实验四(IIR数字滤波器设计及软件实现)讲解学习
实验四 IIR数字滤波器设计
![实验四 IIR数字滤波器设计](https://img.taocdn.com/s3/m/0ccbaefc700abb68a982fbcf.png)
实验四IIR数字滤波器的设计与MATLAB实现一、实验目的:1、要求掌握IIR数字滤波器的设计原理、方法、步骤。
2、能够根据滤波器设计指标进行滤波器设计。
3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。
二、实验原理:IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。
这里只介绍频率变换法。
由模拟低通滤波器到数字低通滤波器的转换,基本设计过程:1、将数字滤波器的设计指标转换为模拟滤波器指标2、设计模拟滤波器G(S)3、将G(S)转换为数字滤波器H(Z)在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下:1、给定数字滤波器的设计要求(高通、带通、带阻)2、转换为模拟(高通、带通、带阻)滤波器的技术指标3、转换为模拟低通滤波器的指标4、设计得到满足3步骤中要求的低通滤波器传递函数5、通过频率转换得到模拟(高通、带通、带阻)滤波器6、变换为数字(高通、带通、带阻)滤波器三、标准数字滤波器设计函数MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。
1、butter例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz.图1 5阶Butterworth数字高通滤波器2、cheby1和cheby2例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。
图2 7阶chebyshevII型数字低通滤波器四、冲激响应不变法一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。
冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。
例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。
实验四IIR数字滤波器的设计数字信号处理DSP
![实验四IIR数字滤波器的设计数字信号处理DSP](https://img.taocdn.com/s3/m/b5db430d82c4bb4cf7ec4afe04a1b0717fd5b3e5.png)
实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。
相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。
设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。
这些参数将直接影响到滤波器的设计和性能。
2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。
选择适当的结构取决于滤波器的性能要求和
计算复杂度。
3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。
4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。
可以借助MATLAB等工具进行数值计算和优化。
5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。
可以使用双线性变换等方法来实现。
6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。
7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。
8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。
以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。
实验四IIR数字滤波器设计实验报告
![实验四IIR数字滤波器设计实验报告](https://img.taocdn.com/s3/m/3859c8c6162ded630b1c59eef8c75fbfc77d949d.png)
实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。
本次实验就是探究IIR数字滤波器的设计和分析。
在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。
在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。
经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。
在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。
而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。
实验四IIR数字滤波器设计及软件实现
![实验四IIR数字滤波器设计及软件实现](https://img.taocdn.com/s3/m/9b83dc70ff4733687e21af45b307e87101f6f88a.png)
实验四IIR数字滤波器设计及软件实现实验四涉及IIR数字滤波器设计及软件实现。
IIR数字滤波器是一种基于IIR(Infinite Impulse Response)的滤波器,采用了反馈结构,具有无限长的脉冲响应。
与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更高的灵活性和更小的计算复杂度。
IIR数字滤波器的设计可以通过以下步骤进行:
1.确定滤波器的类型:低通、高通、带通或带阻。
2.确定滤波器的阶数:滤波器的阶数决定了其频率响应的陡峭程度。
3.设计滤波器的传递函数:传递函数是滤波器的数学模型,可以通过多种方法进行设计,如巴特沃斯、切比雪夫等。
4.将传递函数转换为差分方程:差分方程是IIR数字滤波器的实现形式,可以通过对传递函数进行离散化得到。
5.实现差分方程:差分方程可以通过递归运算的方式实现,使用递归滤波器结构。
IIR数字滤波器的软件实现可以使用各种数学软件或程序语言进行。
常见的软件实现语言包括MATLAB、Python等。
这些语言提供了丰富的数字信号处理库和函数,可以方便地实现IIR数字滤波器。
在软件实现中,需要将差分方程转换为计算机程序,然后输入待滤波的数字信号,并输出滤波后的信号。
此外,还可以对滤波器的参数进行调整,以达到满足特定滤波要求的效果。
总结起来,实验四的内容是设计和实现IIR数字滤波器,通过软件工具进行滤波效果的验证。
这是数字信号处理领域中常见的实验任务,可以帮助学生掌握IIR数字滤波器的设计和实现方法。
IIR数字滤波器设计及软件实现[1]
![IIR数字滤波器设计及软件实现[1]](https://img.taocdn.com/s3/m/05eabd900129bd64783e0912a216147917117e3b.png)
IIR数字滤波器设计及软件实现[1]IIR数字滤波器是一种常见的数字滤波器类型,它利用数字信号处理技术对信号进行滤波,广泛应用于信号处理、音频处理、图像处理等领域。
本文将介绍IIR数字滤波器的设计方法和软件实现。
一、IIR数字滤波器的基本原理IIR数字滤波器是一种基于递归算法的数字滤波器,它可以用于对离散时间信号进行滤波。
具体而言,IIR数字滤波器是由一组差分方程组成的,其中包括有限冲激响应(FIR)和无限冲激响应(IIR)数字滤波器两种类型。
与FIR数字滤波器不同的是,IIR数字滤波器是具有无限冲激响应的性质,因此可以实现更高阶的滤波效果。
IIR数字滤波器可以用如下的一阶滤波器来进行递归实现:y(n) = a1 * y(n-1) + a0 * x(n) - b1 * x(n-1)其中,x(n)表示输入信号,y(n)表示输出信号,a0、a1、b1是滤波器的系数。
这种一阶滤波器可以通过级联组合来构成更高阶的滤波器,形成一系列级联的一阶滤波器。
1.滤波器类型的选择在开始设计IIR数字滤波器之前,需要先确定所需的滤波器类型,即低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
各种类型的滤波器的特点及应用范围不同,需要根据具体需求进行选择。
2.设计滤波器参数确定了滤波器类型之后,需要根据要求的滤波器截止频率、带宽、通带衰减等参数来确定滤波器的系数。
一般可以采用Butterworth滤波器设计方法、Chebyshev滤波器设计方法或Elliptic滤波器设计方法等常见方法来进行设计。
3.验证设计结果设计出的IIR数字滤波器需要进行验证,可以采用MATLAB等数字信号处理软件进行仿真测试,进行频率响应、相位响应、群延迟等分析,以确保设计结果满足要求。
IIR数字滤波器的实现可以采用MATLAB、Python等数字信号处理工具,也可以使用C 语言来进行程序设计。
下面以MATLAB为例,介绍IIR数字滤波器的实现。
数字信号处理实验报告四IIR数字滤波器设计及软件实现
![数字信号处理实验报告四IIR数字滤波器设计及软件实现](https://img.taocdn.com/s3/m/97ec24a9541810a6f524ccbff121dd36a22dc477.png)
数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。
一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。
它通常由差分方程和差分方程的系数表示。
IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。
根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。
常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。
在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。
二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。
可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。
4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。
常见的滤波器结构有直接形式I、直接形式II、级联形式等。
5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。
常见的参数化方法有差分方程法、极点/零点法、增益法等。
6.根据参数化的滤波器模型,计算出所有的滤波器系数。
(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。
2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。
数字信号处理-IIR数字滤波器设计及软件实现实验报告
![数字信号处理-IIR数字滤波器设计及软件实现实验报告](https://img.taocdn.com/s3/m/95da1072f46527d3240ce03b.png)
电子信息工程系学生实验报告成绩评定教师签名实验课程名称:数字信号处理实验项目名称:IIR数字滤波器设计及软件实现实验时间:2012 年06 月01 日班级:座号:姓名:电子信息工程学院编制实验预习部分一、实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法;(2)学会调用MATLAB 信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool )设计各种IIR 数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR 数字滤波器的MATLAB 实现方法。
(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理与方法设计IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB 信号处理工具箱中的各种IIR 数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter 、cheby1 、cheby2 和ellip 可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR 数字滤波器。
三、实验内容及步骤(1)调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
实验四 IIR数字滤波器的设计(1) (2)
![实验四 IIR数字滤波器的设计(1) (2)](https://img.taocdn.com/s3/m/ae2af9faf8c75fbfc77db24e.png)
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2) 系统传递函数H(z)在有限z 平面上有极点存在。
(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。
但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
实验四IIR数字滤波器的设计数字信号处理DSP
![实验四IIR数字滤波器的设计数字信号处理DSP](https://img.taocdn.com/s3/m/20f7ec2854270722192e453610661ed9ac515560.png)
实验四IIR数字滤波器的设计数字信号处理DSP
IIR(Infinite Impulse Response)数字滤波器是一种常用的数字信
号处理技术,用于对信号进行滤波。
其特点是具有无限脉冲响应,通过对
输入信号和滤波器的系数进行运算,可以得到输出信号。
设计一个IIR数字滤波器的步骤如下:
1.确定滤波器的类型:根据滤波器的要求,选择滤波器的类型,如低
通滤波器、高通滤波器、带通滤波器等。
2.确定滤波器的阶数:滤波器的阶数决定了滤波器的复杂度和性能。
一般来说,阶数越高,滤波器的性能越好,但计算复杂度也会增加。
3.确定滤波器的频率响应:根据滤波器的类型和要求,确定滤波器的
频率响应。
可以使用一些滤波器设计工具或者数学模型来计算频率响应。
4.设计滤波器的传递函数:根据所选的滤波器类型和频率响应,设计
滤波器的传递函数。
传递函数描述了滤波器的输入输出关系。
5.将传递函数转换为差分方程:将滤波器的传递函数转换为差分方程,形式为y(n)=b0*x(n)+b1*x(n-1)+...-a1*y(n-1)-a2*y(n-2)-...,其中
y(n)为输出信号,x(n)为输入信号。
6.计算滤波器的系数:根据差分方程,计算滤波器的系数,即b0、
b1、..、a1、a2、..
7.实现滤波器:将计算得到的滤波器系数应用到滤波器的实现中,可
以使用C语言、MATLAB等工具进行实现。
8.评估滤波器性能:根据设计要求和信号特点,评估滤波器的性能,
如频率响应、幅频响应等。
通过上述步骤,可以设计出满足要求的IIR数字滤波器,并用于数字信号处理中。
IIR数字滤波器的设计及软件实现
![IIR数字滤波器的设计及软件实现](https://img.taocdn.com/s3/m/cfec2f26fe00bed5b9f3f90f76c66137ee064f22.png)
IIR数字滤波器的设计及软件实现什么是IIR数字滤波器?IIR数字滤波器是一种数字信号处理滤波器,它基于递归的思想,可以对原始信号进行滤波处理。
与FIR数字滤波器相比,IIR数字滤波器具有更高的效率和更灵活的设计。
它的设计基于对滤波器的传递函数进行分析和优化,可以通过不同的传递函数来实现不同的滤波目标。
IIR数字滤波器的设计方法要设计一个IIR数字滤波器,可以采用以下步骤:步骤1:确定滤波器的类型根据滤波的目的和要求,确定滤波器的类型。
常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
步骤2:计算滤波器的阶数滤波器的阶数是指滤波器中的二阶段数。
阶数越高,滤波器的性能越好,但也意味着计算量和实现难度会增加。
根据滤波的要求和性能要求,计算滤波器的阶数。
步骤3:选择滤波器的截止频率滤波器的截止频率是指滤波器在截止频率附近的频率响应。
对于低通滤波器和高通滤波器,截止频率通常是一个常数。
对于带通滤波器和带阻滤波器,截止频率需要确定两个频率。
步骤4:计算滤波器的传递函数根据滤波器类型、阶数和截止频率,可以通过传递函数的计算得到滤波器的传递函数。
步骤5:采用正则化处理在计算得到传递函数后,需要进行正则化处理。
正则化处理可以消除传递函数中的不稳定性,并确保滤波器的稳定性和可变性。
步骤6:实现反馈环和前馈环根据传递函数,可以实现反馈环和前馈环。
反馈环和前馈环的选择会影响滤波器的性能。
IIR数字滤波器的软件实现要实现IIR数字滤波器,可以使用MATLAB或Python等数学软件。
这里以Python为例进行说明。
步骤1:导入必要的库import numpy as np #用于处理数组和矩阵import scipy.signal as signal #用于信号处理import matplotlib.pyplot as plt #用于绘图步骤2:指定滤波器的类型、截止频率和阶数type ='lowpass'#低通滤波器fc =2000#截止频率order =4#阶数步骤3:计算滤波器的系数b, a = signal.butter(order, fc, type)步骤4:生成信号并进行滤波t = np.linspace(0, 1, 500, endpoint=False)x = np.sin(2* np.pi *5* t) + np.sin(2* np.pi *10* t) + np.sin(2* np.pi *20* t)y = signal.filtfilt(b, a, x)步骤5:绘制原始信号和滤波后的信号plt.plot(t, x, label='original signal')plt.plot(t, y, label='filtered signal')plt.legend(loc='best')plt.show()IIR数字滤波器是数字信号处理中一种重要的滤波器。
实验四 IIR数字滤波器的设计实验报告
![实验四 IIR数字滤波器的设计实验报告](https://img.taocdn.com/s3/m/0e0100b390c69ec3d4bb7576.png)
数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号12401720522指导教师2015.4.29实验四 IIR 数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。
2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。
3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。
三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num = 0.0304 -0.1218 0.1827 -0.1218 0.0304 den = 1 1.3834 1.4721 0.8012 0.2286系统函数:1234 12340.0304 -0.1218z 0.1827z-0.1218z0.0304zH(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。
实验四IIR数字滤波器设计及软件实现
![实验四IIR数字滤波器设计及软件实现](https://img.taocdn.com/s3/m/45c3e80c30126edb6f1aff00bed5b9f3f80f7258.png)
实验四IIR数字滤波器设计及软件实现IIR数字滤波器是一种重要的信号处理工具,常用于音频处理、图像处理、通信系统等领域。
本实验旨在通过软件实现IIR数字滤波器的设计和使用。
实验目标:1.了解IIR数字滤波器的基本原理和结构。
2. 学会使用Matlab等软件工具进行IIR数字滤波器设计和模拟。
实验步骤:1.确定滤波器的要求:包括滤波器的类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的衰减要求等。
2.根据滤波器的要求选择适合的设计方法:常见的设计方法包括脉冲响应、巴特沃斯、切比雪夫、椭圆等。
3. 使用Matlab等软件工具进行滤波器设计:根据选择的设计方法,使用相应的函数或工具箱进行滤波器的设计。
4.评估滤波器性能:通过频率响应曲线、幅频特性、相频特性等评估滤波器的性能,比如阻带衰减、通带波动等。
5.应用滤波器:将设计好的滤波器应用到实际信号中,观察滤波效果。
6.优化滤波器性能(可选):根据实际应用需求,对滤波器的设计进行调整和优化。
实验注意事项:1.在进行滤波器设计时,要根据实际应用需求选择合适的滤波器类型和设计方法。
2.在评估滤波器性能时,要对设计结果进行全面的分析,包括滤波器的频率响应、幅频特性、相频特性等。
3.在实际应用过程中,可以根据实际需求对设计结果进行优化和调整,以达到更好的滤波效果。
参考资料:1.陈志骏等编著,《信号与系统实验指导书》。
2. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Pearson Education India.。
实验四IIR数字滤波器设计及软件实现实验报告
![实验四IIR数字滤波器设计及软件实现实验报告](https://img.taocdn.com/s3/m/39299fac58fb770bf78a55ea.png)
实验四IIR数字滤波器设计及软件实现实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
IIR数字滤波器设计及软件实现之欧阳家百创编
![IIR数字滤波器设计及软件实现之欧阳家百创编](https://img.taocdn.com/s3/m/cbceae77b0717fd5370cdc02.png)
实验四:IIR数字滤波器设计及软件实现一、欧阳家百(2021.03.07)二、实验原理与方法1、设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法,其基本设计过程是:(1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;(2)设计过渡模拟滤波器;(3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
本实验的数字滤波器的MATLAB实现是指调用MATLAB 信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、实验内容1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图4.1 三路调幅信号st (即s (t ))的时域波形和幅频特性曲线2、要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
实验结果如图4.2,程序见附录4.2。
提示:抑制载波单频调幅信号的数学表示式为其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。
由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率fc 对称。
所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。
容易看出,图 4.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。
实验四IIR数字滤波器设计及软件实现实验报告
![实验四IIR数字滤波器设计及软件实现实验报告](https://img.taocdn.com/s3/m/4fad80e7ac51f01dc281e53a580216fc710a5358.png)
实验四IIR数字滤波器设计及软件实现实验报告
摘要
本报告介绍了有关IIR数字滤波器设计的实验,以及使用MATLAB进
行的软件实施验证实验。
实验结果表明,IIR滤波器的设计和实施过程中,模糊C不做任何处理,也能实现意料之外的良好滤波效果。
1.介绍
本文介绍了实验四的IIR数字滤波器设计与软件实现实验。
在完成本
实验之前,学生完成了实验一,实验二和实验三,分别设计了低通滤波器、带通滤波器和高通滤波器。
在本实验中,学生将总结前三个实验的知识,
设计和实施一个二阶高通滤波器,以及一个四阶带阻滤波器。
2.实验方法
本实验使用了MATLAB编程语言,用于设计和实施IIR滤波器,包括
一个二阶的高通滤波器和一个四阶的带阻滤波器。
首先,选择预定义的滤
波器系统函数,并调整其参数,以实现特定的滤波器性能。
然后,针对调
整好的滤波器,编写MATLAB代码,实施设计的滤波器。
3.实验结果
(1)二阶高通滤波器
二阶高通滤波器的设计参数如下:
参数,值
-----------------,----------
截止频率,0.25Hz
最小插入损耗,0dB 最大衰减率,40dB。
IIR数字滤波器设计及软件实现-实验报告
![IIR数字滤波器设计及软件实现-实验报告](https://img.taocdn.com/s3/m/9853c15e0912a21614792992.png)
实验报告实验四:IIR数字滤波器设计及软件实现1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
,(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR 数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
(3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1 三路调幅信号st的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
实验四 IIR数字滤波器的设计与滤波
![实验四 IIR数字滤波器的设计与滤波](https://img.taocdn.com/s3/m/cf79b90316fc700abb68fc40.png)
实验四 IIR 数字滤波器的设计与滤波一、巴特沃斯模拟滤波器的设计1. 模拟滤波器的设计参数模拟滤波器的4个重要的通带、阻带参数为:p f 或Omegap :通带截止频率 s f 或Omegas :阻带截至频率p R :通带内波动(dB),即通带内所允许的最大衰减;s R :阻带内最小衰减通过以上参数就可以进行模拟滤波器的设计。
2. 巴特沃斯模拟滤波器设计1) 巴特沃斯滤波器阶数的选择:在已知设计参数p f ,s f ,p R ,s R 之后,可利用“buttord ”命令可求出所需要的滤波器的阶数和3dB 截止频率,其格式为:[N ,Omegac]=buttord[fp ,fs ,Rp ,Rs ,’s ’],其中fp ,fs ,Rp ,Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。
返回值N 为滤波器的最低阶数,Wc 为3dB 截止频率。
2) 巴特沃斯滤波器系数计算:由巴特沃斯滤波器的阶数N 以及3dB 截止频率Omegac 可以计算出对应传递函数H(z)的分子分母系数,MATLAB 提供的命令如下:● 巴特沃斯低通滤波器系数计算:[b ,a]=butter(N,Omegac),其中b 为H(z)的分子多项式系数,a 为H(z)的分母多项式系数● 巴特沃斯高通滤波器系数计算:[b ,a]=butter(N,Omegac,’High ’)● 巴特沃斯带通滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2]),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的是2N 阶滤波器系数。
● 巴特沃斯带阻滤波器系数计算:[b ,a]=butter(N ,[Omega1,Omega2],’stop ’),其中[Omega1,Omega2]为通带截止频率,是2元向量,需要注意的是该函数返回的也是2N 阶滤波器系数。
二、巴特沃斯数字滤波器的设计1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减; s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化频率参数:p ω:归一化通带截止频率,)2//(N p p f f =ω;s ω:归一化阻带截至频率,)2//(N s s f f =ω通过以上参数就可以进行数字滤波器的设计。
IIR数字滤波器设计及软件实现-实验报告
![IIR数字滤波器设计及软件实现-实验报告](https://img.taocdn.com/s3/m/1eb108461611cc7931b765ce05087632311274b7.png)
IIR数字滤波器设计及软件实现-实验报告实验目的:1.掌握数字滤波器设计的基本原理和方法;2.学习数字滤波器的软件实现;3.熟悉数字滤波器的特性和性能评价指标。
实验设备:1.计算机;2.MATLAB软件。
实验步骤:1. 设计无限冲激响应(Infinite Impulse Response,IIR)数字滤波器的传递函数。
2.使用MATLAB软件将传递函数转换为差分方程。
3.编写MATLAB代码实现差分方程的数字滤波器。
4.给定待滤波的数字信号,将信号传入数字滤波器进行滤波处理。
5.分析滤波后的信号的频率响应和时域响应,并进行性能评价。
实验结果:在MATLAB中,设计了一个二阶Butterworth低通滤波器的传递函数:H(z)=(0.2929/(z^2-0.5858z+0.2929))将传递函数转换为差分方程:y(n)=0.2929*x(n)+0.5858*x(n-1)+0.2929*x(n-2)-0.5858*y(n-1)-0.2929*y(n-2)使用MATLAB代码实现了差分方程的数字滤波器:```MATLABfunction y = IIR_filter(x)persistent x1 x2 y1 y2;if isempty(x1)x1=0;x2=0;y1=0;y2=0;endy=0.2929*x+0.5858*x1+0.2929*x2-0.5858*y1-0.2929*y2;x2=x1;x1=x;y2=y1;y1=y;end```将待滤波的数字信号传入该数字滤波器进行处理:```MATLAB% Generate test signalfs = 1000; % Sampling ratet = 0:1/fs:1; % Time vectorx = sin(2*pi*50*t) + sin(2*pi*120*t) + sin(2*pi*200*t); % Apply IIR filtery = IIR_filter(x);% Plot resultsfigure;subplot(2,1,1);plot(t, x);title('Original Signal');xlabel('Time');ylabel('Amplitude');subplot(2,1,2);plot(t, y);title('Filtered Signal');xlabel('Time');ylabel('Amplitude');```分析滤波后的信号的频率响应和时域响应,并进行性能评价。
实验四IIR数字滤波器的设计实验报告
![实验四IIR数字滤波器的设计实验报告](https://img.taocdn.com/s3/m/c4f023e7cf2f0066f5335a8102d276a201296060.png)
实验四IIR数字滤波器的设计实验报告实验四:IIR数字滤波器的设计实验目的:1.了解IIR数字滤波器的基本原理和设计流程;2.学习使用MATLAB进行IIR数字滤波器的设计;3.实际设计一个IIR数字滤波器,并对输入信号进行滤波处理。
实验设备:1.计算机2.MATLAB软件实验原理:IIR数字滤波器是一种非线性滤波器,可以通过差分方程的形式表示。
其特点是具有无穷长的单位脉冲响应,即滤波器对输入信号的响应是无限长的。
IIR数字滤波器的设计一般包括两个方面:滤波器的结构和滤波器的参数。
其中,滤波器的结构包括滤波器的拓扑结构和级联结构,滤波器的参数包括滤波器的截止频率、通带增益、阻带衰减等。
实验步骤:1.确定滤波器的类型(低通滤波器、高通滤波器、带通滤波器等);2.根据滤波器的要求,设计滤波器的截止频率、通带增益、阻带衰减等参数;3.根据滤波器的类型和参数,选择合适的滤波器结构和滤波器参数;4.使用MATLAB软件进行IIR数字滤波器的设计,编写相应的代码;5.载入输入信号,并对输入信号进行滤波处理;6.分析输出信号的频谱特性和时域波形。
实验结果:通过实验,我们成功设计了一个IIR数字滤波器,并对输入信号进行了滤波处理。
实验结果显示,滤波器能够有效地去除输入信号中的高频噪声,得到了更清晰的输出信号。
输出信号的频谱特性和时域波形符合设计要求。
实验结论:IIR数字滤波器是一种常用的数字滤波器,具有较好的滤波效果和较低的计算复杂度。
通过实验,我们深入了解了IIR数字滤波器的设计原理和流程,并成功应用于实际信号处理中。
实验结果表明,IIR数字滤波器能够有效地去除输入信号中的噪声,提取出所需的信号信息。
这对于信号处理和通信系统设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四(I I R数字滤波器设计及软件实现)10.4实验四IIR数字滤波器设计及软件实现10.4.1 实验指导1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。
由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。
所以,1路抑制载波单频调幅信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。
容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。
如果调制信号m(t)具有带限连续频谱,无直流成分,则()()cos(2)c s t m t f t π=就是一般的抑制载波调幅信号。
其频谱图是关于载波频率f c 对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。
如果调制信号m(t)有直流成分,则()()cos(2)c s t m t f t π=就是一般的双边带调幅信号。
其频谱图是关于载波频率f c 对称的2个边带(上下边带),并包含载频成分。
(3)编程序调用MATLAB 滤波器设计函数ellipord 和ellip 分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。
(4)调用滤波器实现函数filter ,用三个滤波器分别对信号产生函数mstg 产生的信号st 进行滤波,分离出st 中的三路不同载波频率的调幅信号y 1(n)、y 2(n)和y 3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。
4.信号产生函数mstg 清单function st=mstg%产生信号序列向量st,并显示st 的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N 为信号st 的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')5.实验程序框图如图10.4.2所示,供读者参考。
图10.4.2 实验4程序框图6.思考题(1)请阅读信号产生函数mstg ,确定三路调幅信号的载波频率和调制信号频率。
(2)信号产生函数mstg 中采样点数N=800,对st 进行N 点FFT 可以得到6根理想谱线。
如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N 的值,观察频谱图验证您的判断是否正确。
(3)修改信号产生函数mstg ,给每路调幅信号加入载波成分,产生调幅(AM )信号,重复本实验,观察AM 信号与抑制载波调幅信号的时域波形及其频谱的差别。
提示:AM 信号表示式:0()[1cos(2)]cos(2)c s t f t f t ππ=+。
7.实验报告要求(1)简述实验目的及原理。
(2)画出实验主程序框图,打印程序清单。
(3)绘制三个分离滤波器的损耗函数曲线。
(4)绘制经过滤波分理出的三路调幅信号的时域波形。
(5)简要回答思考题。
10.4.2 滤波器参数及实验程序清单1、滤波器参数选取观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。
带宽(也可以由信号产生函数mstg 清单看出)分别为50Hz 、100Hz 、200Hz 。
所以,分离混合信号st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:对载波频率为250Hz 的条幅信号,可以用低通滤波器分离,其指标为 带截止频率280p f =Hz ,通带最大衰减0.1dB p α=dB ;阻带截止频率450s f =Hz ,阻带最小衰减60dB s α=dB ,对载波频率为500Hz 的条幅信号,可以用带通滤波器分离,其指标为 带截止频率440pl f =Hz ,560pu f =Hz ,通带最大衰减0.1dB p α=dB ;阻带截止频率275sl f =Hz ,900su f =Hz ,Hz ,阻带最小衰减60dB s α=dB ,对载波频率为1000Hz 的条幅信号,可以用高通滤波器分离,其指标为 带截止频率890p f =Hz ,通带最大衰减0.1dB p α=dB ;阻带截止频率550s f =Hz ,阻带最小衰减60dB s α=dB ,说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。
(2)与信号产生函数mstg相同,采样频率Fs=10kHz。
(3)为了滤波器阶数最低,选用椭圆滤波器。
按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。
2、实验程序清单%实验4程序exp4.m% IIR数字滤波器设计及软件实现clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号stst=mstg;%低通滤波器设计与实现=========================================fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay1t=filter(B,A,st); %滤波器软件实现% 低通滤波器设计与实现绘图部分figure(2);subplot(3,1,1);myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线yt='y_1(t)';subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形%带通滤波器设计与实现====================================================fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay2t=filter(B,A,st); %滤波器软件实现% 带通滤波器设计与实现绘图部分(省略)%高通滤波器设计与实现================================================fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay3t=filter(B,A,st); %滤波器软件实现% 高低通滤波器设计与实现绘图部分(省略)•%myplot;计算时域离散系统损耗函数并绘制曲线图。