中考数学易错题精选-圆的综合练习题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学易错题精选-圆的综合练习题含详细答案
一、圆的综合
1.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y. (1)如图2,当AB ⊥OM 时,求证:AM=AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.
【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 142
2
=x . 【解析】
分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出
DM ME BD AE =,进而得出AE =1
22
x (),再判断出2OA OC DM
OE OD OD
==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论. 详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM , ∴AC =AM .
(2)如图2,过点D 作DE ∥AB ,交OM 于点E . ∵OB =OM ,OD ⊥BM ,∴BD =DM . ∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM 2,∴AE =1
22x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD
==, ∴
22
DM OA y OD OE x =∴=+,02x ≤<
(3)(i)当OA=OC时.∵
111
222
DM BM OC x
===.在Rt△ODM
中,
222
1
2
4
OD OM DM x
=-=-.
∵
2
1
2
12
2
4
x
DM x
y
OD x
x
=∴=
+
-
,.解得142
2
x
-
=,或
142
2
x
--
=(舍).
(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>
∠AOC,∴此种情况不存在.
(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.
即:当△OAC为等腰三角形时,x的值为
142
2
-
.
点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.
2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tan A=
1
2
,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
【答案】(1)答案见解析;(2)AB=3BE;(3)3.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x,进而得出OE=1+2x,最后用勾股定理
即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,
∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,
∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD
AE DE AD
==.∵Rt△ABD
中,tan A=BD
AD
=
1
2
,∴
DE BE
AE DE
==
1
2
,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(3
2
x)2+(2x)2=(1+2x)2,∴x=﹣
2
9
(舍)或x=2,
∴圆O的半径为3.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若AB=4,∠C=30°,求劣弧»BE的长.