齿轮振动故障诊断与分析

合集下载

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法

2.3 滚动轴承的振动类型及故障特征分析 .................................9
2.3.1 滚动轴承的旋转机构 ..................................................................9 2.3.2 滚动轴承的振动类型 ................................................................10 2.3.2.1 滚动轴承的固有振动频率 ...............................................11 2.3.2.2 滚动轴承的缺陷特征频率 ...............................................11 2.3.2.3 滚动轴承的振动及其故障特征 ........................................12
Keywords: Rolling-Element bearing Hilbert transform
Gears
Fault Diagnosis
Envelope Analysis
Correlation-Envelope Analysis
- II -
西北工业大学硕士学位论文




第一章 绪
论 ................................................................... 1
3.4 齿轮振动信号的特征 ........................................................ 25
3.4.1 啮合频率及其各次谐波 .............................................................26 3.4.2 隐含成分 ..................................................................................26 3.4.3 调制效应产生边频带 ................................................................26 3.4.3.1 幅值调制 ........................................................................27 3.4.3.2 调频效应 ........................................................................27 3.4.4 轴速频率及其低次谐波 .............................................................27 3.4.5 啮合频率及其各次谐波的分析 ..................................................27 3.4.6 边带分析 ..................................................................................28

齿轮箱振动的故障诊断与分析

齿轮箱振动的故障诊断与分析
机组齿 轮箱 故 障 为例 , 过 对 轧 机 齿 轮 箱振 动 信 通
其倍频 处 能量 集 中且 数 值 较 大. 据 齿 轮 箱 各 类 根
零件损 坏 比例 的统 计 , 轮失 效 占 6 , 次依 次 齿 0 其
为轴 承 1 %、 1 、 体 7 、 固件 3 、 封 9 轴 O 箱 紧 油 1 因此 , %. 确定 进 一 步 的研 究 方 向 为 齿 轮 振 动 信
频率/ Hz
图 1 测点 1 径 向 ) 速 度 频 谱 图 ( 加
F g 1 Ac ee a in s e t u o a u i g p i t1 i. c lr t p c r m fme s r o n o n ( a il ie t n r d a r c i ) d o
4 #机 架 齿轮 箱连 接 螺栓 断 裂事 故 , 重 影 响到该 严 产 线 的正常 生产 , 其后 , 轮 箱螺 栓 断 裂事 故频 频 齿 发生 , #机架 齿 轮箱 在 1 4 ~5架 中振 动 最为 明显 , 造 成长 时 间停 机 抢 修 , 给企 业 生 产 带来 了一 定 的
动 的 激励 源. 立 齿 轮 箱 螺 栓 的 有 限 元模 型 , 模 拟 工况 下 计 算 得 出螺 栓 的第 3阶 固 有 频 率 与 齿 轮 箱 振 动 主 建 在 频 率相 近 , 成 共 振 是 致 使 螺 栓 断裂 的 主要 原 因. 过 这 种 分 析 计算 方法 , 栓 断 裂 事 故 得 到 了 有 效 的 控 制 . 形 通 螺
第 1 2期
安 妮 , : 轮 箱 振 动 的 故 障 诊 断 与分 析 等 齿
的激励源 , 障齿 轮 的振 动信 号 表现 为 回转 频率 对 故 啮合频率及其倍频 的调制 , 对于其频谱 而言 , 其谱 线 是 以啮合频率 为 中心 , 以故 障齿 轮 的转频 为

浅谈齿轮振动信号的分析与故障诊断

浅谈齿轮振动信号的分析与故障诊断
20. 件 ,以便 在强度达到要求 时及 时连续施 工 ,但 一定要保证混凝 出版 社 , 0 2 3 】 D 3 /o 卜 0 3 【 .浙江大学出版 s 土的养护 龄期 ,保证挡墙等 支护结构 的入 土深度 ,保证锚杆 的 【 建筑地基基础设计规范( B 3 10 20 ) 】
长度 , 证锚拉的可靠 , 保 分层支 护要 注意及时性 、整体性 ;模 社 .0 3 2 0.
MODE N R
C L_R E岫 理论研究 UTPI 一 U R ES R
浅谈齿轮振 动信号 的分析与故 障诊 断 பைடு நூலகம்
董 洪超 ,赵 瑜z
(. 1 宣钢 焦化厂 ;2 宣钢运输 部 ,河北 张 家 口 0 5 0) . 710
摘要 :文章通过 建立齿轮 系统试 验模 型 ,应 用C L S tA 软件
系统 采 集 实 际 齿轮 振 动 信 号 ,分 别 采 用 概 率 密度 估 计 法 、 时域


齿轮振动信号的时域和频域分析方法
( ) 一 振动信号时域分 析方法
分析法和频域 分析 法对 系统信号进行分析与特征提取 ,分别研
在齿轮故 障诊断 中,振动信号是最常用 的检测信号 ,直接 究 了正常齿轮 、裂纹齿轮 和磨损齿轮 的故障特征 。并辨识 出齿 对振动时域信号 的时间历程进行分析 和评估 是状态监测和故障 轮 系统 的 不 同运 行 工 况 。 诊断最简单和最直接的方 法,直接观察时域波形 可以看 出周期、 关键词 :齿轮振动信号;齿轮故障 ;时域分析 ;频域分析 谐波 、脉 冲、共振 、拍频现象 。还有 时域故 障诊 断的各动态指 标 ,如 :反映信号 中心趋势标 志的均 值;描述 动态信号强度 的 齿 轮是工业 中应用十分广泛 的一种 通用零部件 ,其 类型多 , 指标均方值 、均方根值 和方根 幅值 ;反 映信号偏 离中心趋势波 用量大 ,大部分设备都 会用 到齿轮。齿轮传动多以齿轮箱的结 动强度 的指标方差 ;用 于和正态分布 曲线 比较 、分 别反映信号 构出现 ,它是 目前广泛采用 的主要传 动形 式之一。虽然齿轮从 概率分布 的中心不 对称 程度 和概 率密度函数峰顶的凸平度的偏 设计、结构 、材料 到制造等 方面已相当成 熟和规范。但仍然难 斜度和峭度 ,还有一些无量纲动态指标 :波形指 标、脉 冲指标、 以避免诸 如磨 损 、剥 落 、点蚀 、裂纹等常发 故障 。研 究表 明 , 峰 值 指 标 和裕 度 指 标 等 。另 外 还 有 相 关 分 析 中 的 自相关 分析 和

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法目录一、内容综述 (2)二、滚动轴承振动信号分析 (3)1. 滚动轴承工作原理及结构特点 (4)2. 振动信号产生机制 (5)3. 振动信号采集与处理 (6)三、齿轮振动信号分析 (7)1. 齿轮工作原理及故障类型 (8)2. 振动信号特征提取 (10)3. 齿轮故障识别与诊断 (11)四、滚动轴承与齿轮振动信号分析方法 (12)1. 时域分析 (13)2. 频域分析 (14)3. 时频域联合分析 (16)五、故障诊断方法 (17)1. 基于振动信号特征的故障诊断 (18)2. 基于模型的故障诊断 (20)3. 基于智能算法的故障诊断 (21)六、实验与应用实例 (22)1. 实验设计 (24)2. 实验结果与分析 (25)3. 应用实例介绍 (26)七、结论与展望 (28)1. 研究结论 (29)2. 展望未来发展趋势 (29)一、内容综述本文档旨在全面阐述滚动轴承和齿轮振动信号分析与故障诊断方法的研究现状、发展趋势及其重要性。

随着工业领域的快速发展,滚动轴承和齿轮作为机械设备中的关键部件,其运行状态的正常与否直接关系到整个系统的稳定性和效率。

针对滚动轴承和齿轮的振动信号分析以及故障诊断方法的研究具有极其重要的实际意义。

滚动轴承和齿轮的故障诊断主要依赖于振动信号分析,通过对振动信号的特征提取和模式识别,实现对设备状态的实时监测和故障诊断。

随着信号处理技术和人工智能技术的不断进步,滚动轴承和齿轮振动信号分析的方法日趋成熟,为设备的故障诊断提供了有力的技术支持。

本文首先概述了滚动轴承和齿轮的基本结构、工作原理及其在机械设备中的重要地位。

然后重点介绍了振动信号分析的基本原理和方法,包括信号采集、特征提取、模式识别等关键环节。

接着详细阐述了基于振动信号的故障诊断方法,包括传统方法如频谱分析、包络分析等,以及近年来新兴的基于机器学习和深度学习的诊断方法。

对滚动轴承和齿轮振动信号分析与故障诊断方法的未来发展趋势进行了展望。

振动信号分析与故障诊断

振动信号分析与故障诊断

振动信号分析与故障诊断振动信号是在很多机械设备中常见的一个现象。

通过分析振动信号,可以获取各种设备的运行状态和性能指标,进而进行故障诊断和预测。

振动信号分析与故障诊断在工业生产中具有重要的应用价值。

振动信号分析是指对振动信号进行处理、提取特征,并进行分析和诊断。

振动信号携带了机械设备的运行状态信息,包含了频域、时域和幅值等多维度的数据。

通过对振动信号进行分析,可以获得设备的各种振动特征,如振动频率、振动幅值、振动模态等。

振动信号分析的方法包括频谱分析、时频分析、小波分析等。

其中,频谱分析是最为常用的方法之一。

频谱分析通过将时域的振动信号转化为频域信号,可以清晰地展示出不同频率分量所占的比例。

通过观察频谱图,可以得出关于故障频率或共振频率的信息。

振动信号的故障诊断是指通过分析振动信号的特征和变化,判断设备是否存在故障,并确定故障的类型和原因。

常见的故障类型包括轴承故障、齿轮故障、偏心故障等。

不同类型的故障在振动信号中表现出不同的特征,如频率的变化、幅值的异常等。

轴承故障是振动信号中常见的故障类型。

轴承故障通常表现为频谱中出现明显的多个高频峰。

通过分析这些高频峰的特点,可以确定轴承故障的类型,例如滚珠疲劳、滚道剥皮等。

另外,轴承故障还会引起振动信号的幅值增大和频率的变化。

齿轮故障是振动信号中另一常见的故障类型。

齿轮故障通常表现为频谱中出现特定的频率分量,称为齿轮特征频率。

通过分析这些特征频率的变化和幅值的异常,可以判断齿轮故障的类型,如齿面磨损、齿根断裂等。

振动信号分析与故障诊断的应用范围广泛。

在制造业中,振动信号分析可以用来监测和评估设备的性能和健康状况。

通过对振动信号进行实时监测和分析,可以及时发现设备的故障和异常,采取相应的维修和保养措施,避免因故障带来的生产停顿和损失。

在航空航天领域,振动信号分析与故障诊断可以应用于航空发动机、飞机结构和飞行控制系统等。

通过对振动信号进行监测和分析,可以判断航空设备的性能和可靠性,并提前做好维修和更换的准备,确保航空器的安全运行。

齿轮的振动测量与简易诊断1齿轮的振动测量

齿轮的振动测量与简易诊断1齿轮的振动测量

选择
根据实际需求和条件选择合适的测量方法,如精度要求高、 条件允许可选择直接测量法;仅需大致了解振动状态可选择 间接测量法;特殊环境下可选择非接触测量法。
03
齿轮振动测量设备与工具
振动传感器
振动传感器是用于测量齿 轮振动的主要设备,它能 够将机械振动转换为电信 号,以便进一步处理和分 析。
常见的振动传感器类型包 括电涡流式、压电式和电 容式等,每种类型都有其 特定的适用范围和优缺点 。
断齿
振动信号中会出现频率成 分单一、幅值较大的冲击 信号。
齿隙过大
振动信号中会出现频率较 低、幅值较大的周期性信 号。
弯曲或扭转变形
振动信号中会出现频率和 幅值均有所变化的非周期 性信号。
简易诊断技术的优缺点
优点
操作简便、成本低廉、实时性强。
缺点
精度较低、可靠性有待提高、对操作人员经验要求较高。
06
提高生产效率
通过振动测量,可以优化 齿轮的设计和制造过程, 提高齿轮的效率和寿命,
从而提高生产效率。
振动测量技术的发展历程
起步阶段
早期的振动测量技术主要依赖于模拟信号处理和人工分析 ,测量精度和效率较低。
发展阶段
随着数字技术和计算机技术的不断发展,振动测量技术逐 渐实现了数字化和自动化,提高了测量精度和效率。
齿轮振动测量与诊断案例分析
案例一:齿轮箱振动异常的诊断
总结词
通过振动测量技术,发现齿轮箱振动异常,分析原因并采取相应措施。
详细描述
齿轮箱在运行过程中出现异常振动,通过振动测量仪器检测到振动幅值和频率异 常。经过分析,发现齿轮啮合不良、轴承损坏等原因导致振动异常。采取更换轴 承、调整齿轮间隙等措施后,振动问题得到解决。

齿轮主要振动故障特征及实测频谱案例

齿轮主要振动故障特征及实测频谱案例

齿轮主要振动故障特征及实测频谱案例一、齿轮故障的频谱特征1、齿的磨损、过载齿轮的均匀性磨损、齿轮载荷过大等原因引起的故障,都会在轮齿之间产生很高的冲击力,此时会产生以啮合频率的谐波频率为载波的频率,其中啮合频率的幅值相对正常状态将明显增大,但在啮合频率及其谐波周围不产生边频带。

随着齿轮磨损劣化,啮合频率及谐波幅值会继续增长。

2、断齿、齿面剥落等属于齿轮集中缺陷的局部性故障,在齿轮运行至缺陷部位时,会激发瞬时的冲击,产生一个高幅值的波峰。

此时,啮合频率将受到旋转频率的调制,在啮合频率其及谐波两侧产生一系列的边频带,其频谱特点是边频带数量多、范围广、分布均匀且较为平坦。

随着此类缺陷的扩大,边频带在宽度范围及幅值上也会增大。

3、点蚀、胶合点蚀、胶合等分布比较均匀的缺陷,同样也将产生周期性冲击脉冲和调幅、调频现象。

但是,与断齿等局部性故障不同的是,由于点蚀、胶合都属于浅表缺陷,在齿轮啮合时不会激发瞬态冲击,因此在啮合频率及其谐波两侧分布的边频带阶数少且集中,其频谱特点是边频带数量分布范围窄、幅值起伏变化大。

二、诊断实例对某减速箱的例行巡检过程中发现,该齿轮箱存在周期约为0.5s 的振动冲击,但减速箱本身振动值没有明显变化。

该减速箱为核心设备,一旦该设备出现问题停运,整条生产线将被迫停车,造成巨大的经济损失。

鉴于现场减速箱无明显振动,通过听棒听诊及振动检测等常规方式均无法判断出振动冲击的部位及形成原因,故对该减速箱进行现场振动信号采集和诊断。

查看频谱图,明显存在第三轴和第四轴四级啮合频率(28.15Hz ),且振动能量的缓慢增加,说明磨损在缓慢增长。

随着状态恶化,振动值缓慢增长,三级与四级啮合频率幅值增长明显,同时啮合频率周围开始产生以第三轴转频(2.01Hz )为间隔的边频,而且边频带体现的特征为数量多、范围广(24~60Hz )、分布均匀且较为平坦,如下图所示。

通过时域波形图可以发现,时域信号明显存在着周期约为0。

对齿轮故障的振动诊断技术的应用及案例分析

对齿轮故障的振动诊断技术的应用及案例分析

目录摘要 (1)关键词 (1)引言 (1)一、齿轮故障诊断原理 (1)二、现场监测与故障诊断 (1)(一)冷轧厂开卷设备及重要材料参数 (1)(二)测试参数及测点布置 (2)(三)故障分析 (2)(四)诊断结论 (3)三、啮合频率及其谐波 (4)四、幅值调制和频率调制所构成旳边频带 (4)(一)幅值调制 (4)(二)频率调制 (5)五、由齿轮转频旳低次谐波构成旳附加脉冲 (5)六、由齿轮加工误差形成旳隐含成分 (5)(一)某采油平台原油外输泵(螺杆泵)传动齿轮局部断齿 (5)(二)某浮式储油轮热介质提高泵齿轮啮合不良 (6)结语 (6)道谢 (7)参照文献 (7)浅析齿轮故障诊断及技术分析摘要: 齿轮故障一般具有相似旳现象, 即振动和噪申明显增长, 但产生齿轮故障旳原因却很难从表象作出判断。

本文从振动分析旳角度论述齿轮振动旳时域与频域特性, 并结合实测案例进行分析。

关键词: 齿轮故障;振动特性;时域;频域;案例分析引言:简述了齿轮故障诊断旳原理, 并通过冷轧厂开卷机齿轮故障旳诊断实例, 论述了齿轮故障诊断旳措施, 并深入阐明了齿轮故障诊断技术在现场中旳应用。

齿轮旳运行状况直接影响整个机器或机组旳作, 因此, 齿轮是现场监测和诊断旳重要对象。

对齿轮故障诊断旳经典措施是振动频谱分析, 它以老式旳振动理论为根据, 运用诊断仪器对其振动旳数据和波形进行采集, 然后进行分析诊断, 找出其故障旳原因和所在旳部位。

本文从齿轮故障诊断旳原理手, 通过对冷轧厂开卷机大齿轮箱旳异常振动进行振动分析及故障诊断来简介齿轮故障诊断技术在场旳应用。

一、齿轮故障诊断原理一对齿轮副可以看作是一种振动系统, 按照傅里叶变换旳原理, 可将齿轮旳振动信号分解为若干个谐波分量之和。

当齿轮发生故障后, 齿轮旳啮合刚度减少, 从而产生强烈旳振动, 测得旳振动信号畸变加剧, 在频谱图上, 啮合频率处旳谱值会明显增大, 而故障齿轮旳振动信号往往体现为回转频率对啮合频及其倍频旳调制, 调制频率即齿轮轴旳回转频率。

浅析齿轮箱震动信号频谱分析与故障诊断

浅析齿轮箱震动信号频谱分析与故障诊断

浅析齿轮箱震动信号频谱分析与故障诊断摘要齿轮箱作为机械设备重要构成部分,在实际的机械生产和应用中涉及十分广泛,而其在恶劣复杂的工作环境中性能的发挥将直接对整个机械设施的运转产生重要影响。

若是齿轮箱在正常的运转过程中出现问题,不但会影响正常的生产,对经济效益造成影响,甚至会对人身安全产生威胁。

所以,在确保机械设施能够维持正常运转且不具备安全隐患的基础上针对其进行有效的安全检查和定期维保有着十分重要的意义。

关键词:齿轮箱;故障诊断;频谱分析前言近年来,随着科技的不断发展,各个行业有了先进的科学作为基础,呈现出向好发展的趋势,其中,人工智能技术被应用到机械设备领域,对机械设备进行改造,使机械设备变得更智能、更高效、更精确,进一步提高人类生活水平。

在机械设备变得智能化的同时,对机械设备本身的要求也会更高,其中任何一处问题都可能会导致机械设备故障,从而引发重大安全事故。

齿轮传动是较为常用的机械设备传动方式,齿轮传动的应用非常广泛,如为发电机组关键部件,其中齿轮箱为其传动装置,齿轮箱的特点是结构紧密并且传动比大,因此它被运用到各行各业,对的日常生活有很大的影响。

齿轮在使用过程中,一般都处于高速运转状态,冲击力也比较大,在这样的工作环境下,齿轮容易产生很多故障,比如纹裂和断齿等。

在机械运作的过程中,齿轮的损坏可能会导致其他零件的损坏,造成机械故障,从而引发巨大损失。

齿轮箱的主要零部件有齿轮轴、轴承、齿轮和箱体。

齿轮箱根据用途可以选用有平行轴、交错轴及相交轴三种内部形式。

齿轮箱在高运转、高负荷、高冲击的环境下运行时很容易发生故障,可能会导致其他设备故障,从而引发事故的产生。

不仅会造成经济损失,还会威胁人类生命健康,所以针对齿轮箱的实际运行状态进行实时的监控并有针对性的制定应预案,对设备定期展开维护检查,在最大程度上保证设备的稳定安全运转,对人们的安全健康保障有着重要的意义。

1.设备振动信号分析方法1.1时域分析分析系统振动情况时,针对在设备振动信号中存在在时域中时变数据的分析方法是时域分析。

齿轮箱中齿轮故障的振动分析与诊断

齿轮箱中齿轮故障的振动分析与诊断

齿轮箱中齿轮故障的振动分析与诊断摘要:齿轮箱常见的失效类型为齿轮箱,所以定期监控其工作状况,以减少故障率,提供预测型的检修计划。

应用结果显示,该技术能够对变速箱进行有效的判断,并能正确地判断出变速箱的故障部位和严重性,从而为船员制定相应的检修计划,降低无用维护费用,防止机械和机械的非计划停运。

关键词:风力发电机组;齿轮箱;故障诊断引言:在回转机构中,最常见的是齿轮,它的工作状态对整个机器的工作情况有很大的影响。

齿面磨损、表面接触疲劳、齿面塑性、齿面弯曲和齿面折断等是常见的失效类型。

一、齿轮箱故障诊断的意义在风力发电机组中,齿轮箱作为重要传动设备,为风能转化为电能提供源源不断的动力,发挥着十分重要的功能。

风力发电机组中的齿轮箱,不仅体积、质量较大,而且结构十分复杂,这也导致在发电机组运转过程中,齿轮箱容易发生各种故障,进而使发电机组的运行受到较大影响,甚至蒙受重大损失。

近年来,陆续爆发出多起因为齿轮箱故障而导致风力发电机组停运的实践,不仅让发电机组受到极大影响,而且带来重大经济损失。

所以说,对风力发电机组齿轮箱实施有效的故障诊断措施,从而尽发现问题,解决问题,保证其稳定性,不仅具有极大的经济意义,而且有很强的社会意义[1]。

传统的齿轮箱故障诊断主要是通过人工方式实现的,通过人工巡检加定期维护的方式,排除齿轮箱故障。

然而,这种模式,一方面带有很强的滞后性,通常都是齿轮箱发生故障以后,并且对发电机组造成影响之后,才能够去被动的应对,依然无法完全避免损失;另一方面,齿轮箱结构复杂,人工方式诊断故障,不仅准确率不高,而且耗费大量的时间和人力。

因此,通过对齿轮箱实施在线监控,并通过监控数据对齿轮箱实施故障诊断,一旦发现异常立刻予以维护、维修,只有这样,才能够真正有效的预防齿轮箱故障,将隐患消除,从而最大程度降低对风力发电机组的影响。

二、齿轮箱故障诊断机理实现齿轮箱的故障诊断,首先必须了解齿轮箱的故障机理,以此为基础选择合适的诊断技术,才能有有效保障故障诊断的及时性与准确性。

论述齿轮故障诊断常用的方法及其优缺点

论述齿轮故障诊断常用的方法及其优缺点

论述齿轮故障诊断常用的方法及其优缺点齿轮是一种常用的传动元件,广泛应用于机械设备中。

传动系统中齿轮的故障对设备的运行造成严重影响,因此及早发现并进行故障诊断十分重要。

目前常用的齿轮故障诊断方法包括声发射技术、振动分析技术、热像技术和油液分析技术等。

声发射技术是一种将振动信号转化为声音信号进行故障诊断的方法。

通过设备表面安装传感器,实时监测设备的声音信号,并通过分析频谱、振幅等参数判断齿轮的故障情况。

声发射技术具有实时性强、便于实施的优点,能够及时发现齿轮故障并进行修复。

然而,该方法需要设备运行时进行监测,容易受到环境噪声的干扰,准确度还受到传感器安装位置的影响。

振动分析技术是一种通过监测设备振动信号进行故障诊断的方法。

通过安装加速度传感器等设备来实时监测设备的振动情况,并通过分析振动信号的频谱、时间域参数等来判断齿轮的故障情况。

振动分析技术具有灵敏度高、准确度好的优点,可以有效诊断齿轮故障。

但是,该方法需要专业的设备和人员进行操作,成本较高并且需要较长的时间进行数据采集和分析。

热像技术是一种通过监测设备表面温度分布进行故障诊断的方法。

通过红外热像仪等设备进行拍摄和分析设备表面的热图,判断设备是否存在异常温度分布,从而判断齿轮的故障情况。

热像技术具有快速、直观的优点,可以实时监测设备的热情况,识别齿轮的故障。

然而,热像技术容易受到环境温度的干扰,而且只能发现故障的存在,无法提供具体故障原因。

油液分析技术是一种通过监测设备工作油液中的杂质、磨粒等物质进行故障诊断的方法。

通过采集设备工作油液样本,并通过分析油液中的化学成分、颗粒物大小等参数来判断齿轮的磨损情况。

油液分析技术具有精确度高、可以提前预警的优点,能够实时监测设备的磨损状态。

但是,该方法需要专业设备和人员进行操作,需要对样本进行准确采集和分析。

综上所述,齿轮故障诊断的常用方法包括声发射技术、振动分析技术、热像技术和油液分析技术等。

每种方法都有其独特的优点和局限性。

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法目录一、内容简述 (2)1. 相对介绍 (3)2. 重要性和研究背景 (4)3. 文档结构 (6)二、滚动轴承和齿轮的工作原理 (7)1. 滚动轴承结构与工作原理 (8)2. 齿轮结构与工作原理 (10)三、振动信号分析方法 (11)1. 时域分析 (13)1.1 振幅分析 (14)1.2 相位分析 (15)1.3 autocorrelation函数分析 (16)1.4 其他时域分析方法 (18)2. 频域分析 (20)3. 统计特性分析 (21)四、滚动轴承和齿轮的常见故障类型及其特征 (22)1. 滚动轴承故障 (24)1.1 轴承滚动体磨损 (25)1.2 轴承内圈/外圈损坏 (27)1.3 轴承滚道损伤 (28)2. 齿轮故障 (29)五、滚动轴承和齿轮故障诊断方法 (30)1. 基于时域分析的故障诊断方法 (31)2. 基于频域分析的故障诊断方法 (33)2.1 特点峰值识别 (34)2.2 基于经验模态分解 (35)3. 基于机器学习的故障诊断方法 (37)3.1 支持向量机 (38)3.2 神经网络 (NN) (40)3.3 其他机器学习算法 (41)六、实验验证与案例分析 (43)1. 实验平台搭建 (44)2. 仿真数据分析 (45)3. 实际工程案例分析 (46)七、结论与展望 (48)1. 研究成果总结 (49)2. 未来研究方向 (50)一、内容简述本文档旨在系统化介绍滚动轴承和齿轮振动信号的分析方法及其在故障诊断中的应用。

通过对这些关键机械组件的基础振动行为进行分析,我们旨在开发高效准确的诊断工具,用以预测和识别潜在的机械故障。

文档分为几个主要部分:引言本部分阐述了滚动轴承和齿轮在机械系统中的重要性,以及振动分析和故障诊断在维护实践中的作用。

我们还强调了目前的研究趋势和技术挑战。

滚动轴承振动理论在这一章节,我们将详细讨论滚动轴承的振动特性,包括基础振动模型、不同类型的滚动轴承及其振动行为,以及振动信号的物理意义。

齿轮箱振动信号频谱分析与故障诊断

齿轮箱振动信号频谱分析与故障诊断

齿轮箱振动信号频谱分析与故障诊断摘要:随着科技的快速发展,齿轮已经成为现代工业中主要的零部件之一,由于齿轮箱传动比是固定的,传动力矩大,结构紧凑,被各种机械设备广泛的应用,成为各种机械的变速传动部件,但是齿轮是诱发机械故障的重要部位,所以对齿轮箱故障诊断是十分必要的,本文基于齿轮箱振动及调制边频带形成机理的分析,提出用谱平均及倒频谱分析相结合的方法,对监测系统输出信号进行频域分析,诊断齿轮箱故障,并分析产生的原因。

关键词:齿轮箱;振动信号;频谱分析;故障诊断一、齿轮传动装置故障基本形式及振动信号特征对于齿轮传动装置来说零件失效的主要表现为齿轮和轴承,而齿轮所占比例很大,所以根据提取的故障信号特征,提出行之有效的诊断方法是十分必要的,这样才能更好地诊断齿轮传动装置的问题所在。

1.齿形误差当齿轮出现齿形误差的时候,频谱产生啮合频率及高次谐波为载波频率,齿轮所在的轴转频及倍频为调制频率的啮合频率调制现象,谱图上在啮合频率及倍频附近会产生幅值比较小的边频带,当齿形误差比较严重的时候,激振能量很大,就会产生固有频率,齿轮所在轴转频及倍频为调制频率的齿轮共振频率调制现象。

2.齿面均匀磨损当齿轮使用以后齿面会出现磨损失效,当磨损的时候,使得轮齿齿形的局部出现改变,箱体振动信号与齿形误差也有很大的不同之处,啮合频率及高次谐波的幅值也会增加,由于齿轮的均匀摩擦,就不会产生冲击振动信号,所以不会出现明显的调制现象。

当摩擦达到一定程度以后,啮合频率及谐波幅值就会增加,而且越来越大,同时振动能量也在增加。

3.箱体共振齿轮传动装置箱体共振是比较严重的问题,这主要是因为受到箱体外的影响,激发箱体的固有频率,导致共振的形成。

4.轴的弯曲轴轻度弯曲就会造纸齿轮齿形误差,形成以啮合频率及倍频为载波频率,如果弯曲轴上有多对齿轮啮合,就会对啮合频率调制,但是谱图上的边带数量少,但是轴向振动能量很大。

当轴严重弯曲的时候,时域会出现冲击振动,这于单个断齿和集中性故障产生的冲击振动有很大的区别,这是一个严重的冲击过程。

齿轮箱振动信号分析和故障诊断

齿轮箱振动信号分析和故障诊断

存在的问题:
1、应该把不同转矩作用下振动信号数据同时进行对比, 可能效果更加明显; 2、没有设置故障齿轮,连续小波变换法不能直接做出故 障诊断; 3、对于自功率谱分析,其诊断结果显著性不是很强。
入转速下的振动信号比较,其时域特征并不能明显的做
出区分判断。
2、连续小波变换可以将机械信号很好地分解在有限的 时间—尺度范围内而保持信号的信息完整。 对比传统的频 谱分析,机械信号经过连续小波变换后,其内部蕴涵的故 障信息能在尺度域上很好地体现出来。通过比对不同输入 转速下齿轮(涡轮)传动的小波能量-尺度分布图,可以明
自功率谱分析
本实验的信号分析方法将采用Welch法,分别对齿轮 传动和涡轮传在不同输入转速下的振动信号进行自功率谱 分析,通过Matlab软件仿真估计,绘制出各个信号自功率 谱图。
齿轮传动振动信号功率谱(1495r/min)
齿轮传动振动信号功率谱(1457r/min)
齿轮传动振动信号功率谱(1402r/min)
程序如下:
clc clear close all hidden %%********************************读数据 l1=zeros(7,33); for i=1:7 l1(i,1)=i; end for i=1:7 fni=[num2str(i),'.txt']; fid=fopen(fni,'r'); x=fscanf(fid,'%f',inf); status=fclose(fid); n=length(x); c=cwt(x,1:32,'morl');%morlet小波 32维分解 a=zeros(32,1); for ii=1:32 for jj=1:n a(ii,1)=a(ii,1)+(c(ii,jj)).^2; end end %求每个尺度对应能量占总能量的百分比 sum1=0; for ii=1:32 sum1=sum1+a(ii); end b=zeros(32,1); for ii=1:32 b(ii,1)=a(ii,1)/sum1; end b=b'; l1(i,2:1:33)=b(1,:); end save data_l1 l1

行星齿轮箱振动故障诊断方法

行星齿轮箱振动故障诊断方法

行星齿轮箱振动故障诊断方法
行星齿轮箱振动故障的常用诊断方法包括以下几种:
1. 振动信号分析法:通过采集行星齿轮箱的振动信号,根据信号特征进行分析、诊断,判断故障的类型和程度。

2. 声音分析法:在行星齿轮箱运转过程中,通过听声音的方式来判断故障的类型和位置。

一般来说,如果行星齿轮箱发出异常的响声或噪音,则很有可能存在故障。

3. 转矩分析法:根据行星齿轮箱的转矩曲线,诊断出现故障的可能性。

4. 润滑油分析法:检测行星齿轮箱的润滑油,分析其物理和化学性质,判断是否存在异常情况,以及异常情况是否与故障有关。

上述方法各有优缺点,在实际应用时需要根据具体情况决定采用何种方法进行诊断。

同时,也需要结合操作经验和专业知识,准确判断问题的根源,以便采取正确的处理措施。

齿轮故障检测总结

齿轮故障检测总结

齿轮故障检测总结引言齿轮是机械传动系统中常见且重要的元件之一。

在工业生产中,齿轮故障可能会导致机械传动系统的失效,从而影响设备的正常运行。

因此,对齿轮故障进行有效的检测和诊断,对于预防故障和提高设备的可靠性非常重要。

本文将对常见的齿轮故障检测方法进行总结,包括振动分析、声学分析、热红外检测以及油液分析等。

这些方法可以帮助工程师及时发现齿轮故障,并采取相应的措施修复或更换齿轮,以确保机械传动系统的可靠性和安全性。

1. 振动分析振动分析是一种常见且有效的齿轮故障检测方法。

通过监测齿轮系统的振动信号,可以识别出齿轮的故障类型,如齿面磨损、齿面疲劳断裂等。

振动分析通常包括以下步骤:1.采集振动信号:使用振动传感器采集齿轮系统的振动信号。

通常,可以选择在齿轮箱的外部或内部安装振动传感器,以获取不同位置的振动信号。

2.信号预处理:对采集到的振动信号进行预处理,包括去噪处理、滤波处理等。

这些预处理操作可以提高信号的质量和准确性。

3.特征提取:从预处理后的振动信号中提取特征,如频域特征、时域特征等。

这些特征可以用于描述齿轮故障的振动特性。

4.故障诊断:根据提取到的特征,利用故障诊断算法对齿轮的故障类型进行识别和判断。

常见的故障诊断算法包括支持向量机(SVM)、人工神经网络(ANN)等。

振动分析方法具有非破坏性、实时性和高灵敏度等优点,可以对齿轮的早期故障进行有效检测,帮助预防严重事故的发生。

2. 声学分析声学分析是一种基于声波信号的齿轮故障检测方法。

通过监测齿轮系统产生的声音信号,可以判断齿轮的状态和故障情况。

常见的声学分析方法包括以下步骤:1.采集声音信号:使用麦克风或声音传感器采集齿轮系统产生的声音信号。

与振动分析类似,声音传感器可以安装在齿轮箱的内部或外部,以获取不同位置的声音信号。

2.信号预处理:对采集到的声音信号进行预处理,包括去噪处理、滤波处理等。

这些预处理操作可以提高信号的质量和准确性。

3.频谱分析:将预处理后的声音信号进行频谱分析,可以得到声音信号的频谱特征。

齿轮箱振动信号频谱分析与故障诊断

齿轮箱振动信号频谱分析与故障诊断

齿轮箱振动信号频谱分析与故障诊断发布时间:2022-01-24T05:46:58.265Z 来源:《中国科技人才》2021年第30期作者:许遥[导读] 可以系统的对齿轮故障问题进行分析总结,对生产过程中出现的齿轮问题进行很好的概括,提高诊断的准确性。

杭州前进齿轮箱集团股份有限公司浙江杭州 311203摘要:齿轮箱故障诊断是一项难度很大的工作,只有实现故障自动化诊断和智能诊断才能快速准确的判断出故障点,本文主要对齿轮传动装置典型故障进行分析,为建立自动诊断和智能诊断奠定基础,通过查找资料,可以系统的对齿轮故障问题进行分析总结,对生产过程中出现的齿轮问题进行很好的概括,提高诊断的准确性。

关键词:齿轮箱;震动信号;频谱分析;故障诊断引言许多机械设备的变速传动设备都是齿轮箱,一旦齿轮箱在运转过程中发生故障则很容易给机器或者机组的正常运作带来重要影响,情况严重的还可能会危及工作人员的生命安全,导致安全事故的发生。

因此,有效监测齿轮箱的运行状态,提高故障诊断效率,确定故障类型、具体位置,并尽快做出相应的解决对策对于维护设备正常运行,保障工作人员的生命安全意义重大。

在1960年以后,美国为了对航空航天与核能等核心设备进行故障监测,美国科研中心成立了故障监测与诊断预防小组,自此引领世界各地故障诊断技术研究的潮流。

另一方面,上世纪60年代末期,计算机行业的逐渐发展成熟,机械设备由原来纯机械化逐渐向自动化、智能化方向发展,因此大型机器组结构更加复杂,各种设备状态监测和诊断技术应运而生。

新世纪之初,故障诊断技术已经渗透到机械行业的各个领域,越来越受到社会和企业的重视,在机械设备需要24小时运行的场合,设备一旦发生急停或者失效将会对企业造成严重的经济损失。

为了保证设备能够稳定的运行,必须在机械设备出现故障之前采取一些有用技术来提高失效设备的诊断。

此外,笔者所在企业,大功率中高速柴油机则是公司主流配套产品,相应的齿轮减速箱、倒顺等设备占有很大比例,比如在船用齿轮箱项目,中高速四冲程柴油机通过齿轮箱驱动螺旋桨,使螺旋桨获得较大的功率,从而保证船舶能够快速航行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械监测与诊断技术
论文
齿轮震动故障诊断与分析
学院:机械与动力学院
姓名:**
学号:**********
2015年11月4号
齿轮振动故障诊断与分析
一.齿轮典型故障介绍
(1)磨损
磨损包括磨粒磨损、腐蚀磨损和冲击磨损,磨粒磨损是常见的磨损形式,一般是由于齿的工作表面进入了金属微粒、尘埃和沙粒等所引起的齿面擦伤或者齿面材料脱落,是润滑不好的开式传动齿轮的主要故障类型。

齿轮磨损后,齿的厚度变薄,齿廓变形,侧隙变大,会造成齿轮动载荷增大,不仅会使振动和噪音加大,而且很可能导致断齿。

磨损故障大概占齿轮常见故障比例的10%。

(2)点蚀
点蚀是减速箱等闭式齿轮传动系统中极其普遍的故障类型,约占齿轮常见故障比例的31%。

齿轮受啮合过程产生的循环交变应力会在表面产生微小疲劳裂纹,啮合时润滑油进入该裂纹中后被封口并受挤压产生高压,从而扩大了裂纹,最终导致齿轮表面金属的脱落形成麻点状小坑,这就是点蚀。

在齿轮表面硬度低于350HBS的闭式齿轮上,点蚀现象尤为常见。

点蚀的出现会加大齿轮表面的局部接触应力,导致点蚀现象的恶化,进而加剧齿轮啮合时的噪声、降低齿轮传动的精度。

(3)断齿
断齿在齿轮故障类型中是最容易发生的,占齿轮常见故障比例的41%。

断齿故障有过载断齿、疲劳断齿和缺陷断齿三种,这里面又以
疲劳断齿最为常见,它是由于齿轮工作受到周期性载荷,弯曲应力超过弯曲疲劳极限而在齿根处产生疲劳裂纹,裂纹渐渐扩大,当载荷的循环次数达到一定值时,就会致使轮齿折断。

断齿是所有齿轮故障中最严重的类型,经常会导致停工停产。

(4)胶合
齿轮润滑良好时齿面间会保持一层润滑油膜作用,但是当载荷较大、齿面间压力大、工作转速高、工作表面温度较高时,润滑油膜被破坏,使金属齿面直接接触,相接触的金属材料在高温高压作用下发生粘着,相粘连的齿面由于相对滑动而被撕裂,在相对滑动方向形成划痕。

齿面的胶合故障,会加剧齿面的磨损程度和速度,从而使齿轮更加快速地失效。

这种故障类型占齿轮常见故障比例的10%。

(5)塑性变形
软齿面齿轮重载或者突然的重载冲击情况下,齿面容易发生塑性变形。

因为重载会大幅加大齿面的摩擦力,这会导致齿轮表面的材料呈现塑性状态,使齿轮表面的金属发生塑性流动,进而造成被动轮齿面中间凸起、主动轮齿面中间凹陷。

塑性变形会使齿面偏离渐开线形状,引起齿轮传动比的变化,产生附加动载荷。

齿轮塑性变形和化学腐蚀、表面龟裂等其它类型的一些故障,占齿轮常见故障比例的8%。

二.齿轮振动类型及特征
即便在理想状态下,齿轮传动也会有振动产生,更何况是实际中齿轮的工作环境一般都比较恶劣,再加上齿轮的制造问题、安装问题、
故障问题等的影响,因此齿轮传动中的振动根本是无法避免的。

1.齿轮振动类型介绍
不同的原因引起不同类型的振动,根据振动的来源一般可以把它们归为两类:一类是由齿轮正常啮合传动中交变载荷引起的,包括啮合振动和固有振动;另一类是由齿轮故障或者误差引起的,如齿形误差、磨损、断齿等引起的振动。

各种振动都有各自不同的特点,下面简单介绍一下:
(1)齿轮的啮合振动
齿轮传动时,一对齿轮副中的两个齿轮相互啮合时会产生弹性变形,使刚进入啮合的齿轮发生撞击,从而产生振动,齿轮的啮合振动是无论齿轮状态的正常与否都会存在的,但是振动水平会存在差异。

(2)齿轮的固有振动
齿轮在啮合过程中产生的周期性冲击载荷的作用下,会激起固有振动,这种振动也是无论齿轮处于正常或者异常状态都会发生的,齿轮的固有振动频率就是产生的振动中的高频分量。

齿轮的固有振动会激起共振,而共振现象又会使齿轮的振动处于一个极高的水平,最终就会引起齿轮的断齿故障。

因此,一个准确的齿轮的固有频率数值,对于齿轮故障诊断来说具有比较重要的参考价值。

(3)齿轮磨损引起的振动
齿轮齿面的磨损会使齿隙增大,进而导致齿轮啮合频率及其各次谐波振动分量幅值的增大,但是信号基波幅值增长缓慢,各次谐波分量
幅值增长比基波快很多。

(4)齿轮局部异常引起的振动
齿轮的局部异常是指齿轮发生断齿、根部产生大裂纹等,它会产生激励,进而引起冲击振动,冲击剧烈时,不但会出现啮合频率的调制现象,还会出现固有频率的调制现象。

(5)齿轮误差引起的振动
齿轮存在误差使齿轮副相互啮合时产生撞击,从而产生振动,撞击频率是啮合频率。

以齿轮偏心和周节误差为例,前者会提升齿轮转频振幅,后者则会在齿轮啮合频率及其谐波上产生振动分量,增大它们的振幅。

两者都存在时就会出现调制现象,振动的高频部分会出现转频的高次谐波、啮合频率,且产生调制边频带。

(6)齿轮不同轴引起的振动
齿轮不同轴会导致啮合频率调制现象的出现,并且存在调制边频带,但是它的边频带分布情况和齿轮误差、点蚀、断齿等的不同。

上述6种振动类型,很明显(1)、(2)属于分类中的第一种,(4)-(6)属于第二种。

正常齿轮中最主要的振动是啮合振动,而对于异常齿轮来说,除啮合振动之外,误差和故障也会使齿轮产生振动,有的甚至是冲击振动。

而冲击振动如果比较强烈的话,将会引起共振现象,进而产生更加强烈的振动。

这些振动通过一定方式以不同路径在齿轮箱体内外随机传递,其中存在“齿轮-键-轴-轴承-箱体”的路径,一般的齿轮故障模拟试验进行振动信号采集时都是利用这条路径,将传感器放在紧靠轴
承这一振源处的箱体上。

最后通过一定的手段和方法从齿轮振动信号中提取出正常振动信息和齿轮故障信息,实现齿轮故障诊断的目的。

2.故障齿轮振动信号特征
(1)齿轮磨损故障
齿轮磨损是指均匀磨损,不包括局部齿面磨损。

当齿轮发生磨损后,受调制现象影响,齿轮啮合频率及其各次谐波的振动分量与正常齿轮啮合情况的相比会更加突出,位置虽然不会发生改变,但是幅值大小会发生改变,且幅值会随着故障程度增大而变大。

试验中测得的齿轮磨损故障的时域波形如图2-1所示。

(2)齿轮点蚀故障
如图2-2所示,齿轮点蚀故障时,同磨损故障一样都会产生啮合频率的幅值调制现象,有些文章甚至将齿轮的磨损和点蚀故障都归为小周期故障,这也从一定程度上说明了这两种故障的波形具有一定的相似性。

但是相比较来说,均匀磨损故障的边带较集中且阶数少,点蚀故障的边带谱线分散且阶数多.
(3)齿轮断齿故障
不同于以上两种齿轮故障的情况,齿轮发生断齿故障时发生的幅值调制现象是以齿轮轴的旋转频率为载波的,且齿轮断齿相当于在故障点轮齿刚度产生突变,在时域波形图上会产生比较强烈的冲击信号,具有明显的周期性,周期为齿轮轴的旋转周期,图2-3可以清晰地表现出断齿故障的这种振动特征。

另外值得一提的是,齿轮断齿程度比较严重时,由于其振动能量比较大、激起振动的能力也会比较强,这样既会导致齿轮啮合频率调制的出现,又会激励起齿轮的固有振动频率,从而发生齿轮的固有频率振动调制现象。

(4)齿轮振动有限元分析
实际研究表明齿轮发生固有频率调制现象后极易导致齿轮箱发生故障的,所以固有频率在齿轮故障诊断中占据很重要的地位,为此,本文利用三维建模软件Pro/E建立起不同故障类型齿轮的模型,求解齿轮的固有频率和主振型,观察不同故障类型齿轮的差异,从这个角度观察一下齿轮不同故障对振动的影响。

利用Pro/E软件建立的正常、磨损、点蚀、断齿四种状态的齿轮模型如图3-1所示。

总结
以上主要是对齿轮的振动分析,具体可分为以下两个部分。

(1)对齿轮的典型故障和齿轮传动啮合时的振动类型分析。

(2)利用三维建模软件和有限元分析软件分别对齿轮四种不同状态进行建模和模态分析。

参考文献
[1]王旭东.船用齿轮箱振动分析及结构噪声预估[D].重庆:重庆大学机械设计及理论学科硕士论文,2006:1-5.
[2]马学知.基于虚拟仪器的齿轮故障测试系统[D].长沙:湖南大学电路与系统学科硕士论文,2007:1-3.
[3]韩清凯,于晓光.基于振动分析的现代机械故障诊断原理及应用[M].北京:科学出版社,2010:2-3.
[4]何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001:1-4.。

相关文档
最新文档