒BD

垂径定理的推论
通过垂径定理的证明及应用,我们还可以进一步得到 垂径定理的推论:平分弦(不是直径)的直径垂直于 弦,并且平分弦所对的两条弧.
例 如图所示,⊙O的直径CD=10 cm,AB是⊙O的弦, AM= BM,OM∶OC=3∶5,求AB的长.
解:∵圆O的直径CD=10cm, ∴圆O的半径为5cm,即OC=5cm, ∵OM:OC=3:5, ∴OM= 3 OC=3cm, 连接OA,5 ∵AB⊥CD, ∴M为AB的中点,即AM=BM=1 AB,
船能过拱桥吗
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出 水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水 面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?
●相信自己能独立 完成解答.
船能过拱桥吗
解 : 如 图 ,用 AB表 示 桥 拱 , AB 所 在 圆 的 圆 心 为O,半 径为 R m, 6.下列经说法过错圆误的心是O( 作) 弦 A B 的 垂 线 O D, D 为 垂 足 , 与AB 相 交 于 点 C . 根
㎝,
O
D
A
B
C
C
O
反思:在⊙ O中,若⊙ O的半径r、 A
B
圆心到弦的距离d、弦长a中,
D

24.1.2 垂直于弦的直径(2)课件

24.1.2 垂直于弦的直径(2)课件

②⑤ ③④
③⑤ ④⑤
①③④ ①②⑤
①②④ ①②③
思考
⌒ 你能确定AB的圆心吗?
C
作法: 1. 连接AB. 2. 作AB的垂直 A ⌒ 平分线 ,交AB 于点C. 3. 作AC的垂直 平分线. 4. 两条垂直平分 线交于一点O.
B
⌒ 点O就是AB的圆心.
O
你 能 破 镜 重
m
n
A
C

吗?
B O
作法: 作弦AB、AC及它们的垂直平分线m、n,交 于O点;以O为圆心,OA为半径作圆. 依据: 弦的垂直平分线经过圆心,并且平分弦 所对的两条弧.
这五条拿出任意两条作为题设, 其余三条作为结论,会出现多 少个命题? 这些命题都是真命 题吗?
探究
C
命题1 垂径定理的推论1
① 直径 ③ 平分弦
② 垂直于弦 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
⌒ ⌒ ⌒ ⌒
已知:CD是直径,AB是弦,CD平分AB
E
A
O B
求证:CD⊥AB,AD=BD,AC=BC
B
2 5cm .
2.过⊙O内一点M的最长弦长为4厘米,最短弦长为
O
P E C
D
O
M
A
O B N
D
探究
命题2 垂径定理的推论2 ① 直径 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧

⌒ ⌒ ⌒
C
② 垂直于弦 ③ 平分弦 O B
已知:AB、CD是弦,CD⊥AB,CD平分AB 求证:CD是直径,AD=BD,AC=BC
E A
D
弦的垂直平分线经过圆心,并且平分弦所对的 两条弧.
பைடு நூலகம்

垂直于弦的直径课件

垂直于弦的直径课件

04
垂直于弦的直径与勾股定理 的关系
勾股定理的表述
勾股定理
在一个直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理的证明方法
利用相似三角形的性质、四边形面积 的计算、代数方法等。
垂直于弦的直径与勾股定理的联系
垂直于弦的直径是直角三角形斜 边的中线。
根据勾股定理,直角三角形斜边 的中线长度等于斜边的一半。
在航海学中,勾股定理用于确定 船只的位置和航向,例如确定船
只与陆地之间的距离和角度。
05
垂直于弦的直径在现实生活 中的应用
工程设计中的应用
桥梁设计
在桥梁设计中,垂直于弦的直径 可以用于确定桥梁的承重能力和 稳定性,确保桥梁的安全性和可
靠性。
建筑设计
在建筑设计中,垂直于弦的直径可 以用于确定建筑物的结构强度和稳 定性,保证建筑物的安全和耐久性 。
答案
$( - frac{sqrt{3}}{3},frac{sqrt{3}}{3})$
题目
已知圆C:$(x - a)^{2} + (y - b)^{2} = r^{2}$,直线l过 点$(a,b)$且与圆C交于A,B两点,$angle AOB = 120^{circ}$(O为坐标原点),则实数r的取值范围是 ____.
感谢您的观看
THANKS

连接圆上任意两点的线段 。
直径
经过圆心,并且两端点都 在圆上的线段。
性质
弦的中垂线经过圆心
垂直于弦并且经过圆心的线段称为弦 的中垂线,它也经过圆心。
弦被直径平分
垂直于弦的直径将弦分为两段相等的 部分。
弦与直径形成的角为直角
垂直于弦的直径与弦形成的角为直角 ,即弦与直径垂直。

垂直于弦的直径

垂直于弦的直径

垂直于弦的直径什么是垂直于弦的直径?在圆的几何学中,直径是两个在圆周上相对点之间的线段,并且经过圆心。

而垂直于弦的直径是指与给定弦垂直的直径。

换句话说,如果一个直径与某条弦垂直相交,那么它就是垂直于弦的直径。

特性和性质1.垂直于弦的直径的性质之一是它们互相垂直。

这意味着,如果两条直径都是垂直于同一条弦,那么这两条直径相互垂直。

2.对于一个给定的圆和一条弦,只有一个垂直于该弦的直径。

这是因为直径经过圆心,且圆心位于弦的垂直平分线上。

3.垂直于弦的直径被称为弦的直径。

这是因为垂直于弦的直径通过弦的中点,并将弦一分为二。

4.对于一个给定的圆,以及圆心处的一点,存在唯一的垂直于通过该点的弦的直径。

这是因为垂直于弦的直径经过圆心。

如何证明一条直径垂直于弦?要证明一条直径垂直于弦,可以使用以下步骤:1.假设有一个圆,以及一条弦和它的中点。

我们需要证明通过该中点的直径是垂直于弦。

2.通过指定的弦的两个端点和圆心绘制弧。

3.连接弧的两个端点与圆心,形成两条半径。

4.根据性质,半径与圆周相切于弦的端点。

5.通过弦的中点绘制一条水平线段,并通过圆心绘制一条垂直线段。

6.证明水平线段与垂直线段相交于直径的一点。

7.由于水平线段与弦平行,且垂直线段与弧相切于弦的端点,因此直径与弦垂直相交。

8.因此,通过弦的中点的直径是垂直于弦的。

垂直于弦的直径的应用垂直于弦的直径的概念在几何学和数学中具有广泛的应用。

以下是几个具体的应用场景:1.圆锥与割线问题:当我们考虑一个锥体与平面相交时,垂直于割线的直径对于计算截面的半径和圆锥的体积非常有用。

2.弦截矩关系:根据垂直于弦的直径的性质,我们可以推导出弦的截矩公式。

截矩是描述截面形状的一个参数,它对于材料的强度和性能分析非常重要。

3.三角函数与圆:在三角函数中,正弦值、余弦值和正切值等与圆相关的概念经常涉及到垂直于弦的直径。

这些概念为我们理解三角函数的图像、计算角度和边长提供了基础。

垂直于弦的直径(课件)九年级数学上册(人教版)

垂直于弦的直径(课件)九年级数学上册(人教版)

解:如图,用⌒AB表示主桥拱,设⌒AB所在圆的圆
心为O,半径为R.
经过圆心O作弦AB的垂线OC,D为垂足,OC与A⌒B
相交于点C,连接OA.根据垂径定理,D是AB的中 点,C是A⌒B的中点,CD就是拱高.
由题设可知,AB=37m,CD=7.23m 所以,AD=1AB=1×37=18.5(m),OD=OC-CD=R-7.23
少?
解:过O点作OC ⊥ AB于点C,并延长CO交⊙ O于点 D,如图, 则由题意得OA = OD = 5cm ∴ OC = CD − OD = 3cm 又∵ OC ⊥ AB, ∴ AC = BC, 在Rt△ OAC中,AC = OA2 − OC2 = 4cm ∴ AB = 2AC = 8cm
例2.☉O的半径为13cm,AB、CD是☉O的两条弦,AB∥CD,AB=24cm,CD=10cm, 求AB和CD之间的距离. 【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心 异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
没有垂直
没有过圆心
➢垂径定理的几个基本图形:
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧) 结论与题设交换一条,命题是真命题吗? ①过圆心 ;②垂直于弦; ③平分弦; ④平分弦所对的优弧 ; ⑤平分弦所对的劣弧. 上述五个条件中的任何两个条件都可以推出其他三个结论吗?
①CD是直径 ②CD⊥AB,垂足为E ③AE=BE ④A⌒C=⌒BC 举例证明其中一种组合方法 已知:__①___③____;求证:_②___④___⑤__.
在△OAA′中, ∵ OA=OA′ ∴ △OAA′是等腰三角形 又∵AA′⊥CD ∴ AM=MA′ 即CD是AA′的垂直平分线
这就是说,对于圆上任意一点A,在圆上都有关于直线CD的对称点A′,因 此圆⊙的O关对于称直性线:C圆D对是称轴.对称图形,任何一条直径所在直线都是圆的对称轴.

垂径定理及其推论

垂径定理及其推论

圆部份知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,而且平分弦所对的两条弧。

(2)弦的垂直平分线通过圆心,而且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,而且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可归纳为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

2:在同圆或等圆中,若是两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都别离相等。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:若是三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形。

点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,那么有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。

过三点的圆一、不在同一直线上的三个点确信一个圆。

二、通过三角形的三个极点的圆叫做三角形的外接圆。

3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做那个三角形的外心。

直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

若是⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

垂直于弦的直径

垂直于弦的直径
强.鞠言决定挑战此人,还是由于冰炎剑晋级为王兵级武器,但饶是如此,鞠言也没有绝对の把握能击败对方.此事又身受叠伤,那就更不可能有机会了.索性,就放弃呐次对战便是.“幸好伏束大王赶来,不然鞠言战申……”波塔尪国の申肜公爵,心有余悸の说道.不久前所发生の事情,令波 塔尪国众人の心绪,也是跟着波澜起伏.波塔尪国贺荣国尪等人,肯定是不想鞠言战申身死の.他们波塔尪国与鞠言建立了良好の友情,呐对波塔尪国有利,可如果鞠言战申被杀死,那一切就都不存在了.鞠言战申能够活下来,贺荣国尪等人都拾分高兴.“伏束大王说,他来呐里,是受人之托. 不知道,究竟是哪个样の人物,才能请大王走呐一趟.”贺荣国尪低声说道.波塔尪国の几个贵族大臣,都轻轻地摇摇头.天庭大王の那个层次,是他们呐些人无法参与其中の.“陛下,鞠言战申の背后,怕是不那么简单.”申肜公爵压低声音,在贺荣国尪身边说道.“确实如此.俺之前就多次考 虑过呐个问题,鞠言战申先前在混元空间毫无名气,以他の实历,不该如此.现在看来,他先前多半是隐居在哪个地方,从未到呐外界历练过.直到不久前,他到了龙岩国成为龙岩战申.”波塔尪国点头.“那位请伏束大王出面の人,很可能是鞠言战申の长辈!”申肜公爵凝目道.贺荣国尪,叠 叠の点点头.而在贺荣国尪与麾下申肜公爵等人交谈の事候,那几位大王の心思,也都没放在已在进行の决赛第三轮挑战中.他们脑泊中,也在考虑类似の问题,他们只是都没有出声说出来而已.伏束大王临走前说の话,一直盘旋在众人脑泊中,挥之不去.伏束大王说了,他是受人之托.那么, 到底是哪个人所托?鞠言战申の身后,到底还有哪个隐藏の背鞠?他们呐些大人物,早就调查过鞠言の背鞠资料,但他们所了解の,也就是鞠言战申突然出现在龙岩国成了呐个小国の战申.再往前查找,就是一片迷雾了,几个王国,也找不到更多の信息.在发生呐件事之后,一下子便是让鞠言战 申の身份变得申秘起来.王尪们,都各怀心思.仲零王尪,心中则是微微有些激动の.由于,法辰王国或许能够获得意想不到の好处.老祖连离魂珠呐等宝物都送了出去,鞠言战申只要不是那种知恩不报の白眼狼,肯定会与法辰王国走近.鞠言战申本身实历和天资,已是有目共睹了,如果其背后, 再有哪个了不得の大人物,那对法辰王国当然是更好の.柳涛公爵,不断喊出战申们の名字.终于……“鞠言战申,你在决赛阶段第二轮挑战结束后,主动在第三轮挑战中挑战肖常崆战申.现在,你是否要放弃本次挑战?”柳涛公爵看着广场上の鞠言,大声问道.“柳涛公爵,俺放弃本次挑 战.”鞠言抬头,沉声说道.鞠言对柳涛公爵の回答,令观战区域出现阵阵躁动.由于,在第三轮挑战中,是有不少修行者在鞠言身上压保の.鞠言放弃了玄秦尪国肖常崆战申の对战,结果等同于失败.在鞠言身上押注の修行者,自是收不回他们の赌注.虽然他们也都知道鞠言战申放弃与肖常崆 战申对战の原因,但很多人仍然是非常愤怒.他们在鞠言战申身上压保了,现在呐些押注の白耀翠玉就呐样损失了.他们与鞠言无亲无故,要他们真心の理解鞠言战申放弃对战,那真是有些强人所难.不过,他们也只能嘴上抱怨或者是咒骂几句.第三零伍思章最终名次在前面几场对战中,几乎 没有人看好鞠言战申能击败对手,所以也就几乎没有人押鞠言战申获胜.到了最后一场对战,在押注大厅押鞠言战申获胜の人多了,可鞠言战申竟是直接放弃了.关系到自身利益の事候,呐些修行者自是不会站在鞠言の角度考虑.不过,他们也只能嘴上喝骂、讽刺几句,要他们站出来与鞠言 战申厮杀,那肯定没人有呐个胆子.“好!鞠言战申放弃挑战,呐一场对战,肖常崆战申获胜.”柳涛公爵当即就宣布了结果.肖常崆看了看鞠言,倒是没说哪个.说实话,如果鞠言不是由于尹红战申偷袭受伤,肖常崆也不想与鞠言搏杀,由于他对自身同样没任何胜算.他自忖,若换做是他被尹 红战申近距离偷袭,那恐怕当场就要被杀死了.而他の脾气,又不是那种暴躁非要逞强の.现在呐样,倒也符合他の想法.玄秦尪国の廉心国尪,脸色仍非常难看.在她看来,鞠言受伤,呐是难得の将其斩杀の机会.在挑战中鞠言被杀,那仲零王尪等人也无法说哪个.可惜,鞠言放弃了.鞠言放弃, 自身尪国の肖常崆战申获胜,倒也为尪国获得了不少押注积分.然而,在呐一场对战中,玄秦尪国没有压保.之前几次压保,尽皆血本无归,呐最后一场对自身尪国战申の盘口,廉心国尪却没有押注.因此,廉心国尪当然是非常の憋屈,她能预料,必然有很多人会在此事上取笑她以及玄秦尪国. 她坐在诸多顶级尪国中间,面色阴沉如水,一言不发!……决赛阶段第三轮对战,持续了一天左右の事间便全部结束.至此,本届战申榜排位赛基本结束.接下来,就是确定战申榜排名以及发放奖励.悬空台上,几位王尪都看着天轮王国の万江王尪.在第三轮挑战中,天轮王国の安吉战申挑战 了尹红战申,可尹红战申直接随段泊王尪提前离开了.呐,就出现了一个问题.按道理,应该是判尹红战申败给安吉战申.如果直接判安吉战申败,那就是不公平了.可判尹红战申败,那就会得罪红叶王国!“万江王尪,你怎么说?”仲零王尪对万江王尪问道.仲零王尪也是有些头疼,本届战申

《垂直于弦的直径》的说课稿

《垂直于弦的直径》的说课稿

《垂直于弦的直径》的说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、条据文书、策划方案、规章制度、心得体会、名人名言、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, doctrinal documents, planning plans, rules and regulations, personal experiences, famous quotes, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!《垂直于弦的直径》的说课稿《垂直于弦的直径》的说课稿作为一名默默奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以有效提高教学效率。

垂直于弦的直径的数学教案

垂直于弦的直径的数学教案

垂直于弦的直径的数学教案教学目标:1. 理解垂直于弦的直径的概念。

2. 学会使用垂直于弦的直径性质定理。

3. 能够应用垂直于弦的直径解决问题。

教学重点:1. 垂直于弦的直径的概念。

2. 垂直于弦的直径性质定理的应用。

教学难点:1. 理解并证明垂直于弦的直径的性质定理。

第一章:垂直于弦的直径的概念1.1 引入垂直于弦的直径的概念使用几何画图软件或实物模型,展示一个圆和一条弦。

引导学生观察和讨论:在圆中,是否存在一条直径与给定弦垂直相交?1.2 定义垂直于弦的直径给出垂直于弦的直径的定义:在一个圆中,如果一条直径与某条弦垂直相交,这条直径被称为垂直于该弦的直径。

1.3 垂直于弦的直径的性质引导学生观察和讨论:垂直于弦的直径具有哪些特殊的性质?总结出垂直于弦的直径的两个性质:1) 垂直于弦的直径将弦平分。

2) 垂直于弦的直径将弦所对的圆周角平分。

第二章:垂直于弦的直径性质定理2.1 引入垂直于弦的直径性质定理使用几何画图软件或实物模型,展示一个圆和一条弦。

引导学生观察和讨论:在圆中,如何判断一条直径是否垂直于给定弦?2.2 证明垂直于弦的直径性质定理给出垂直于弦的直径性质定理的证明:定理:在一个圆中,如果一条直径垂直平分一条弦,这条直径垂直于该弦。

证明步骤:1) 画出圆和一条弦,以及垂直平分该弦的直径。

2) 标记出直径的两个端点和弦的两个端点。

3) 利用圆的性质,证明直径所对的圆周角是直角。

4) 利用直角的性质,得出直径垂直于弦的结论。

2.3 应用垂直于弦的直径性质定理给出几个应用例子,让学生练习使用垂直于弦的直径性质定理解决问题。

第三章:垂直于弦的直径的应用3.1 引入垂直于弦的直径的应用使用几何画图软件或实物模型,展示一个圆和一条弦。

引导学生观察和讨论:在圆中,如何找到一条垂直于给定弦的直径?3.2 找到垂直于弦的直径的方法给出找到垂直于弦的直径的方法:方法:在一个圆中,要找到一条垂直于某条弦的直径,可以先找到该弦的中点,通过该中点画出一条与弦垂直的线段,该线段即为所求的直径。

第2课时 垂直于弦的直径

第2课时  垂直于弦的直径

1.实验发现
实验: 用纸剪一个圆,沿着圆的任意一条直径
对折,重复做几次,你发现了什么?由此你 能得到什么结论?
结论: 圆是轴对称图形,其对称轴是任意一条
过圆心的直线.
2.探索
请按要求回答以下问题: 如图,AB是⊙O的一条弦,作直径CD,使
CD⊥AB,垂足为M.
(1)右图是轴对称图形吗? 如果是,其对称轴是什么?
巩固练习
1.如图,在⊙O中,弦AB的长为8 cm,圆心O
到AB的距离为3 cm,求⊙O的半径.
解: OE AB,
A
E
B
AE 1 AB 1 8 ( 4 cm).
2
2
在Rt △ AOE 中,

AO2 OE2 AE2,
AO OE2 AE2 = 32 +42 =5(cm).
推论
① CD是直径 ③ AM=BM
③AM=BM
④ AC BC ⑤ AD BD
② CD⊥AB ④ AC BC
⑤ AD=BD
例题评析
完成情境引入的问题. 如图,用 AB 表示主桥拱,设 AB 所在圆
的圆心为O,半பைடு நூலகம்为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与AB 相交于点D, 根据前面的结论,D 是AB 的中点,C是 AB 的中点,CD 就是拱高.
例题评析
解:如图,AB=37,CD=7.23,所以
C
AD 1 AB 1 37 18.5,
2
2
OD=OC-CD=R-7.23.
A
D
B
在Rt△OAD中,由勾股定理,得
R O
OA2 = AD2+OD2.

垂直于弦的直径

垂直于弦的直径

垂直弦的直径一、圆是轴对称(有无数条对称轴,过圆心的任一条直线都是对称轴);又是中心对称,对称中心是圆心.二、垂径定理 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.符号语言:∵CD 为⊙O 的直径,AB 为⊙O 的弦,且CD ⊥AB ,垂足为E ,∴ AE=BE, = , = .推 论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ∵ CD 为⊙O 的直径,AB 为⊙O 的弦(不是直径),且AE=BE.∴ CD ⊥AB , = , = .弦心距:圆心到弦的距离(垂线段OE )考点分析:垂径定理及推论的应用,证明.典型例题分析类型1. 垂径定理及推论概念例1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 例2. 如图1-2,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠ D .AD AC >例3. 如图1-3在⊙O 中,弦CD 垂直平分半径OA ,且CD =6cm ,则半径OA 的长为( )A. cm 34B. cm 54C. cm 32D. cm 8图1-2 图1-3 图1-4例4. 如图1-4,⊙O 的直径CD 与弦AB 交于点M ,添加条件:_____________(写出一个即可),就可得到M 是AB 的中点.类型2. 垂径定理的运用在垂径定理的运用中,通常的是要利用定理构建直角三角形,利用勾股定理进行运算.例5. 过⊙O 内一点M 的最长的弦长为cm 10,最短的弦长为cm 8,那么⊙O 的半径等于________cm ,OM 的长为________cm类型2. 垂径定理分类讨论 例1. 如图2-1,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) A. 5OM 3≤≤ B. 5OM 4≤≤ C. 5OM 3<< D. 5OM 4<< 图2-1例2. 已知:AB 、CD 为⊙O 的两条弦,且AB ∥CD ,⊙O 的半径为5cm ,AB=8cm ,CD=6cm ,求AB 、CD 之间的距离.例3. 已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长. 类型3. 利用垂径定理求线段长度,角度例1. 如图3-1,在圆O 中,直径AB 垂直于弦CD ,并且交CD 于E ,直径MN 交CD 于F ,且OE FD FO 2==,求COD ∠.图3-1例2. 如图3-2,AB 为⊙O 的直径,且AB ⊥弦CD 于E ,CD =16,AE =4,求OE 的长.图3-2例3. 如图3-3,在ABC Rt ∆中,∠C=900,AC=5cm ,BC=12cm ,以C 为圆心、AC 为半径的圆交斜边于D ,求AD 的长.图3-3例4. 如图3-4,已知:AB 是⊙O 的直径,弦CD 交AB 于E 点,BE =1,AE =5,∠AEC =300,求CD 的长.图3-4例5. 如图3-5,O 是两个同心圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥CD 于E ,若AB=2CD=4OE 求:大圆半径R 与小圆半径r 之比.类型4. 垂径定理相关证明例1.如图4-1,BF ,CE 是⊙O 的直径,.求证:OCN OBN ∠=∠.A图4-1例2.如图4-2,F 是以O 为圆心,BC 为直径的半圆上任一点,A 是 的中点,AD ⊥BC 于D. 求证:.21BF AD =图4-2例3.已知:如图4-3,⊙O 的弦AB ,CD 相交于点P ,PO 是APC ∠的平分线,点M ,N 分别是,的中点,MN 分别交AB ,CD 于点E ,F .求证:PO MN ⊥.图4-3例4.如图,⊙O 的直径AB 和弦CD 相交于点M ,CD AE ⊥,CD BF ⊥,垂足分别是E ,F .(1)求证:DF CE ⊥.(2)若26=AB ,24=CD ,求BF AE -的值.图4-4类型5. 垂径定理的综合应用例1. 一水平放臵的圆柱型水管的横截面如图5-1所示,如果水管横截面的半径是13cm ,水面宽24=AB ,则水管中水深是_______cm. 图5-1例2. 如图5-2,某地有一座圆弧形拱桥,桥下水面宽度为2.7米,拱顶高出水面4.2米,现有一艘宽3米,船仓顶部为方形并高出水面2米的货船要经过这里.问货船能否顺利通过这座拱桥?图5-2例3. 如图5-3,在某养殖场A 处发现高致病性禽流感,为防止禽流感蔓延,政府规定离疫点3千米范围内为捕杀区;离疫点3至5千米范围内为免疫区.现有一条笔直的公路EB 通疫区,若在捕杀区内CD =4千米,问这条公路在改免疫区内多少千米?例1. 如图6-1,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.例2. 如图6-2,AB 是⊙O 的直径,P 是AB 上一动点,C 、D 是⊙O 的两点,有∠CPB=∠DPB. 求证:PC=PD.例3. 已知:如图6-3,A,B 是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =800,B 是 中点.P ,使得AP+PB 最短;(2)若CD=4cm ,求AP+PB 的最小值.例4. 如图6-4,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F .求证: CE=DF ;OE=OF.图6-4变式题1. 如图6-5,⊙O 的直径AB 和弦CD 相交于点M ,CD AE ⊥,CD BF ⊥,垂足分别是E ,F .(1)求证:DF CE =.(2)若26=AB ,24=CD ,求BF AE -的值.图6-5变式题2:如果弦CD 是动弦,与直径AB 不相交,AE ⊥CD 于E ,BF ⊥CD 于F ,此时是否有: CE=DF ;OE=OF.如果有请证明,如果不成立,请说明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考: 问题1、图中有相等的线段吗?有相等的 劣弧吗?如果有,你能找到多少对?
相等的线段有: OA=OC=OB=OD,AB=CD
相等的弧有:
C B
AC=BD, BC=AD,
O
Hale Waihona Puke 问题2.AB作怎样的变换时,
AC=BC, AD=BD ? A
D
第1页/共23页
结论:当CD⊥AB时,
AC=BC, AD=BD
即:如果CD过圆心,
且垂直于AB,则
AE=BE,
A
AC=BC, AD=BD
第4页/共23页
C
O
E
B
D
已知:在⊙O中,CD是直径,AB 是弦,CD⊥AB。
求证:AE=BE,A⌒C=BC⌒,A⌒D=BD⌒。
验证
C
证明:垂直于弦AB的直径CD所在的
直线是⊙O的对称轴。把圆沿着直径 CD折叠时,A点和B点重合,AE和
垂径三角形
C
有哪些等量关系?
d+h=r
O
rd
E
r2 d 2 (a)2 2
A
h
B
在a,d,r,
h中,已知其中任
意两个量,可以
D
求出其它两个量
a

第13页/共23页
• 关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助 线。
• 圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角 形的问题。
D
第8页/共23页
垂径定理及其推论的图式
只要具备其中两个条件,就可推出其余三个结论.
直径平分弦
直径垂直于弦=> 直径平分弦所对的弧
直径垂直于弦
直径平分弦(不是直径)=> 直径平分弦所对的弧
直径平分弧所对的弦
直径平分弧 => 直径垂直于弧所对的弦
第9页/共23页
下列图形是否具备垂径定理的条件?

(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
OD
(1) B
C
•O
A
B
(2) D
第18页/共23页
C
•O
A
B
(3) D
(4)弦的垂直平分线一定是圆的直径。
(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。 (7)平分弦的直径垂直于弦
5
P
A 5C 1
B
在Rt△OPC中,PO=5 cm, CP=1 cm ∴OC2=52-12=24
在Rt△OAC中,AO2= AC2+ OC2
=25+24=49
∴AO=7 cm
·O
BE重合,A⌒C、⌒AD分别与B⌒C、BD重
E
合。因此⌒ ⌒ ⌒ ⌒
A
B
⌒⌒
D
AE=BE,AC=BC,AD=BD,即直
径CD平分弦AB,并且⌒平分AB及ACB
叠合法
第5页/共23页
结论:
• 垂径定理:垂直于弦的直径平分弦,并且平
分弦所对的两条弧。
即:如果CD过圆心,且垂直于AB, C
则 AE=BE O
A 18.7 D
B
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 , 即R2 18.72 (R 7.2)2.
R R-7.2
O
解得 R≈27.9(m).
答:赵州石拱桥的桥拱半径约为27.9m. 第17页/共23页
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
第14页/共23页
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗? 它的主桥是圆弧形,它的跨 度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
第15页/共23页
37.4m
7.2m
C
A
E
B
O
第16页/共23页
1300多年前,我国隋朝建造的赵州石 拱桥(如图)的桥拱是圆弧形,它的跨度(弧 所对是弦的长)为37.4m,拱高(弧的中点到 弦的距离,也叫弓形高)为7.2m,求桥拱的 半径(精确到0.1m).
C
A
B O
D
第2页/共23页
思 1.图中有哪些相等的量?
考 2.AB作怎样的变换时,
?
AC=BC, AD=BD ?
3.将弦AB进行平移时,以上结论是否C
仍成立?
4.当弦AB与直径CD不
垂直时,以上结论是否 仍成立?
A
O
B
A A
EE BB
D
第3页/共23页
猜想 :垂直于弦的直
径平分弦,并且平分
弦所对的两条弧。
第11页/共23页
B ●C
练习
如图,在⊙O中,弦AB的长为8cm,圆心O到AB 的距离为3cm,求⊙O的半径.
解: OE AB
A
E
B
AE 1 AB 1 8 4
2
2
·
在Rt△AOE中
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm 答:⊙O的半径为5cm.
第12页/共23页
•O ACB
(4)
B
•O D
C
A
(5)
第19页/共23页
C
•O A EB
D (6)
• 例 如图,已知AB是⊙O 的弦,P是AB上一点AB=10cm,PB=4cm, PO=5 cm则⊙O的半径等于 cm
7
解:连AO,过O点作OC⊥AB于C
∴AC=BC=1/2AB=5cm
∵BP==4cm
0
∴CP=1 cm
不是

C
c
C
不是
C
A
O
A
E
B
D
D
B
O A
O
E
BA
注意:定理中的两个
B
条件(直径,垂直于
弦)缺一不可!
第10页/共23页
E
A
O
O EB D
A
O
E
C
D
B
1、如图,AB是圆的弦,利 用一个三角板,你能确定这 条弦的中点吗?
A
2、如图,点C是圆的任 意一个点,利用一个三 角板,你能画出一条弦 AB,使点刚好是这条弦 的中点吗?
如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据垂径定理,D是AB的中点,C是AB 的中点,CD就是拱高.
由题设知 AB 37.4,CD 7.2,
37.4
C
AD 1 AB 1 37.4 18.7, 7.2
22 OD OC DC R 7.2.
AC= BC,
A
B
E
D
AD= BD
注意:过圆心和垂直于弦两个条件缺一不可
第6页/共23页
垂径定理 C
将题设与结论
调换过来,还
这五条进行排列
成立吗?
组合,会出现多
O
少个命题?
E
A
B
CD是直径,AB是弦, D CD⊥AB
AE=BE A⌒C=B⌒C A⌒D=B⌒D
“知二推三”
①直径过圆心 ②垂直于弦
题设
③平分弦 ④平分弦所对的优弧 ⑤平分弦所对的劣弧
结论
第7页/共23页
垂径定理的推论
• 如图,在下列五个条件中:
① CD是直径, ② CD⊥AB, ③ AM=BM, ④A⌒C=B⌒C, ⌒ ⌒ ⑤AD=BD. 只要具备其中两个条件,就可推出其余三个结论.
C
A M└
B
●O
你可以写出相应的命题吗? 相信自己是最棒的!
相关文档
最新文档