中考数学易错题精选-圆的综合练习题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学易错题精选-圆的综合练习题含详细答案

一、圆的综合

1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y. (1)如图2,当AB ⊥OM 时,求证:AM=AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.

【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 142

2

=x . 【解析】

分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出

DM ME BD AE =,进而得出AE =1

22

x (),再判断出2OA OC DM

OE OD OD

==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .

(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =1

22x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD

==, ∴

22

DM OA y OD OE x =∴=+,02x ≤<

(3)(i)当OA=OC时.∵

111

222

DM BM OC x

===.在Rt△ODM

中,

222

1

2

4

OD OM DM x

=-=-.

2

1

2

12

2

4

x

DM x

y

OD x

x

=∴=

+

-

,.解得142

2

x

-

=,或

142

2

x

--

=(舍).

(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>

∠AOC,∴此种情况不存在.

(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.

即:当△OAC为等腰三角形时,x的值为

142

2

-

点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.

2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.

(1)求证:DE是⊙O的切线;

(2)若tan A=

1

2

,探究线段AB和BE之间的数量关系,并证明;

(3)在(2)的条件下,若OF=1,求圆O的半径.

【答案】(1)答案见解析;(2)AB=3BE;(3)3.

【解析】

试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;

(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3

2

x,进而得出OE=1+2x,最后用勾股定理

即可得出结论.

试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,

∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:

∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,

∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD

AE DE AD

==.∵Rt△ABD

中,tan A=BD

AD

=

1

2

,∴

DE BE

AE DE

==

1

2

∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;

(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3

2

x.∵OF=1,∴OE=1+2x.

在Rt△ODE中,由勾股定理可得:(3

2

x)2+(2x)2=(1+2x)2,∴x=﹣

2

9

(舍)或x=2,

∴圆O的半径为3.

点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.

3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.

(1)求证:DF为⊙O的切线;

(2)若AB=4,∠C=30°,求劣弧»BE的长.

相关文档
最新文档