高频电子线路实验报告
高频电子线路实验报告
实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
高频电路实验报告
深圳大学实验报告课程名称:高频电路实验项目名称:高频谐振功率放大器学院:信息工程专业:电子信息工程指导教师:***报告人:学号:班级:实验时间:2014年4月2日实验报告提交时间:教务部制一、实验目的:1.熟悉电子元器件和高频电子线路实验系统。
2.熟悉高频谐振功率放大器的基本工作原理,三种工作状态,功率、效率计算。
3.了解集电极电源电压VCC与集电极负载变化对谐振功率放大器工作的影响。
二、实验仪器:实验板2(丙类高频功率放大电路单元)双踪示波器AS1637函数信号发生器(用作为高频信号源)万用表三、实验原理:1.高频谐振功率放大器原理高频谐振功率放大器原理电路如图3-1所示。
图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。
R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。
C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。
L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。
C8还起隔直流作用。
R12是放大器集电极负载。
丙类功率放大器原理电路2.高频谐振功率放大器电路高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。
BG1、BG2是两级前置放大器,C2、C6用以调谐,A、B点用作为这两级的输出测试点。
BG3为末级丙类功率放大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测IC0值。
同时,E点可近似作为集电极电流iC波形的测试点(R10=10Ω,C9=100pF,因而C9并未对R10构成充分的旁路)。
K1~K3用以改变集电极负载电阻。
四、实验步骤:1.实验准备⑴在箱体右下方插上实验板2(丙类高频功率放大电路单元)。
接通实验箱上电源开关,此时箱体上12V、5V电源指示灯点亮。
⑵把实验板2右上方的电源开关(K5)拨到上面的ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。
高频电子线路实验报告
南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。
所谓“小信号”,主要是强调放大器应工作在线性范围。
高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。
高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。
图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。
调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和 功率增益。
电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示。
高频电子线路_小信号调谐放大器和高频功放_实验报告
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
《高频电子线路》频率调制与解调实验报告
《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。
根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。
调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。
调相,利用原始信号控制载波信号的相位。
这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。
2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。
绘出电路原理图,采用锁相调频的方式,给出仿真结果图。
(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。
2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。
将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。
C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。
高频电子线路课程设计实验报告
高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。
学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。
本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。
选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。
在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。
实验过程及报告的完成中存在的不足,希望老师给予纠正。
目录摘要 4设计内容...................................................................... (5)设计要求...................................................................... (5)1、基础设计...................................................................... . (6)1、选频网络的设计...................................................................... (6)2、超外差技术的设计...................................................................... ..93、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 151、调幅电路的设计: 152、解调电路的设计 20结束语 26参考文献: 26心得体会...................................................................... . (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。
高频电子线路实验报告
高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。
2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。
二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图 2-1 所示(模块②上)。
图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。
它对输入的高频小信号进行放大,并具有一定的选频作用。
基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。
可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。
四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。
2.按图 2-2 所示图连接好实验电路。
3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。
4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。
5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。
频率为 10.5MHz 左右的高频信号。
将信号输入到 2 号板的 J4 口。
先用示波器在 TH1 处观察信号峰-峰值约为 50mV。
(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。
高频电子的实验报告
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
大连理工大学高频电子线路实验报告
大连理工大学高频电子线路实验报告LT大连理工大学实验报告学院(系):信息与通信工程学院专业:通信工程班级:电通1202姓名:学号:组: __实验时间:实验室:实验台:指导教师签字:成绩:高频小信号调谐放大器一、实验目的和要求实验目的:1. 学习高频小信号谐振放大器的工程设计方法,比较工程应用与理论实际的区别2. 掌握谐振回路的调谐方法(改变可变电容、中周等参数),掌握放大器某些技术指标的测试方法(熟练使用实验仪器)3. 了解部分接入电路的形式与作用4. 掌握调谐放大器电压增益、通频带、选择性的定义、测试及计算5. 掌握信号源内阻及负载对调谐回路Q 值的影响6. 掌握高频小信号放大器动态范围的测试方法实验要求:1. 工作频率f=16.455MHz2. 输入信号Vi≤200μV(为便于示波器观察,调试时输入电压可用10mV)3. 1KΩ负载时,谐振点的电压放大倍数A_v0≥20dB,不超过35dB4. 1KΩ负载时,同频带B_W≈1MHz5. 1KΩ负载时,矩形系数K_r0.1<106. 电源电压Vcc=12V7. 放大器工作点连续可调(工作电流I_EQ=1~8mA)二、实验内容和原理图 1-1 高频小信号谐振放大器高频小信号放大电路输出波形六、问题与建议一刚开始高频小信号放大器增益太小,不能达到设计要求。
后来发现之所以不能达到增益要求:一是工作点的选取可能不大对;二是谐振频率不大对。
后来通过调节电位器改变静态工作点,调节中周使电路谐振在16.455MHz,达到了增益要求。
大连理工大学实验报告学院(系):信息与通信工程学院专业:通信工程班级:电通1202姓名:学号:组: __实验时间:实验室:实验台:指导教师签字:成绩:本地振荡器设计一、实验目的和要求实验目的:1、掌握晶体振荡器的设计方法2、掌握准确测量振荡频率的方法(例如用扫频仪测量)3、通过实验研究电路性能实验要求:1、震荡频率f LO ≈14MHz2、振荡器工作点连续可调,调节范围: 0.5mA <I E <8mA3、反馈元件可更换4、电源电压 Vcc=12V5、1KΩ负载上输出电压波形目测不失真,V LO PP ≥800mV二、 实验内容和原理晶体振荡电路有两种类型,即并联型和串联型,分别如下图所示。
高频实验报告一
《高频电子线路》实验报告实验名称:高频小信号调谐放大器实验一、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验内容1、谐振频率的调整与测定。
2、主要技术性能指标的测定:谐振频率、谐振放大增益Avo及动态范围、通频带BW0.7。
三、实验仪器1、1号板信号源模块1块2、2号板小信号放大模块1块3、6号板频率计模块1块4、双踪示波器1台5、万用表1块6、扫频仪(可选)1块四、实验原理单调谐小信号放大器工作原理:谐振放大器是采用谐振回路作为负载的放大器,它对于靠近谐振回路频率的新号有较大的增益,对于远离谐振频率的信号,增益迅速下降,所以谐振放大器不仅对高频小信号放大,而且还有选频作用。
小信号谐振放大器是接收机的前端电路,主要用于高频小信号或微弱信号的线形放大,本实验单元电路由晶体管N1和选频回路T1组成。
实验原理图如图1-1所示。
五、实验步骤及实验数据1、断电状态下,按图1-2所示进行连线。
图1-1 实验原理图(单调谐小信号放大电路)信号源(1号板)频率计(6号板)单调谐小信号放大单元(2号板)示波器P3P1输入输出RF OUT1RF OUT2P3图1-2单调谐小信号放大电路连线框图2、频率谐振的调整(1)用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
(2)顺时针调节W1到底,用示波器观测TP1,调节中周,使TP1幅度最大且波形稳定不失真。
3、动态测试保持输入信号频率不变,调节信号源模块的幅度旋钮,改变单调谐放大电路中输入信号TP3的幅度。
用示波器观察在不同幅度信号下TP1处的输出信号的峰值电压,并将对应的实测值填入下表,计算电压增益Avo。
在坐标轴中画出动态曲线。
实验数据如下:输入信号fs(MHz)10.7MHz输入信号Vi(mv)TP3 50 100 200 300输出信号Vo(v)TP1 1.04 1.32 1.51 1.70增益Avo(dB)26.4 22.4 17.6 15.1表1-1电压增益测试数据4、通频带特性测试保持输入信号幅度不变,调节信号源的频率旋钮,改变单调谐放大电路中输入信号TP3的频率。
高频电子线路实验报告
实验报告实验课程:高频电子线路学生姓名:学号:专业班级:指导教师:目录实验一、仪器的操作使用………………………………………实验二、高频小信号调谐放大器………………………………实验三、功率放大器设计………………………………………实验四、LC正弦波振荡器………………………………………实验五、晶体振荡器设计………………………………………实验六、集成模拟乘法器混频…………………………………实验七、二极管双平衡混频器…………………………………实验八、集电极调幅……………………………………………实验九、基极调幅电路…………………………………………实验十、模拟乘法器调幅(AM,DSB,SSB )……………………实验一仪器的操作使用一、实验目的1.学会高频实验室基本仪器的使用与操作,并能够运用仪器进行简单的实验;2.运用仪器调出相应要求的信号,并进行测试。
二、实验仪器示波器,信号发生器,频率特性测试仪三、实验内容1.用信号发生器产生所需要的信号,通过示波器的信号输入线加入到示波器,按一下AUTO SET键,示波器自动识别,显示出信号波形,在按一下Measure键,示波器出现信号频率、幅度等参数。
2.设置高频正弦波信号的频率为10.8MHz,按照表格分别设置信号的幅度,测出对应的输出信号的峰峰值。
3.按调幅键键,进行调幅波信号的产生和观测。
四、实验数据实验误差:接负载:(1)×1档100mv 22.1 % 150mv 19% 200mv 16% 250mv 15.3% (2)×10档100mv 1.4% 150mv 1.9% 200mv 1.6% 250mv 1.8% 空载:(1)×1档100mv 6.0 % 150mv 15.4% 200mv 14.1% 250mv 12.2% (2)×10档100mv:7150mv 9.1% 200mv 8.1% 250mv 6.3%实验二高频小信号调谐放大器实验五、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
南理工高频电子线路实验-小信号调谐实验报告
小信号调谐放大一、实验目的(1)掌握小信号调谐放大器的基本工作原理;(2)掌握谐振放大器电压增益、通频带和选择性的定义、测试及计算; (3)了解高频小信号放大器动态范围的测试方法;二、实验原理高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大信道中的高频小信号。
为使放大信号不失真,放大器必须工作在线性范围内。
高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。
高频小信号放大器电路主要由放大器与选频回路两部分构成。
用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。
用于调谐的选频器件可以是LC 谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC 集中滤波器,声表面波滤波器等。
本实验用三极管作为放大器件,LC 谐振回路作为选频器。
(1)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1(a )所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率12s f MHZ 。
基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。
可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率0f ,谐振电压放大倍数VO A ,放大器的通频带BW 及选择性(通常用矩形系数0.1r K 来表示)等。
1-1a 1-1b谐振频率0f 的表达式为∑=LC f π210 ∑C 为调谐回路的总电容,L 为调谐回路电感线圈的电感量(2)双调谐放大器:双调谐放大器具有频带较宽、选择性较好的优点。
双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改用双调谐回路。
其原理基本相同。
三、实验内容(1)调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即V BQ )和R5两端的电压(即V EQ ),调整可调电阻W3,使V EQ =4.8V ,记下此时的V BQ 、V EQ ,并计算出此时的I EQ =V EQ /R5(R5=470Ω)。
高频电子线路实验报告
高频电子线路实验报告实验一、调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
3.熟悉谐振电路的幅频特性分析——通频带与选择性。
4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验电路图 1-1 单调谐回路谐振放大器原理图四、实验内容及步骤1、(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K,测量各静态工作点,并计算完成表1-1表1-1*Vb,Ve是三极管的基极和发射极对地电压。
3.动态研究(1)测量放大器的动态范围Vi ~ Vo(在谐振点上)a.选R=10K ,Re=1K 。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为,调节Ct,使回路“谐振”,此时调节Vi由变到,逐点记录Vo电压,完成表1-2的第二行。
(Vi的各点测量值也可根据情况自己选定)b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
表1-2*Vi , Vo可视为峰峰值(2)测量放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=为中心频率,然后保持输入电压 V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量Vo变化快的点),测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的倍的两个频率之差为放大器的3dB带宽)。
高频电子线路实验报告
学生姓名:组号:实验名称:高频电子线路实验报告实验一一、实验名称:信号放大电路设计与测试。
二、实验目的:(1)进一步学习信号放大电路的工作原理。
(2)掌握信号放大电路的设计、计算和测量方法。
三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。
图1-2。
OP27引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(5)信号源一台(3):实验器材:1.运算放大器:OP27 二块2 8脚插座二块3.1KΩ电阻三支4.50KΩ电位器一个5. 1µF电容(105) 二个6.33KΩ电阻二个四、实验过程及数据、现象记录:输入Vi:1 mVpp。
五、实验数据分析、误差分析、现象分析:(1)根据原理电路计算出放大倍数A1、A2:A1=-R2/R1=-33kΩ/1kΩ=-33A2=(1+(R5+RW1)/R4)=1+(33kΩ+20KΩ)/1 kΩ=54A0=-33*54=-1782(2)测量出实际电路的放大倍数A0,与计算结果比较。
A(实际)相对误差:18671782100% 4.77% 1782-⨯=数据分析:相对误差有点大,但波形美观,放大倍数明显,较为成功。
估计误差主要是由器件测量误差引起的。
六、回答思考题:(1)信号放大电路与哪些电路参数有关?答:电阻接入方式,以及接入的电阻的阻值大小有关。
(2)电容C1、C2在电路中起什么作用?答:起隔直作用。
防止相互之间产生干扰。
实验二一、实验名称:正弦波振荡电路二、实验目的:(1)进一步学习RC正弦波振荡电路的工作原理。
(2)掌握RC正弦波振荡频率的调整和测量方法。
三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。
图2-2 OP37引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(3):实验器材:1.运算放大器:OP37 一块2 8脚插座一块3.10KΩ电阻三支4.10KΩ电位器一个5.15KΩ电阻一支6.2.2KΩ电阻一支7. 0.01µF电容(103) 二个8. 二极管二个四、实验过程及数据、现象记录:五、实验数据分析、误差分析、现象分析:相对误差:1.591 1.477100%7.17%1.591-⨯=RC 桥式振荡电路的工作原理及分析方法:为了使振荡幅度稳定,通常在放大电路的负反馈回路里加入非线性元件来自动调整负反馈放大电路的增益,从而维持输出电压幅度的稳定。
中北大学高频电子线路实验报告 很好的哦
高频电子线路实验中北大学高频电子线路实验报告班级:姓名:学号:时间:实验一低电平振幅调制器(利用乘法器)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。
2.掌握测量调幅系数的方法。
3.通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验仪器设备1.双踪示波器。
2.SP1461型高频信号发生器。
3.万用表。
4.TPE-GP4高频综合实验箱(实验区域:乘法器调幅电路)四、实验电路说明图幅度调制就是载波的振幅受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波5-1 1496芯片内部电路图信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。
本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5、V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
用1496集成电路构成的调幅器电路图如图5-2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。
高频电子实验报告
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
高频电子线路实验报告
高频实验报告2013年12月实验一、调幅发射系统实验、实验目的与内容:通过实验了解与掌握调幅发射系统,了解与掌握LC 三点式振荡器电路、三极 管幅度调制电路、高频谐振功率放大电路。
二、实验原理:1、LC 三点式振荡器电路:曲0KSA匡T3-1 H 嫌斎戎验或幣隔吨堕原理:LC 三点式振荡器电路是采用LC 谐振回路作为相移网络的LC 正弦波振 荡器,用来产生稳定的正弦振荡。
图中5R5, 5R6, 5W2和5R8为分压式偏置电阻, 电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。
5R3 5W1 5L2以及5C4 构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZE 弦振荡信号。
原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同 作用下产生所需的振幅调制信号。
图中7R1, 7R4, 7W1和7R3为分压式偏置电阻, 电容7C10 7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号 输出处输出所需的振幅调制信号。
3、高频谐振功率放大电路:V5-1—1廿4FilKrT、ITl “I .-------osc IP 5UTSG TU J 曰r I —RKI二乍工 朋U 2SI * o J I ---- (SClO-Ll cH __.5C1J-IWSCJ印會艸:I 1UUKETt3sr 2原理:高频谐振功率放大电路是工作频率在几十放大电路。
图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管 6BG1偏置电压,输出采用6C5 6C6 6L1构成的T 型滤波匹配网络,末级高频 功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用 6C13 6C13 6L3和6L4构成的T 型滤波匹配网络。
4、调幅发射系统:原理:首先LC 振荡电路产生一个频率为30MHZ 幅度为lOOmV 的信号源,然 后加入频率为1KHZ 幅度为lOOmV 的本振信号,通过三极管幅度调制,再经过 咼频谐振功率放大器输出稳定的最大不失真的正弦波。
高频电子线路实验报告
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
高频电子线路实验报告(总10页)
高频电子线路实验报告(总10页)摘要高频电子线路是指在高频范围内运作的电子设备和电路,具有良好的信号传输和处理能力。
本实验以微带衰减器为例,研究了高频电路的设计和制作方法,并测试了衰减器的性能指标。
实验结果表明,在合理的设计和制作条件下,微带衰减器能够实现准确的信号衰减和频率响应。
关键词:高频电子线路;微带衰减器;设计;制作;测试AbstractHigh frequency electronic circuit refers to electronic devices and circuits that operate in the high frequency range and have good signal transmission and processing capabilities. In this experiment, a microstrip attenuator was taken as an example to study the design and manufacturing methods of high frequency circuits, and the performance indicators of the attenuator were tested. The experimental results show that under reasonable design and manufacturing conditions, microstrip attenuators can achieve accurate signal attenuation and frequency response.Keywords: high frequency electronic circuit; microstrip attenuator; design; manufacturing; testing1.实验目的通过设计和制作微带衰减器,学习高频电子线路的设计原理和制作方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北联合大学轻工学院实验报告实验名称:双调频回路谐振放大器成绩:姓名:秦超班级:09电科1 组数:200915420132 设备编号:日期:2011.11.30指导老师:安老师批阅老师:年日实验2 双调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.熟悉耦合电容对双调谐回路放大器幅频特性的影响;3.了解放大器动态范围的概念和测量方法。
1.采用点测法测量双调谐放大器的幅频特性;2.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;3.用示波器观察放大器动态范围。
四、基本原理1.双调谐回路谐振放大器原理顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。
两者之间,可采用互感耦合,或电容耦合。
与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。
电容耦合双调谐回路谐振放大器原理图如图2-1所示。
与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。
2.双调谐回路谐振放大器实验电路双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。
图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。
2K01用以改变集电极负载。
2K03用来改变放大器输入信号,当2K03往上拨时,放大器输入信号为来自天线上的信号,2K03往下拨时放大器的输入信号为直接送入。
输出输图 2-2 双调谐回路谐振放大器实验电路五、实验步骤1.实验准备在实验箱主板上插上双调谐回路谐振放大器模块。
接通实验箱上电源开关,按下模块上开关2K1接通电源,此时电源指示灯点亮。
2.双调谐回路谐振放大器幅频特性测量本实验仍采用点测法,即保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性(如果有扫频仪,可直接测量其幅频特性曲线)。
⑴幅频特性测量①2K02往上拨,接通2C05(4.5P)。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
②按照表2-1改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入表2-1。
表2-1③测出两峰之间凹陷点的频率大致是多少。
④以横轴为频率,纵轴为幅度,按照表2-1,画出双调谐放大器的幅频特性曲线。
⑤按照上述方法测出耦合电容为2C06(80P)(2K02拨向下方)时幅频特性曲线。
六、实验报告要求1.画出耦合电容为2C05和2C06两种情况下的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说明其优缺点。
比较单调谐和双调谐在特性曲线上有何不同?2.画出放大器电压放大倍数与输入电压幅度之间的关系曲线。
3.当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?4.总结由本实验所获得的体会。
实验3 电容三点式LC振荡器一、实验准备1.做本实验时应具备的知识点:●三点式LC振荡器●西勒和克拉泼电路●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响2.做本实验时所用到的仪器:●LC振荡器模块●双踪示波器●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能;3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响;4.熟悉负载变化对振荡器振荡幅度的影响。
三、实验电路基本原理1.概述LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电荡频率可高达几百MHZ~GHZ。
2.LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。
3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
4.LC振荡器的调整和参数选择以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。
图3-1 电容三点式LC振荡器交流等效电路(1)静态工作点的调整合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。
若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效Q 值降低,输出波形变差,频率稳定度降低。
因此,一般在小功率振荡器中总是使静态工作点远离饱和区,靠近截止区。
(2)振荡频率f 的计算 f=)(21T c c L +π式中C T 为C 1、C 2和C 3的串联值,因C 1(300p )>>C 3(75p),C 2(1000P)>>C 3(75p),故C T ≈C 3,所以,振荡频率主要由L 、C 和C 3决定。
(3) 反馈系数F 的选择 F=21C C 反馈系数F 不宜过大或过小,一般经验数据F ≈0.1~0.5,本实验取F=3.01000300= 5.克拉泼和西勒振荡电路图3-2为串联改进型电容三点式振荡电路——克拉泼振荡电路。
图3-3为并联改进型电容三点式振荡电路——西勒振荡电路。
C bCb图3-2 克拉泼振荡电路 图3-3 西勒振荡电路6.电容三点式LC 振荡器实验电路电容三点式LC 振荡器实验电路如图3-4所示。
图中3K05打到“S ”位置(左侧)时3C01OUT输出图3-4 LC振荡器实验电路为改进型克拉泼振荡电路,打到“P”位置(右侧)时,为改进型西勒振荡电路。
3K01、3K02、3K03、3K04控制回路电容的变化。
调整3W01可改变振荡器三极管的电源电压。
3Q02为射极跟随器。
3TP02为输出测量点,3TP01为振荡器直流电压测量点。
3W02用来改变输出幅度。
四、实验内容1.用示波器观察振荡器输出波形,测量振荡器电压峰—峰值V P-P,并以频率计测量振荡频率。
2.测量振荡器的幅频特性。
3.测量电源电压变化对振荡器频率的影响。
五、实验步骤1.实验准备插装好LC振荡器模块,按下开关3K1接通电源,即可开始实验。
2.西勒振荡电路幅频特性的测量示波器接3TP02,频率计接振荡器输出口3V01。
电位器3W02反时针调到底,使输出最大。
开关3K05拨至右侧,此时振荡电路为西勒电路。
3K01、3K02、3K03、3K04分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
例如3K01、3K02往上拨,其接入电路的电容为10P+50P=60P。
按照表3-1电容的变化测出与电容相对应的振荡频率和输出电压(峰一峰值V P-P),并将测量结果记于表中。
表3-1注:如果在开关转换过程中使振荡器停振无输出,可调整3W01,使之恢复振荡。
3.克拉泼振荡电路幅频特性的测量将开关3K05拨至左侧,振荡电路转换为克拉泼电路。
按照上述方法,测出振荡频率和输出电压,并将测量结果记于表3-1中。
六、实验报告1.根据测试数据,分别绘制西勒振荡器,克拉泼振荡器的幅频特性曲线,并进行分析比较。
2.根据测试数据,计算频率稳定度,分别绘制克拉泼振荡器、西勒振荡器的C E f f—0曲线。
3.对实验中出现的问题进行分析判断。
4.总结由本实验所获提的体会。