全国高中数学联赛模拟题

合集下载

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛模拟试题(含详细答案)

高中数学竞赛试题(模拟)一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知函数f(x)是R 上的奇函数,g(x)是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( )A .1292-+-x x B .1292-+x xC .1292+--x xD . 1292+-x x2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=x x cos sin ⋅ ④ xxy cos sin = 其中在)2,0(π上为单调增函数的是 ( )A .①B .②C .①和③D .②和④3.方程x xx x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素的平方和等于 ( ) A .0 B .1C .2D .44.已知点P(x,y)满足)(4)sin 4()cos 4(22R y x ∈=-+-θθθ,则点P(x,y)所在区域的面积为 A .36π B .32π C .20π D .16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为 ( ) A .9 B .12 C .15 D .186.已知数列{n a }为等差数列,且S 5=28,S 10=36,则S 15等于 ( ) A .80B .40C .24D .-487.已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是 ( )A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-8.过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 9.设7log ,1sin ,82.035.0===z y x ,则x 、y 、z 的大小关系为 ( )A .x<y<zB .y<z<xC .z<x<yD . z<y<x10.如果一元二次方程09)3(222=+---b x a x 中,a 、b 分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( )A .181 B .91 C .61 D .1813 二、填空题(本大题共4个小题,每小题8分,共32分)11.设P 是椭圆191622=+y x 上异于长轴端点的任意一点,F 1、F 2分别是其左、右焦点,O 为中心,则=+⋅221||||||OP PF PF ___________.12.已知△ABC 中,==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC = ____________________.13.从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3534,则n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分) 15.对于函数f(x),若f(x)=x,则称x 为f(x)的“不动点”,若x x f f =))((,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即x x f x A ==)(|{}})]([|{x x f f x B ==.(1). 求证:A ⊆B(2).若),(1)(2R x R a ax x f ∈∈-=,且φ≠=B A ,求实数a 的取值范围.16.某制衣车间有A 、B 、C 、D 共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?17.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 nnn n a a 111+≥+18.在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为257. (1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A 作直线与(1)中的曲线交于M 、N 两点,求||||BN BM ⋅的最小值的集合.19.已知三棱锥O-ABC 的三条侧棱OA 、OB 、OC 两两垂直,P 是底面△ABC 内的任一点,OP 与三侧面所成的角分别为α、β、γ. 求证:33arcsin32≤++<γβαπ参考答案一、选择题: ADCBC CCCBA 二、填空题:11. 25 12.13. 4 14. 1 三、解答题:15.证明(1).若A=φ,则A ⊆B 显然成立;若A ≠φ,设t ∈A ,则f(t)=t,f(f(t))=f(t)=t,即t ∈B,从而 A ⊆B. 解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠φ,知 a=0 或 ⎩⎨⎧≥+=∆≠0410a a 即 41-≥aB 中元素是方程 x ax a =--1)1(22 即 0122243=-+--a x x a x a 的实根 由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为 0)1)(1(222=+-+--a ax x a x ax因此,要A=B ,即要方程 0122=+-+a ax x a ① 要么没有实根,要么实根是方程 012=--x ax ② 的根. 若①没有实根,则0)1(4222<--=∆a a a ,由此解得 43<a 若①有实根且①的实根是②的实根,则由②有 a ax x a +=22,代入①有 2ax+1=0.由此解得 a x 21-=,再代入②得,012141=-+a a 由此解得 43=a . 故 a 的取值范围是 ]43,41[-16.解:A 、B 、C 、D 四个组每天生产上衣与裤子的数量比分别是:76,117,129,108,且11712910876>>> ① 只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多.由①知D 组做上衣效率最高,C 组做裤子效率最高,于是,设A 组做x 天上衣,其余(7-x)天做裤子;B 组做y 天上衣,其余(7-y)天做裤子;D 组做7天上衣,C 组做7天裤子.则四个组7天共生产上衣 6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条)依题意,有 42+8x+9y=77+10(7-x)+12(7-y),即 769x y -=. 令 μ= 42+8x+9y=42+8x+9(769x -)=123+x 72 因为 0≤x ≤7,所以,当x=7时,此时y=3, μ取得最大值,即μmax =125.因此,安排A 、D 组都做7天上衣,C 组做7天裤子,B 组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111 =+=+-+k a aa a k k k k 于是 ∑∑=+-=++=nk k k nk k k a aa a n 11111由算术-几何平均值不等式,可得nn n a a a a a a 132211+⋅⋅⋅≥ +n n n a aa a a a 113120+-⋅⋅⋅ 注意到 110==a a ,可知nn n nn a a a 11111+++≥,即 nnn n a a 111+≥+18.解:(1) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 |CA|+|CB|=2a(a>3)为定值,所以C 点的轨迹是以A 、B 为焦点的椭圆,所以焦距 2c=|AB|=6.因为 1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥,由题意得 25,25718122==-a a. 此时,|PA|=|PB|,P 点坐标为 P(0,±4).所以C 点的轨迹方程为)0(1162522≠=+y y x (2) 不妨设A 点坐标为A(-3,0),M(x 1,y 1),N(x 2,y 2).当直线MN 的倾斜角不为900时,设其方程为y=k(x+3) 代入椭圆方程化简,得 0)1169(83)16251(2222=-+++k x k x k 显然有 △≥0, 所以 222122212516400225,2516150k k x x k k x x +-=+-=+而由椭圆第二定义可得25165311442553125251614453125251614481251645025259)(325)535)(535(||||22222222212121+-⋅+=+-+=+-+++=++-=--=⋅k k kk k k k k x x x x x x BN BM只要考虑251653114422+-k k 的最小值,即考虑2516531144251612++-k 取最小值,显然. 当k=0时,||||⋅取最小值16.当直线MN 的倾斜角为900时,x 1=x 2=-3,得 16)534(||||2>=⋅BN BM 但)0(1162522≠=+y y x ,故0≠k ,这样的M 、N 不存在,即||||⋅的最小值的集合为空集.19.证明:由 题意可得 1sin sin sin 222=++γβα,且α、β、 )2,0(πγ∈所以 )cos()cos()2cos 2(cos 21sin sin 1sin 222γβγβγβγβα-+=+=--= 因为 )cos()cos(γβγβ+>-,所以 )](2[sin )(cos sin 222γβπγβα+-=+>当2πγβ≥+时,2πγβα>++.当2πγβ<+时,)(2γβπα+->,同样有 2πγβα>++故 2πγβα>++另一方面,不妨设 γβα≥≥,则 33sin ,33sin ≤≥γα 令 βγα2211sin )33(1sin ,33sin --==, 则 1sin sin sin12212=++γβα)cos()cos()cos()cos(sin 11112γαγαγαγαβ-+=-+=因为 γαγα-≤-11,所以 )cos()cos(11γαγα-≥- 所以 )cos()cos(11γαγα+≥+ 所以 11γαγα+≤+如果运用调整法,只要α、β、γ不全相等,总可通过调整,使111γβα++增大. 所以,当α=β=γ=33arcsin时,α+β+γ取最大值 333arcsin . 综上可知,33arcsin32≤++<γβαπ。

全国高中数学联赛模拟试卷习题练习习题试卷习题试卷试题一.doc.doc

全国高中数学联赛模拟试卷习题练习习题试卷习题试卷试题一.doc.doc

全国高中数学联赛模拟试题( 一)第一试一、选择题 ( 共 36 分 )1. 在复平面上,非零复数z1,z2在以 z=i 对应的点为圆心,1 为半径的圆上,z1 z2 的实π部为零, argz 1=6,则 z2=( )3 3 3 3 3 3 3 3A. -2+2 iB. 2-2iC. -2+2 iD. 2-2 i2. 已知函数 f(x) = log a(ax 2- x+1 ) 在 [1 ,2] 上恒正,则实数 a 的取值范围是 ( )21 5 3 1 5 3 1A.( , )B.( ,+∞ )C.( , ) ∪( ,+∞ )D.( ,+∞ )2 8 2 2 8 2 23. 已知双曲线过点M(-2, 4) 和 N(4,4) ,它的一个焦点为 F (1 , 0) ,则另一个焦点 F1 2的轨迹方程是( )(x -1) 2 (y - 4) 2A.+=1(y≠0)或x=1(y≠0)2516(x -1) 2(y - 4) 2B.+=1(x≠0)或x=1(y≠0)16252 2(x -4)(y - 1)C.+=1(y≠0)或y=1(x≠0)2516(x -4) 2(y - 1) 2D.+=1(x≠0)或y=1(x≠0)16254.已知正实数a,b 满足a+ b= 1,则M=1+ a2+1+ 2b的整数部分是( )A.1B.2C.3D.45.一条笔直的大街宽度为 40 米,一条人行横道穿过这条街,并与街道成一定的角度,人行横道长度为50 米,与大街边缘结合部的宽度为15 米,则人行横道的宽度为 ( )A.9 米B.10 米C.12 米D.15 米6. 一条铁路原有m个车站,为适应客运需要新增加n(n > 1) 个车站,结果客运车票增加了58 种( 注:从甲站到乙站和从乙站到甲站需要两种不同的车票) ,那么原有车站的个数为A.12B.13C.14D.15 ( )二、填空题 ( 共 54 分 )7. 长方形 ABCD的长 AB 是宽 BC的 2 3倍,把它折成无底的正三棱柱,使AD与 BC重合,折痕线 EF, GH分别交原来长方形对角线AC于 M、 N,则折后截面 AMN与底面 AFH所成的角是 _____.8. 在△ ABC中,a,b,c 是角 A,B,C的对边,且满足 a2+ b2= 2c2,则角 C 的最大值是_____.。

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛模拟试题及参考答案

全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。

全国高中数学联赛模拟试卷试题.doc

全国高中数学联赛模拟试卷试题.doc

全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。

全国高中数学联赛模拟试题(三)

全国高中数学联赛模拟试题(三)

全国高中数学联赛模拟试题(三)第一试一、选择题(共36分)1. 化简cos 2π7+cos 4π7+cos 6π7的值为 ( )A.-1B.1C.-12D.122. S n 和T n 分别是等差数列{a n }和{b n }的前n 项和,且对任意的自然数n 都满足S n T n =7n +44n +27,那么a 11b 11= ( )A.43B.74C.32D.7871 3. 直线xcos θ+y +m =0(式中θ是△ABC 的最大角),则此直线的倾斜角变化范围是( )A.(-arctan 12,π4)B.[0,π4)∪(2π3,π)C.[0,π4]D.[0,π4]∪[π-arctan 12,π]4. 设实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b ,其中a ,b 为正常数且a ≠b ,那么mx+ny 的最大值为 ( )A.a +b 2B.abC.2ab a +bD.a 2+b 225. 如图,平面α中有△ABC 和△A 1B 1C 1分别在直线m 的两侧,它们与m 无公共点,并且关于m 成轴对称,现将α沿m 折成一个直二面角,则A ,B ,C ,A 1,B 1,C 1六个点可以确定的平面个数为 ( ) A.14 B.11 C.17 D.凸n边形的各边为直径作圆,使这个凸n 边形必能被这n个圆面所覆盖,则n 的最大值为( ) A.3 B.4 C.5 D.6二、填空题(共54分)6. 已知0<x <π2,log sinx cosx 与log cosx tanx 的首数均为零,尾数和为1,则x =_________.7. 设=n 21a a a 222+++ ,其中a 1,a 2,……,a n 是两两不等的非负整数,则a 1+a 2+…+a n =___________.8. 已知不等式a ≤34x 2-3x +4≤6的解集为{x|a ≤x ≤b},其中0<a <b,则b =___________.9.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x对一切x∈R都成立,则a+b=_____________.10.正四棱台ABCD-A1B1C1D1的高为25,AB=8,A1B1=4,则异面直线A1B与B1C的距离为____.11.方程(x2-x-1)x+2=1的解集为_________________.三、解答题(共计60分)12.(设f(x)=(1+x+x2)n=c0+c1x+c2x2+……+c2n x2n,则c0+c3+c6+……=c1+c4+c7+……=c2+c5+c8+……=3n-1.13.(已知满足不等式lg(x2)>lg(a-x)+1的整数x只有一个,试求常数a的取值范围.14.(设y=f(x)是定义在R上的实函数,而且满足条件:对任意的a,b∈R,有f[af(b)]=ab,试求|f()|.第二试一、(50分)如图,D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B ,又设△AFE ,△BDF 和△DEF 均为锐角三角形,他们的垂心分别为H 1,H 2,H 3.求证:(1)∠H 2DH 3=∠FH 1E ;(2)△H 1H 2H 3≌△DEF.二、(50分)设C 0,C 1,C 2,……是坐标平面上的一族圆(周),其定义如下:(1)C 0是单位圆x 2+y 2=1;(2)任取n ∈Z 且n ≥0,圆C n +1位于上半平面y ≥0内及C n 的上方,与C n 外切并且与双曲线x 2-y 2=1相切于两点,C n 的半径记为r n (n ∈Z 且n ≥0) (1)证明:r n ∈Z ; (2)求r n .三、(50分)称自然数为“完全数”,如果它等于自己的所有(不包括自己)的正约数的和,例如,6=1+2+3,如果大于6的“完全数”可以被3整除,证明,它一定可以被9整除.C全国高中数学联赛模拟试题(三)参考答案 第一试一、选择题 1. Ccos 2π7+cos 4π7+cos 6π7=∑∑==π+π=π61k e 61k )]7k 2sin i 7k 2(cos [R 217k 2cos 21令z =cos 2π7+isin 2π7,于是z 7=1则上式=12(z +z 2+z 3+z 4+z 5+z 6)=……=-122. Aa 11b 11=21a 1121b 11=S 21T 21=7×21+44×21+27=43 3. Dθ∈[π3,π),cos θ∈(-1,12],则斜率k ∈[-12,1)4. B由柯西不等式ab =(m 2+n 2)(x 2+y 2)≥(mx +ny)2,当mx =ny 时取等号,所以mx +ny ≤ab5. B三点确定一个平面,但需除去三组四点共面重复的个数,共确定平面个数为3436C 3C -+3=11个6. B注意到:当且仅当∠C ≥90°时,△ABC 能被以AB 为直径的圆覆盖.从而易证n ≤4,当n =4时,正方形满足条件. 二、填空题 7.arcsin5-12; log sinx cosx +log cosx tanx =1 ⇒ log sinx cosx =12∴ sinx =cos 2x ∴ sin 2+sinx -1=0 ∴ sinx =5-12(负值舍去) 8.44;=210+29+28+27+26+249.4;分情况讨论得:a =43,b =410.110;f(-1)=1+lgb -(2+lga)=-2∴ lga =lgb +1,而(lga)2-4lgb ≤0∴ (lgb -1)2≤0 ∴ lgb =1 ∴ b =10,a =100 11.4105;过B 1作A 1B 的平行线交AB 于E ,转化为求B 点到平面B 1CE 的距离. 12.{-2,-1,0,2}若x 2-x -1=1,则x =2,-1若x 2-x -1=-1且x +2为偶数,得x =0若x +2=0且x 2-x -1≠0得x =-2 三、13.令ω=-12+32i ,则有f ⑴=c 0+c 1+c 2+c 4+c 5+……+c 2n =3n…………………①f(ω)=c 0+ωc 1+ω2c 2+c 3+ωc 4+ω2c 5+……+ω2nc 2n =0…………………②f(ω2)=c 0+ω2c 1+ωc 2+c 3+ω2c 4+ωc 5+……+ω4nc 2n =0…………………③①+②+③得3(c 0+c 3+c 6+……)=3n,∴ c 0+c 3+c 6+……=3n -1.②-①得c 1+c 4+c 7+……=c 2+c 5+c 8+……于是c 1+c 4+c 7+......=c 2+c 5+c 8+......=c 0+c 3+c 6+ (3),14.∵ x 2>0,∴ |x|≤1,∴ x =-1或0或1x =-1时,lg15>lg(a +1)+1,∴ -1<a <12x =0时,lgga +1 ∴ 0<a <2x =1时,lg15>lg(a -1)+l ∴ 0<a <52又因为满足条件的整数x 只有一个,∴ a 的取值范围是(-1,0]∪[12,1]∪[2,52)15.令a =1,则f(f(b))=b ,∴ f(f(x))=x∴ f(f(f 2(x)))=f 2(x)∴ f(f(f 2(a)))=f 2(a)再令a =f(b),则f(f 2(b)=bf(b)∴ f(f(f 2(b)))=f(bf(b))=b 2.∴ f(f(f 2(a)))=a 2.∴ f 2(a)=a 2, ∴ |f(a)|=|a| ∴ f()=第二试一、⑴∵ H 1为△AEF 的垂心,∴ ∠EH 1F =180°-∠A =∠B +∠C∠H 2DH 3=180°-∠H 2DB -∠H 3DC =180°-(90°-∠B)-(90°-∠C)=∠B +∠C ∴ ∠EH 1F =∠H 2DH 3⑵连结FH 2,EH 3,则FH 2⊥BD ,EH 3⊥BC∴ FH 2∥EH 3 由⑴中所证∠EH 1F +∠EOF =180° ⇒ E ,D ,F ,H 1四点共圆.同理,E ,D ,H 1,H 2四点共圆,H 1,D ,F ,H 3四点共圆,E ,D ,F ,H 1,H 2,H 3六点共圆. 二圆内接四边形EH 2H 3F 中,EH 2∥FH 3, ∴ EF =H 2H 3,同理,DE =H 1H 3,DF =H 1H 2, ∴ △H 1H 2H 3≌△DEF.二、⑴由对称性可知r n 的圆心在y 轴上,设r n 的方程为x 2+(y -s n )2=r n 2,其中s n =r 0+2(r 1+r 2+……+r n -1)+r n .将x 2=y 2+1代入其中得 y 2+1+y 2+s n 2-2ys n -r n 2=0△=4s n 28S n 2+8r n 2-8=0 ⇒ 2r n 2=S n 2+2 从而易得r n =6r n -1-r n -2,∵ r 0=1,r 1=3,∴ 对任意n ∈N ,有r n ∈N (2)由特征根方程可得r n =A(3+22)n+B(3-22)n,将r 0=1,r 1=3代入其中,得r n =12[(3+22)n +(3-22)n]三、设“完全数”等于3n ,其中n 不是3的倍数,于是3n 的所有正约数(包括它自己)可以分为若干个形如d 和3d 的“数对”,其中d 不可被3整除,从而3n 的所有正约数的和(它等于6n)是4的倍数,因此是2的倍数.我们注意到,此时32n ,n ,12n 和1是3n的互不相同的正约数,但它们的和等于3n +1>3n ,从而3n 不可能是“完全数”,得到矛盾.。

解析版-2024年全国高中数学联赛福建赛区预赛试卷

解析版-2024年全国高中数学联赛福建赛区预赛试卷

2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。

全国高中数学联赛省级预赛模拟试题

全国高中数学联赛省级预赛模拟试题

全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分)参考公式1.三角函数的积化和差公式sinα•cosβ=[sin(α+β)+sin(α-β)],cosα•sinβ=[sin(α+β)-sin(α-β)],cosα•cosβ=[cos(α+β)+cos(α-β)],sinα•sinβ=[cos(α+β)-cos(α-β)].2.球的体积公式V球=πR3(R为球的半径)。

一、选择题(每小题5分,共60分)1.设在xOy平面上,0<y≤x2,0≤x≤1所围成图形的面积为。

则集合M={(x,y)|x≤|y|}, N={(x,y)|x≥y2|的交集M∩N所表示的图形面积为A. B. C.1 D.2.在四面体ABCD中,设AB=1,CD=,直线AB与直线CD的距离为2,夹角为。

则四面体ABCD的体积等于A. B. C. D.3.有10个不同的球,其中,2个红球、5个黄球、3个白球。

若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A.90 B.100 C.110 D.1204.在ΔABC中,若(sinA+sinB)(cosA+cosB)=2sinC,则A.ΔABC是等腰三角形,但不一定是直角三角形B.ΔABC是直角三角形,但不一定是等腰三角形C.ΔABC既不是等腰三角形,也不是直角三角形D.ΔABC既是等腰三角形,也是直角三角形5.已知f(x)=3x2-x+4, f(g(x))=3x4+18x3+50x2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A.8 B.9 C.10 D.116.设0<x<1, a,b为正常数。

则的最小值是A.4ab B.(a+b)2 C.(a-b)2 D.2(a2+b2)7.设a,b>0,且a2008+b2008=a2006+b2006。

则a2+b2的最大值是A.1 B.2 C.2006 D.20088.如图1所示,设P为ΔABC所在平面内一点,并且AP=AB+AC。

全国高中数学联赛模拟试题第九卷附答案

全国高中数学联赛模拟试题第九卷附答案

全国高中数学联赛模拟试题(九)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x 2-8nx +7s =0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k +1的数集 (C )偶数集 (D )所有形如4k +3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984 (D )17009 3、非常数数列{a i }满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i =0,1,2,…,n .对于给定的自然数n ,a 1=a n +1=1,则∑-=10n i i a 等于(A )2 (B )-1(C )1 (D )04、已知α、β是方程ax 2+bx +c =0(a 、b 、c 为实数)的两根,且α是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2(C )0(D )3i5、已知a +b +c =abc ,()()()()()()abb a acc a bcc b A 222222111111--+--+--=,则A的值是 (A )3(B )-3(C )4 (D )-46、对x i ∈{1,2,…,n },i =1,2,…,n ,有()211+=∑=n n x ni i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8(D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A 1A 2…A n 内一点,点P 到直线A 1A 2的距离为h 1,到直线A 2A 3的距离为h 2,…,到直线A n -1A n 的距离为h n -1,到直线A n A 1的距离为h n .若存在点P 使nn h a h a h a +++ 2211(a i =A i A i +1,i =1,2,…,n -1,a n =A n A 1)取得最小值,则此凸多边形一定符合条件 .2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是 .3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、θ∈R ,a ≠0.那么,对于任意的a 、θ,F (a ,θ)的最大值和最小值分别是 .4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是 .5、已知集合{1,2,3,…,3n -1,3n },可以分为n 个互不相交的三元组{x ,y ,z },其中x +y =3z ,则满足上述要求的两个最小的正整数n 是 . 6、任给一个自然数k ,一定存在整数n ,使得x n +x +1被x k +x +1整除,则这样的有序实数对(n ,k )是(对于给定的k ) .三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{a n }定义如下:a 1=3,a n =13-n a (n ≥2).试求a n (n ≥2)的末位数.五、(20分)已知a 、b 、c ∈R +,且a +b +c =1.证明:2713≤a 2+b 2+c 2+4abc <1.第二试一、(50分)已知△ABC中,内心为I,外接圆为⊙O,点B关于⊙O的对径点为K,在AB的延长线上取点N,CB的延长线上取M,使得MC=NA=s,s为△ABC的半周长.证明:IK⊥MN.二、(50分)M是平面上所有点(x,y)的集合,其中x、y均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c满足b<0,ab=9c.试判别此多项式是否有三个不同的实根,说明理由.参考答案第一试二、填空题:1、该凸多边形存在内切圆;2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m∈N+).三、332.四、7.五、证略.第二试一、证略;二、证略.三、有.。

高中数学联赛模拟题

高中数学联赛模拟题

全国高中数学联赛模拟试题6—* 试一、填空题(每小题8分,共6 4分)21. 7两足2sin x sin x sin 2x 3cos x 的锐角x =2 .已知复数z满足z 1,则z3 3z 2的最大值为23. 过抛物线y 4x的焦点作一倾斜角为,长度不超过8的弦,弦所在的直线与椭圆一 2 _ 23x 2y 2有公共点,贝U 的取值围为4. 满足(m n)m n m1413的正整数对(m,n)为5. 在正方体ABCD AB1CQ1中,P为棱AB上一点,过点P在空间作直线l ,使得l与平面ABCD和平面ABC1D1均成30角,则这样的直线l有条。

6. 设f(x) |||||x20 2 2011 2 2010川22 2,则f(2011) =7 .整系数多项式P(x)满足P(19) P(99) 2011,则P(x)常数项为=(已知其绝对值不超过1000)8. 在空间给出不共面的4点以这些点作为顶点的不同的平行六面体有—个.二、解答题(共5 6分)9. (16 分)在平面上给定不共线的三点A, B,C,以线段AB为一条轴(长轴或短轴)作一个不经过C的椭圆,与另两条线段AC,BC分别交于点E, F ,过E,F分别作椭圆的切线,设这两条切线交于点C。

,类似地,再以线段BC,AC为一条轴各作椭圆,分别相应得到切线的交点A0, B0, 证明:不论每个椭圆的另一条轴的长度如何选择,三条直线AA0, BB。

,CC0都经过一个定点.10. (20 分)设函数f (x)满足axf (x) b f (x),(ab 0)且f (1) 2, f(2 x) f(2 x),(1) 求函数f (x)的解析式;(2) 数列a n的前n项的和为Sn, a n满足当n 1时,a〔 f (1) 2,当n 22 1 2时,S n ------------------- — n25n 2,试给出数列a n的通项公式并加以证明.f(a n) 22.在区间[3,b ]上任意地插入201 0个分点X 2,X 3, ,X 2011 ,满足,、-1 ka x 1x 2x 2012 b .记 y k— x j (k 1,2, ,2012) k j 12011(1)证明:存在正常数 M (0 M 1),使 | y iy i 1 | M |b a|;i 1(2)求最小正数 M ,使得(1)中的不等式对满足题设条件的一切 x i (i 1,2,成立.,2012)都、. AnA n 2(n 1) 3 .设 k N ,定义 A 〔 1 , A n 1 ---------------------------- ---------- ---------- ----- ,n 2证明:当n 1时,A n 为整数,且A n 为奇数的充要条件是n 1,2,n 1 或2(mod 4)n证明:a k 2nk 1加试1.已知圆O O 1与③O 2外切于点 T, 一直线与O O 2相切于点 X,与③O 1交于点 A 、B,且B 点在线段AX 的部,直线XT 与OO 1交于另一点S, C 是不包含点 A 、B 的TS 上的一点,过 点C 作OO 2的切线,切点为 Y,且线段CY 与线段ST 不相交,直线 SC 与XY 交于点I.证 明I 是△ ABC 的Z A 的旁切圆的圆心.11. (20 分)设 31,32,33,||a n 是n 个不全相等的正数,且n2n3k 1 .k 13a j5. 2模拟试题6参考答案一■ 试又f (x) 2sin x 1 tanx 1在0,日 严格单调递增2.3& 3z 20得 tan 24. 3,11 ;m n m n m 1413故 m 1 或3,经检验 m 3,n 11 3,11 满足4 . 求最小的正整数n ,使得把集合M (A B ,A B M ),方程 x i X 2 (X i ,X 2, , X 10)(X i ,X 2, , X i 0 的值可以相同) C A,或者C B .(1,2, ,n)任意划分成两个子集A, BX 9 X 10至少存在一组正整数解,而由这一组数值构成的集合C ,或者〔•3解析:因X 为锐角,贝UCOSX2sin XtanX tanX 2sin0,方程两边同时除以 COSX 得3即 2sin X 1 tanX 1 2故 f (x) 2 f(§)解析:原式=2(a1) 1) .5 4ar 1 .当a ,b2解析:由2(a —时等成,.22 3 J 3 , 4y 2 4xy (x 1)tan得x 2 由抛物线定义得弦长=X 1222y 23x 22又由y (x1)tanJ(2a 2)(2a 2)(5 4a) W3,2_ 2tan (2 tan、24)x tan1 X2 12 tan 2 4tan 22 8 tan 2 X 2(3 2 tan2)(4 tan 2)x 2 tan 2,顼[2解析:由(m mn)1413故m 4 ,又由于mm n n 整除C 1 AB D的平面角为45,在这个二面角及其“对顶”二面角,不存在 过点P 且与平面ABCD 和平面ABC 1D 1均成30的直线,转而考虑它的补二面角,易知过点nP 有且仅有两条直线与其均成 30 。

全国高中数学联赛模拟卷(1)(一试+二试_附详细解答)

全国高中数学联赛模拟卷(1)(一试+二试_附详细解答)

全国⾼中数学联赛模拟卷(1)(⼀试+⼆试_附详细解答)全国⾼中数学联赛模拟卷(1)⼀试⼀、填空题(本⼤题共8⼩题,每⼩题8分,共64分)1229x <+的解集为. 2.过正⽅体外接球球⼼的截⾯截正⽅体所得图形可能为______________. ①三⾓形②正⽅形③梯形④五边形⑤六边形3.直线2kx y -=||1x =-有两个不同的交点,则实数k 的取值范围是__ _______.4.复数z ,使322z z z+=,则z 的所有可能值为 _____ ____.5.所有的满⾜条件11aba b a b ab a b ---=?++的正整数对(,)a b 的个数为.6.设,,a b c 为⽅程3120x k x k --=的根(121k k +≠),则111111a b ca b c+++++=--- __. 7.将号码分别为1、2、…、9的九个⼩球放⼊⼀个袋中,这些⼩球仅号码不同,其余完全相同. 甲从袋中摸出⼀个球,其号码为a ,放回后,⼄从此袋中再摸出⼀个球,其号码为b . 则使不等式 0102>+-b a 成⽴的事件发⽣的概率等于.8.已知A , B , C 为△ABC 三内⾓, 向量)2sin 3,2(cosBA B A +-=α,2||=α.如果当C 最⼤时,存在动点M , 使得|||,||,|成等差数列, 最⼤值是__ ___.⼆、解答题(本⼤题共3⼩题,第9题16分,第10、11题20分,共56分)9.对正整数2n ≥,记11112n n k k n a n k --==-∑,求数列{a n }中的最⼤值.10.给定正实数k ,圆⼼为(b a ,)的圆⾄少与抛物线2kx y =有三个公共点,⼀个是原点(0, 0),另两个点在直线b kx y +=上,求b a ,的值(⽤k 表⽰). 11.已知函数,72sin 3|)cos ||sin (|)(--+=x x x a x f 其中a 为实数,求所有的数对(a , n )(n ∈N *),使得函数)(x f y =在区间),0(πn 内恰好有2011个零点.ABCPQ ID O 1 I 1I 2⼆试⼀、(本题满分40分)在Rt ABC ?中,CD 是斜边AB 上的⾼,记12,,I I I 分别是△ADC , △BCD ,△ABC 的内⼼,I 在AB 边上的射影为1O ,,CAB ABC ∠∠的⾓平分线分别交,BC AC 于,P Q ,且PQ 的连线与CD 相交于2O ,求证:四边形1122I O I O 为正⽅形.⼆、(本题满分40分)给定正数a , b , c , d, 证明:ba db a d a dc ad c d c b d c b c b a c b a +++++++++++++++++++333333333333.2222d c b a +++≥三、(本题满分50分)设+∈N k ,定义11=A ,2)1(221+++=+n n nA A kn n , ,2,1=n 证明:当1≥n 时,n A 为整数,且n A 为奇数的充要条件是)4(mod 21或≡n四、(本题满分50分)试求最⼩的正整数,n 使得对于任何n 个连续正整数中,必有⼀数,其各位数字之和是7的倍数.全国⾼中数学联赛模拟卷(1)答案⼀试1.由0211≠+-x 得0,21≠-≥x x ,原不等式可变为()922112+<++x x解得845x 故原不等式的解集为145,00,28-? ?U2.答案:②⑤,解:由对称性可知,所得图形应为中⼼对称图形,且②⑤可以截得3.提⽰:44[2,)(,2]33--?, 曲线为两个半圆,直线过定点(0,?2),数形结合可得.4.答案:0,1,12,12i i -+-- 解:322z z z +==2z z ?,∴2(12)0z z z +-=当 0z =时,满⾜条件,当 0z ≠时,2120z z +-= 设 22(,),212()z a bi a b R a b abi a bi =+∈-++--则∴ 22120(1)220(2)a b a ab b ?-+-=?+=? ,由(2) 2(1)0b a +=1)0b = 代⼊(1) 整理得:2(1)01a a -=?=2)0b ≠,则 1a =- 代⼊(1) 得:242b b =?=±,经检验复数1,12z i =-±均满⾜条件. ∴ z 的所有可能值为0,1,12,12i i -+--. 5.解:显然1a b >≥.由条件得11a a b a a b -->?1b a b -?>11b a b -?≥+,从⽽有bab b b ≥+即b b ab b ≤-,再结合条件及以上结果,可得11a b a b a b a b a b --?++=-aa ab b ≥-+,整理得 11a a b a ab a a b --+≥-?()11a b a a b --=?-1a a -≥,从⽽()211a a a a a a ab a -=+-≥+≥即31a a-≤,所以23a ≤≤.当2a =时,1b =,不符合;当3a =时,2b =(1b =不符合).综上,满⾜本题的正整数对(),a b 只有()32,,故只有1解.6.答案:1212331k k k k ++--,由题意,312()()()x k x k x a x b x c --=--- 由此可得0a b c ++=,1ab bc ca k ++=-,2abc k =以及121(1)(1)(1)k k a b c --=---1113()()3111(1)(1)(1)a b c a b c ab bc ca abc a b c a b c +++-++-+++++=------1212331k k k k ++=-- 7.提⽰:甲、⼄⼆⼈每⼈摸出⼀个⼩球都有9种不同的结果,故基本事件总数为92=81个,由不等式a ?2b +10>0得2b6181135745=++++8.解: 2)cos(2)cos(2122sin 32cos 2||22=+--+=++-?=B A B A B A B A α ,21tan tan cos cos sin sin 2)cos(3)cos(=?=?+=-?B A B A B A B A B A22tan tan 4)tan (tan 2tan tan )tan(tan -=-≤+-=+=+-=B A B A BA B A C ,等号成⽴仅当22tan tan ==B A .令|AB |=2c ,因c 4||||=+, 所以 M 是椭圆1342222=+cy c x 上的动点.故点C (0,c 22), 设M (x ,y ), 则|MC |2=x 2+(c y 22-)2=c y c cy y c cy y y c 3||,2923122344222222≤+--=+-+-. 当y =c 3-时, |MC |2max =22627c +, |MC |max =c 216+. ||AB=4. 9.解:经计算知22a =,33a =,45103a a ==,下⾯⽤数学归纳法证明:当5n ≥时,有103n a ≤ 假设()1053n a n ≤≥,则1211111111122122n n n n n n a n n n +-++++=+?+?++?-- 21111212212n n n n n n n n n n -++??=++?++? ?--?? 112n n n a n n ++=+ 1110186810233533n n n n n n +++≤+?=?≤?<所以数列{a n }中的最⼤值是45103a a ==10.解:设⊙O :,)()(2222b a b y a x +=-+- 即02222=-+-by y ax x抛物线与直线b kx y +=的两个交点坐标为),(),,,(2211y x y x ,则211222kx kx b kx kx b =+??=+?,即12121x x b x x k +==-??①, 这两点亦在圆上,即),(2)(222111*********b kx b b kx ax x by y ax x o +-++-=-+-=?02)1(21212=--+b ax x k同理 02)1(22222=--+b ax x k , 即 12221222,1.1a x x k b x x k ?+=??+?-?=?+?②⽐较①,②知:kk k k b k a 11),1(2122+=+=+= 11.解:⾸先,函数)(x f 以为π周期,且以)(42Z k k x ∈+=ππ为对称轴,即 ))(()2(),()(Z k x f x k f x f x f ∈=-+=+πππ,其次,42)43(,102)4(,7)2(-=+-=+-=a k f a k f a k f πππππ,∵)(x f 关于)(42Z k k x ∈+=ππ对称,∴)(x f 在)42,2(πππ+k k 及)22,42(ππππ++k k 上的零点个数为偶数,要使)(x f 在区间)0πn ,(恰有2011个零点,则上述区间端点必有零点(1)若7=a ,则0)42(,0)2(≠+=πππk f k f ,考虑区间)2,0(π及),2(ππ上的零点个数.ABCP Q ID O 1I 1 I 2令].2,1((cos sin ∈+=t x x t 则0473)(2=-+-==t t t g y ,解得11=t (舍),)4sin(2342π+==x t ,故在2 ,0(π内有两解.当),2(ππ∈x 时,72sin 3)cos (sin 7)(---=x x x x f ,令]2,1((cos sin ∈-=t x x t ,则01073)(2=-+==t t t g y ,解得11=t (舍),3102-=t (舍),故在),2(ππ内⽆解.因此,)(x f 在区间),0(π内有三个零点..503201114)1(3),0(==-=-+n n n n n 个零点。

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。

若A B ⊆,则实数m 的取值范围为 。

2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。

3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。

4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。

5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。

6.已知复数z 满足24510(1)1zz =−=,则z =__________________。

7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。

8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。

9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。

10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。

直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。

则当1OAF ∠最大时,实数r =_____________________。

2024年全国高中数学联赛一试模拟试卷试题含答案

2024年全国高中数学联赛一试模拟试卷试题含答案

2024年全国高中数学联赛一试模拟试卷试题含答案一、选择题(本题共15小题,每小题5分,满分75分)1. 设集合A={x|3x-7<2x+5},B={x|x²-5x+6<0},则A∩B的取值范围是()A. (-∞, 2)B. (-∞, 3)C. (2, 3)D. (3, +∞)答案:B2. 若a、b为实数,且a≠b,则方程ax²-(a+b)x+b=0有实根的充要条件是()A. a+b=0B. a-b=0C. a²+b²=0D. ab=1答案:A3. 已知函数f(x)=x²-2x+3的最小值为m,则实数m的取值范围是()A. m>0B. m≥3C. m<3D. m≤0答案:B4. 若等差数列{an}的前n项和为Sn,且S5=10,S10=30,则S15的值为()A. 50B. 60C. 70D. 80答案:C5. 设函数f(x)=x²+2x+1,若f(x+1)=16,则x的值为()A. 2B. 3C. 4D. 5答案:D6. 若函数g(x)=x²+2x+k在x=1处取得最小值,则实数k的取值范围是()A. k≥-3B. k≤-3C. k≥3D. k≤3答案:A7. 已知函数f(x)=2x³-3x²+x+1,求f(-1)的值。

A. 0B. 1C. -1D. -3答案:D8. 若a、b、c成等比数列,且a+b+c=12,abc=27,则a、b、c的值分别为()A. 1, 3, 9B. 3, 3, 3C. 1, 9, 3D. 9, 3, 1答案:A9. 设等差数列{an}的公差为d,若a3+a5+a7=12,则a1+a6+a9的值为()A. 9B. 12C. 15D. 18答案:B10. 若a、b、c为等差数列,且a+b+c=12,abc=27,则a²+b²+c²的最小值为()A. 18B. 24C. 30D. 36答案:C二、填空题(本题共5小题,每小题15分,满分75分)11. 已知函数f(x)=x²+2x+1,求f(x+2)的值。

2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]

2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]

2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。

全国高中数学联赛模拟卷(6)(一试+二试 附详细答案)

全国高中数学联赛模拟卷(6)(一试+二试 附详细答案)

全国高中数学联赛模拟试题(6)一试一、填空题(每小题8分,共64分)1. 设函数32()3614f x x x x =+++,且()1f a =,()19f b =,则a b += .2. 圆内接四边形,1,2,3, 4.ABCD AB BC CD DA ====则此圆的半径为 .3. 函数xx xx y cos sin 1cos sin ++=的值域是 .4. 函数 y =的最大值是 .5. 设22()53196|53196|f x x x x x =-++-+,则(1)(2)+(50)f f f ++⋅⋅⋅的值为 .6. 已知椭圆2221(1)x y a a +=>,Rt ABC ∆以()0,1为直角顶点,边,AB BC 与椭圆交于两点,.B C 若ABC ∆面积的最大值为278,则a 的值为 . 7. 如果正整数a 的各位数字之和等于5,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列123,,,,a a a 若2012,n a =则3n a = .8. 将2个a 和2个b 共4个字母填在如图所示的25个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有 种(用数字作答).二、解答题(共56分)9. (16分)已知椭圆的两个焦点为12(1,0),(1,0)F F -,且椭圆与直线y x =. (1)求椭圆的方程;(2)过1F 作两条互相垂直的直线12,l l ,与椭圆分别交于,P Q 及,M N ,求四边形PMQN 面积的最大值与最小值.P n10.(20分) 在xoy 平面上有一系列点111222(,),(,),(,),n n n P x y P x y P x y ⋅⋅⋅⋅⋅⋅,对每个正整数n ,点n P 位于函数2(0)y x x =≥的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1n P +彼此外切.若11x =,且1n n x x +<(*n N ∈). (1)求证:数列1{}nx 是等差数列; (2)设⊙n P 的面积为n S,n T =求证:对任意*n N ∈,均有n T <.11. (20分) 设0,0,0,x y z >>>求证:333.2x y z xy yz zxx y y z z x ++++≥+++二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:(1,2,2)是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”的和“2010-幂次”的但不是“2012-幂次”的.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.全国高中数学联赛模拟试题参考答案一试一、填空题(每小题8分,共64分) 1.-2.解:由()()332()361413110f x x x x x x =+++=++++,令3()3g y y y =+,则()g y 为奇函数且单调递增.而()()3()131101f a a a =++++=, ()()3()1311019f b b b =++++=,所以(1)9g a +=-,(1)9g b +=,(1)9g b --=-,从而(1)(1)g a g b +=--,即11a b +=--, 故2a b +=-.2.24. 解:连BD ,设BAD θ∠=,那么BCD πθ∠=-,设四边形外接圆半径为R.ABD ∆中,由余弦定理知22214214cos 178cos BD θθ=+-⨯⨯=-BCD ∆中,由余弦定理知22223223cos()1312cos BD πθθ=+-⨯⨯-=+这样由178cos 1312cos θθ-=+解出1cos ,sin 5θθ==所以5BD ==. 在ABD ∆中,由正弦定理,2sin BD R θ==,从而得到R =.3. 11,11,22⎡⎫⎛⎤---⎪ ⎢⎥⎪ ⎣⎭⎝⎦.解:设=sin +cos ++.224t x x x x x π⎫⎛⎫⎪ ⎪⎪⎝⎭⎭因为-1s i n +1,4x π⎛⎫≤≤ ⎪⎝⎭所以.22≤≤-t 又因为2=1+2sin cos ,t x x 所以2-1sin cos =2t x x ,所以2-11-1==212t t y t ⨯+,所以.212212-≤≤--y 因为-1t ≠,所以121-≠-t ,所以-1y ≠.所以函数值域为.212,11,212⎥⎦⎤⎝⎛--⎪⎪⎭⎫⎢⎣⎡-+-∈ y4. 解:函数的定义域为[15],,且0y ≥.根据柯西不等式有:5y =22≤=5时,等号成立,即12727x =时函数取最大值5. 660.解:由于253196(4)(49)x x x x -+=--,因此449x ≤≤时,2531960x x -+≤,均有()f x =0.因此:(1)(2)...(50)(1)(2)(3)(50)f f f f f f f +++=+++,代入数据得:原式22222(153196)2(2532196)2(3533196)2(505350196)660=-++-⨯++-⨯++-⨯+= 6. 3.解:不妨设AB 的方程()10y kx k =+>,则AC 的方程为11y x k=-+. 由22211y kx x y a=+⎧⎪⎨+=⎪⎩得:2222(1)20a k x a kx ++=2222,1B a k x a k -⇒=+ 由222111y x k x y a ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222()20a k x a kx +-=2222,C a k x a k ⇒=+由弦长公式可得:AB AC ==于是 2442222224211(1)2212(1)()()1ABC k k k kSAB AC a a a k a k a k a k∆++===+++++. 令12t k k=+≥,有44222222222,(1)(1)ABC a ta Sa a t a a t t∆==-+-+因为2222(1)2(1),a a t a a t -+≥- 21a t a-=时等号成立. 因此当21a t a -=时,3max 2(),1ABC a S a ∆=-令32227(3)(839)018a a a a a =⇒---=-.解得:)3,a a a ===舍.又21=21a t a a -≥⇒≥+a ∴=舍去. 3.a ∴= 7. 100013.解:∵方程12k x x x m +++= 的非负整数解的个数为1m m k C +-.而使11,0(2)i x x i ≥≥≥的整数解个数为12m m k C -+-.现取5m =,可知,k 位“吉祥数”的个数为43().k P k C +=∵4445(1)1,(2)5,P C P C ====46(3)15,P C ==并且对于四位“吉祥数”1abc ,其个数为满足4a b c ++=的非负整数解个数,即443115C +-=个,而2012是形如2abc 的数中的第2个“吉祥数”,因此2012是第1+5+15+15+2=38个“吉祥数”,即382012a =,从而38,3114.n n ==又4378(4)35,(5)56,P C P C ====而51()151********.k P k ==++++=∑∴从小到大的前2个六位“吉祥数”是:100004,100013.∴第114个“吉祥数”是100013,即3100013.n a = 8.33800.解:使2个a 既不同行也不同列的填法有2255200C A =种,同样,使2个b 既不同行也不同列的填法也有2255200C A =种,故由乘法原理,这样的填法共有20020040000⨯=种.其中不符合要求的有两种情况:2个a 所在的方格内都填有b 的情况有200种;2个a 所在的方格内仅有1个方格内填有b 的情况有122516252406000C A =⨯=种.所以,符合题设条件的填法共有40000200600033800--=种.二.解答题(共56分)9.解:(1) 设椭圆方程为22221(0)x y a b a b +=>>.它与直线y x =1个交点,所以方程组22221x y ab y x ⎧+=⎪⎨⎪=⎩只有一解,即2222222()30b a x x a a b +-+-=只有一根(重根)2222222()4()(3)0a b a a b ∴∆=--+-=,化简得223a b +=又 焦点为(-1,0),(1,0),∴221a b -=,∴2221a b ⎧=⎪⎨=⎪⎩∴椭圆方程为:2212x y +=.(2)若PQ 斜率不存在(或为0),则||||22PMQNPQ MN S ⋅===四边形 ①若PQ 斜率存在,设为(0)k k ≠,则MN 的斜率为1k-, ∴直线PQ 的方程为=+y kx k .设PQ 与椭圆交点坐标()1122(,),,P x y Q x y ,P n联立方程2212y kx k x y =+⎧⎪⎨+=⎪⎩,12,x x 为方程2222(21)4220k x k x k +++-=的根,12||||=PQ x x a ∴=-=22121k k +=+同理221||2k MN k +=+.||||42MN PQ S ⋅∴==四边形PMQN2424242121124()2522252k k k k k k k ++=-++++ 24214()24104k k k =-=++22114()124410k k -+⨯+22448k k +≥= ,当且仅当21k =时等号成立, 2211(0,]1184410k k∴∈+⨯+,221116=4(),21294410S k k ⎡⎫∴-∈⎪⎢⎣⎭+⨯+四边形PMQN ② 综合①②可得:PMQN S 四边形的面积的最小值为169,最大值为2. 10.(20分) 解:(1)依题意,⊙n P 的半径2n n n r y x ==, ⊙n P 与⊙1n P +彼此外切, 11n n n n P P r r ++∴=+,1n n y y +=+. 两边平方,化简得 211()4n n n n x x y y ++-=,即 22211()4n n n n x x x x ++-=,10n n x x +>> , ∴112n n n n x x x x ++-=, 即1112()n n n N x x +-=∈,∴ 数列1{}nx 是等差数列. (2) 由题设,11x =,∴111(1)2n n x x =+-⋅,即121n x n =-, 2244(21)n n n n S r y x n ππππ====-,n T =222111]35(21)n =++++-≤111]1335(23)(21)n n ++++⋅⋅-⋅-1111111[(1)()()]23352321n n ⎫+-+-++-⎬--⎭11(1)]221n +--=< 11. (20分) 证明:223()044()x x y x y x y x y ---=≥++ ,∴234x x y x y -≥+.进而可得323.4x x xyx y -≥+类似的3234y y yzy z -≥+,3234z z zx z x -≥+. ∴3332223334x y z x xy y yz z zx x y y z z x -+-+-++≥+++2223()4x y z xy yz zx++---=3()42xy yz zx xy yz zx xy yz zx ++---++≥=二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.证明:注意到,当0a >时,有()5235323223(2)1(1)(1)a a a a a a a a a -+-+=--+=---3222(1)(1)(1)(1)(1)0a a a a a a =--=-+++≥.所以()5233(2)a a a -+≥+.因此,我们只需证明:3333(2)(2)(2)()a b c a b c +++≥++.为此,我们证明更一般的结论: 对任意正实数,,(1,2,3)i i i x y z i =,均有:3111222333()()()x y z x y z x y z ++++++≥. (1)事实上,由于3121112223331()3x x x x y z x y z x y z =≤++++++++同理,3121112223331()3y y y x y z x y z x y z ≤++++++++,3121112223331()3z z z x y z x y z x y z ≤++++++++,上述3个不等式相加可知(1)式成立.所以3333333(2)(2)(2)(11)(11)(11)()a b c a b c a b c +++=++++++≥++,原命题得证. 二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.证明:考虑ABC ∆与截线PFD ,由梅涅劳斯定理,有1CP AF BDPA FB DC⋅⋅=, 所以PA AF BD AF s aCP FB DC DC s c-=⋅==-(s 为ABC ∆的半周长) 于是PA s aCA a c -=-,因此()b s a PA a c-=-,这样()()()2b s a s c s a PE PA AE s a a c a c---=+=+-=-- ()()()()()()21,2s c s a s c s a s a ME PE MA ME AE s a a c a c a c-----===-=--=--- ()()()()2s c s a s c MC ME EC s c a c a c ---=+=+-=--,于是2MA MC ME ⋅=.因为ME 是点M 到ABC ∆的内切圆的切线长,所以2ME 是点M 到内切圆的幂,而MA MC ⋅是点M 到ABC ∆外接圆的幂,等式2MA MC ME ⋅=表明点M 到到ABC ∆外接圆与内切圆的幂相等,因此点M 在ABC ∆外接圆与内切圆的根轴上,同理,点N 也在在ABC ∆外接圆与内切圆的根轴上,故OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:()1,2,2是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”和“2010-幂次”的,但不是“2012-幂次”的.解(1)设(,,)a b c 满足条件,则由222()|a b c a b c ++++得2222()|()()a b c a b c a b c ++++-++,于是()|2()a b c ab bc ca ++++. (1)由333()|a b c a b c ++++,得333222()|()()()a b c a b c a b c a b c ab bc ca ++++-++++--- 于是()|3a b c abc ++ (2)对于任意素因子5p ≥,若|()p a b c ++,则|p abc .不妨设|p a ,则0(mod )b c p +≡.又由(1)式可得0(mod )bc p ≡,于是0(mod )b c p ≡≡,这与(,,)1a b c =矛盾,故a b c ++无大于3的素因子.对于因子3,若3|()a b c ++,与上面相同的推理可得3不整除abc ,故由(2)式知,()a b c ++至多含3的一次因子.对于因子2,若2|()a b c ++,则由(,,)1a b c =,可知,,a b c 的奇偶性为两奇一偶,此时2()2(mod 4)ab bc ca ++≡,所以由(1)式知,()a b c ++至多含2的一次因子;综上所述,我们有()|6a b c ++,由,,a b c 为正整数,容易求得符合条件的数组为(1,1,1),(1,1,4).(2)记n n n n T a b c =++,注意到多项式:()()()()f x x a x b x c =---=32()()x a b c x ab bc ca x abc -+++++-,则32()()()0f a a a b c a ab bc ca a abc =-+++++-=,故32()()a a b c a ab bc ca a abc =++-+++,两边同乘以3n a -,得123()()()n n n n a a b c a ab bc ca a abc a ---=++-+++,对,b c 有类似的结论,将三者相加,得123()()n n n n T a b c T ab bc ca T abcT ---=++-+++.故若有3()|n a b c T -++,且2()|n a b c T -++,则必有()|n a b c T ++.由此,取2012n =,知不存在符合条件的正整数组.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.解:最少要取出11个棋子,才可能满足要求.其原因如下:如果一个方格在第i 行第j 列,则记这个方格为(i ,j ).第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连.用反证法.假设可取出10个棋子,使余下的棋子没有一个五子连珠.如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子.这样,10个被取出的棋子不会分布在右下角的阴影部分.同理,由对称性,也不会分布在其他角上的阴影部分.第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格.同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子.在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子.这样,在这些区域内至少已取出了10个棋子.因此,在中心阴影区域内不能取出棋子.由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了.矛盾.图1 图2第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠.如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠.综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠.。

(整理)全国高中数学联赛模拟试题目

(整理)全国高中数学联赛模拟试题目

全国高中数学联赛模拟试题(一)(命题人:吴伟朝)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a 2+b 2)=5c 2满足c ≤20的正整数解(a ,b ,c )的个数是(A )1 (B )3 (C )4 (D )52、函数12-=x x y (x ∈R ,x ≠1)的递增区间是(A )x ≥2 (B )x ≤0或x ≥2 (C )x ≤0(D )x ≤21-或x ≥23、过定点P (2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是 (A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5中,满足条件a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x ]表示不大于x 的最大整数,则方程21×[x 2+x ]=19x +99的实数解x 是 .2、设a 1=1,a n +1=2a n +n 2,则通项公式a n = .3、数799被2550除所得的余数是 .4、在△ABC 中,∠A =3π,sin B =135,则cos C = .5、设k 、θ是实数,使得关于x 的方程x 2-(2k +1)x +k 2-1=0的两个根为sin θ和cos θ,则θ的取值范围是 . 6、数()n2245+(n ∈N )的个位数字是 .三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x (1-2x )(1-3x )+y (1-2y )(1-3y )+z (1-2z )(1-3z )≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x 2+(a +2002)x +a =0的两根皆为整数.(2) 试求出所有的实数a ,使得关于x 的方程x 3+(-a 2+2a +2)x -2a 2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x ,y )|x 、y ∈R ,且x 2+(y -7)2≤r 2}一定被包含于另一个点集S ={(x ,y )|x 、y ∈R ,且对任何θ∈R ,都有cos2θ+x cos θ+y ≥0}之中.第一试一、选择题:题号 1 23 4 5 6 答案 C CDABD二、填空题:1、38181-或381587;2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{θ|θ=2n π+π或2n π-2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、(50分)设a、b、c∈R,b≠ac,a≠-c,z是复数,且z2-(a-c)z-b=0.求证:()12=-+-+baczcaba的充分必要条件是(a-c)2+4b≤0.二、(50分)如图,在△ABC中,∠ABC和∠ACB均是锐角,D是BC边上的内点,且AD平分∠BAC,过点D 分别向两条直线AB、AC作垂线DP、DQ,其垂足是P、Q,两条直线CP与BQ相交与点K.求证:(1)AK⊥BC;AC B DQKP(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a 1,a 2,…,a n 满足下列n 个方程:∑==+=+ni i n j j ji a 1),,3,2,1(124.确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子).参考答案第一试一、选择题:题号1 23456答案 CC D A B D二、填空题:1、38181-或381587;2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{θ|θ=2n π+π或2n π-2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ).三、()11212++-=n S .。

2024年全国高中数学联赛模拟练习试题(一试)

2024年全国高中数学联赛模拟练习试题(一试)

2024年全国高中数学联赛模拟练习试题(一试)一、填空题1.设非空集合{}1,2,,9A ⊆L 满足a A ∀∈,10a A -∈,则这样的A 的个数为. 2.在锐角三角形 ABC 中,边 2BC =,2B A =,则边 AC 的取值范围是.3.设 ,R a b ∈,函数() f x ax b =+满足() 1f x ≤对任意[] 0,1?x ∈都成立,则 ab 的最大值为.4.P 是双曲线221916x y -=的右支上一点,,M N 分别是圆2210210x y x +++=和2210240x y x +-+=上的点,则||||PM PN -的最大值为.5.已知向量1,2a b r r ==,且a r 和b r 的夹角为2π3,若a tb +r r 与ta b +r r 的夹角为钝角,则 t 的取值范围为.6.甲、乙两人玩游戏,规则如下:第奇数局,甲赢的概率为 34;第偶数局,乙赢的概率为 34.每一局没有平局.规定:当其中一人赢的局数比另一人赢的局数多两次时游戏结束.则游戏结束时,甲、乙两人玩的局数的数学期望为.7.若 X 是棱长为 ABCD 内一点,以 X 在四面体 ABCD 的四个面上的射影为顶点的新四面体的体积的最大值为.8.一个平台的俯视图为一个3×3的方格表,初始时在中心的方格 O 处有一只电子瓢虫,每过一秒钟,该瓢虫都会随机选择平行于平台边界的四个方向之一移动一个单位.如果瓢虫跌落平台就会“死亡”,那么在2023秒后,该瓢虫仍然“存活”的概率是.二、解答题9.已知复数列{}n z 满足:()()111i 1n n n z z z z n +==+≥,求2024z .10.设非负实数 ,,?x y z 满足22210x y z ++=.值.11.已知点()() 3,00M m m ->, N 、 P 两点分别在 y 轴、 x 轴上运动,且满足·0MN NQ =u u u u r u u u r ,1 2NP PQ =u u u r u u u r . (1)求Q 的轨迹方程;(2)若一正方形的三个顶点在点Q的轨迹上,求其面积的最小值.。

全国高中数学联赛一试模拟试题一

全国高中数学联赛一试模拟试题一

全国高中数学联赛一试模拟试题一一、填空题1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 . 6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCD ABCDAPQ R2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分)1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1,∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z ).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52.4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4.又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点.由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy )≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = .BCDAP QR BMNR Q PA DC B填0,3-12,3-1.解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12;a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x . 二、解答题(本大题共4小题,每小题20分,共80分)11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形. 得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.s (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCDA解:对于任意n∈N*,n2≡0,1(mod 4).设a,b是两个不同的自然数,①若a≡0(mod 4)或b≡0(mod 4),或a≡b≡2(mod 4),均有ab≡0(mod 4),此时,ab+10≡2(mod 4),故ab+10不是完全平方数;②若a≡b≡1(mod 4),或a≡b≡3(mod 4),则ab≡1(mod 4),此时ab+10≡3(mod 4),故ab+10不是完全平方数.由此知,ab+10是完全平方数的必要不充分条件是a≡/b(mod 4)且a与b均不能被4整除.⑴由上可知,满足要求的三个自然数是可以存在的,例如取a=2,b=3,c=13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.。

全国高中数学联赛初赛(模拟)附答案

全国高中数学联赛初赛(模拟)附答案

2.如果二次方程 x2 px q 0 ( p, q N*) 的正根小于 3, 那么这样的二次方程有 A. 5 个 B. 6 个 C. 7 个
1 的最小值是 b( a b )
D. 8 个
3.设 a b 0 , 那么 a 2
A. 2 B. 3 C. 4 D. 5 4.设四棱锥 P ABCD 的底面不是平行四边形, 用平面 去截此四棱锥, 使得
N {( x, y) | | x a | | y 1| 1, x, y R}. 若 M N , 则 a 的取值范围是
.
三.解答题 (第一题、第二题各 15 分;第三题、第四题各 24 分) 13.已知点 M 是 ABC 的中线 AD 上的一点, 直线 BM 交边 AC 于点 BC BM N , 且 AB 是 NBC 的外接圆的切线, 设 , 试求 (用 表示). BN MN
2005
, 求 n 的
பைடு நூலகம்考答案
一.选择题
1,B 2,C
y sin[( x ) ] , 即 4 4


ycos x . 故选 B.
由 p2 4q 0, q 0 , 知方程的根为一正一负.设 f ( x) x2 px q ,则
f (3) 32 3 p q 0 , 即 3 p q 9 . 由 于
4,D 设四棱锥的两组不相邻的侧面的交线为 m 、 n , 直线 m 、 n 确定了一个平面 作与 平行的平面 这样的平面
, 与四棱锥的各个侧面相截,则截得的四边形必为平行四边形.而
有无数多个.故选 D.
5,C 数列 {an } 模 64 周期地为 2,16,-2,-16,……. 又 2005 被 4 除余 1, 故 选 C. 6,D 铺第一列(两块地砖)有 30 种方法;其次铺第二列.设第一列的两格铺了 A 、 B 两色(如图),那么,第二列的上格不能铺 A 色.若铺 B 色,则有 (6 1) 种铺法;若不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中数学联赛模拟题一 试一、填空题(本题满分64分,每小题8分)1. 已知2a ≥-,且{}2A x x a =-≤≤,{}23,B y y x x A ==+∈,{}2,C t t x x A ==∈,若C B ⊆,则a 的取值范围是 。

2. 在ABC ∆中,若2AB =,3AC =,4BC =,O 为ABC ∆的内心,且AO AB BC λμ=+,则λμ+= .3. 已知函数()()()()21,0,1,0,x x f x f x x -⎧-≤⎪=⎨->⎪⎩若关于x 的方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 。

4. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。

如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是 。

5. 已知椭圆22143x y +=的左、右焦点分别为F 1、F 2,过椭圆的右焦点作一条直线l 交椭圆于点P 、Q ,则△F 1PQ 内切圆面积的最大值是 .6. 设{}n a 为一个整数数列,并且满足:()()()11121n n n a n a n +-=+--,n N +∈.若20072008a ,则满足2008n a 且2n ≥的最小正整数n 是 .7. 如图,有一个半径为20的实心球,以某条直径为中心轴挖去一个半径为12的圆形的洞,再将余下部分融铸成一个新的实心球,那么新球的半径是 。

8. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。

二、解答题(本题满分56分)9. (本小题满分16分)对正整数2n ≥,记11112n n k k n a n k --==⋅-∑,求数列{}n a 中的最大值.10.(本小题满分20分)已知椭圆 12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线y x =的交点为B 、C 。

现有以A 为焦点,过B ,C 且开口向左的抛物线,其顶点坐标为M (m ,0),当椭圆的离心率满足 1322<<e 时,求实数m 的取值范围。

11.(本小题满分20分)映射f 的定义域是{}1,2,,20A =的全体真子集,值域包含于{}1,2,,10,满足条件:对任意,B C A ⊆,都有()()(){}min ,f B C f B f C =,求这种映射的个数.加 试一、(本题满分40分)设A B C D E 、、、、为直线l 上顺次排列的五点,AC BCCE CD=,F 在直线l 外的一点,连结FC 并延长至点G ,恰使FAC AGD ∠=∠,FEC EGB ∠=∠同时成立.求证:FAC FEC ∠=∠。

二、(本题满分40分)已知:,,0a b c ≥,2a b c ++=,求证:()()()1111bc ca ababc a b abc b c abc c a ++≤++++++。

三、(本题满分50分)设正整数n 大于1,它的全部正因数为d 1,d 2,…,d k ,满足1=d 1<d 2<…<d k = n 。

再设D = d 1d 2+d 2d 3+…+d k -1d k 。

(i) 证明:D <n 2;(ii) 确定所有的n ,使得D 整除n 2。

四、(本题满分50分)设圆周上有一些红点和蓝点,可以进行如下操作:加上一个红点,并改变其相邻两点的颜色;或去掉一个红点,并改变原先与之相邻的两点颜色.已知开始时只有两个点,均为红点,那么是否有可能经过若干次操作,使得圆周上只有两个点,且均为蓝点.参考答案一试1. 答:1,32⎡⎤⎢⎥⎣⎦[]1,23B a =-+,要使C B ⊆,只需C 中的最大元素在B 当中,所以()22223,23a a a ⎧-≤+⎪⎨≤+⎪⎩,得132a ≤≤。

2. 答:97 设AO 交BC 于点D ,由角平分线定理知23BD AB DC AC ==,于是3255AD AB AC =+,又54AO AB AC AB AC OD BD CD BD CD +====+,所以()5121293939AO AD AB AC AB AB BC ==+=++ 5299AB AC =+,因此79λμ+=。

3. 答:(),1-∞利用函数图象进行分析易得结果。

4. 答:6110 若计算器上显示n 的时候按下按键,因此时共有1~n -1共n 种选择,所以产生给定的数m 的概率是1n。

如果计算器上的数在变化过程中除了2011,999,99,9和0以外,还产生了12,,,n a a a ,则概率为1211111112011999999n a a a ⨯⨯⨯⨯⨯⨯⨯,所以所求概率为 1211111112011999999n p a a a =⨯⨯⨯⨯⨯⨯⨯∑11111111112011201020091000999998⎛⎫⎛⎫⎛⎫⎛⎫=+++⨯⨯+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()11111111111110099981098⎛⎫⎛⎫⎛⎫⎛⎫+⨯⨯++⨯⨯++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭注意到()111111111111112011201020091000999998⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⨯+⨯++ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相除即得6111110001001010p =⨯⨯=。

5. 答:916π 因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,且△F 1PQ 的周长是定值8,所以只需求出△F 1PQ 面积的最大值。

设直线l 方程为1x my =+,与椭圆方程联立得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,于是()()122121212122211412234F PQm S F F y y y y y y m∆+=⋅-=+-=+。

因为()2222222111111163491599611m m m m m m +==≤++++++++,所以内切圆半径12384F PQ S r ∆=≤,因此其面积最大值是916π。

6. 答:501当2n ≥时,将原式变形为()()()12111n n a a n n n n n n +=-+-+,令()1n n a b n n =-,则有()121n n b b n n+=-+,叠加可得21122n b b n ⎛⎫=-- ⎪⎝⎭,于是()()()21122n n n a a n n -=---。

由20072008a ,得2200720062008200620052a ⨯⎛⎫-⨯⎪⎝⎭,化简得()26mod 2008a ≡。

由2008n a ,得()()()()21120mod 20082n n a n n ----≡,将上述关于2a 的结果代入得()()()110mod1004n n +-≡,于是质数()()25111n n -+且n 是奇数,所以满足条件的最小的n 是501。

7. 答:16将题目所得几何体的上半部分与半径为16的半球作比较,将它们的底面置于同一水平面,并考察高度为h 的水平面与两个几何体所截的截面面积。

与第一个几何体形成的截面是圆环,外径是2220h -,内径是12,所以面积是()()22222201216h h ππ--=-,这正是与第二个球体形成的截面圆的面积,由祖暅原理知两个几何体的体积是相等的。

8. 答:815令2u t =,原方程化为3321()(3)0.x y u x y u x y-+++=- ① 233221(3)4()523(53)().x y x y x yx xy y x y x y ∆=+--⋅-=+-=-+所给方程没有实根等价于方程①无实根或有实根但均为负根,所以,,3,3,(53)()0x y x y x y x y <⎧⎪<⎪⎨<⎪⎪-+<⎩或,3,3,(53)()0,30.x y x y x y x y x y <⎧⎪<⎪⎪<⎨⎪-+≥⎪⎪+<⎩ 点集N 所成区域为图中阴影部分,其面积为124181363.2525ABO BCOS S S ∆∆=+=⨯⨯+⨯⨯=9. (本小题满分16分)解:经计算知22a =,33a =,45103a a ==,下面用数学归纳法证明:当5n ≥时,有103n a ≤。

假设()1053n a n ≤≥,则1211111111122122n n n n n n a n n n +-++++=+⨯+⨯++⨯-- 21111212212n n n n n n n n n n -++⎛⎫=++⨯++⨯ ⎪--⎝⎭112n n n a n n++=+ 1110186810233533n n n n n n +++≤+⨯=⨯≤⨯<。

所以数列{}n a 中的最大值是45103a a ==。

10.(本小题满分20分)解:椭圆过定点A (1,0),则,1,12b c a -==,12b e -=∵1322<<e ,∴330<<b 。

由对称性知,所求抛物线只要过椭圆与射线)0(≥=x x y 的交点,就必过椭圆与射线)0(≥-=x x y 的交点。

联立方程 ⎪⎩⎪⎨⎧=+≥=1)0(222b y x x x y ,解得 21b b y x +==。

∵330<<b ,∴210<<x 。

设抛物线方程为:)(22m x p y --=,1,0>>m p 。

又 ∵12-=m p, ∴ ))(1(2m x m y --= ①把 x y =,210<<x 代入①得0)1(4)1(42=---+m m x m x ,1>m ,210<<x 。

令)1(4)1(4)(2---+=m m x m x x f ,1>m ,210<<x , ∵ )(x f 在⎪⎭⎫⎝⎛21,0内有根且单调递增, ∴⎪⎩⎪⎨⎧>---+=⎪⎭⎫ ⎝⎛<--=0)1(4)1(241210)1(4)0(m m m f m m f ⇒ ⎪⎩⎪⎨⎧+-<>42342301〈〈或m m m综上得:4231+<<m 。

11.(本小题满分20分) 解:记{}/i A A i =,其中1,2,,20i =。

相关文档
最新文档