往年辽宁省鞍山市中考数学真题及答案
辽宁省鞍山市中考数学真题试题(含扫描答案)
2017年鞍山市初中毕业生学业考试数学试卷一、选择题(共8小题,每小题3分,共24分)1.下列各数中,比-3小的数是()A.-2B.0C.1D.-42.如图所示几何体的左视图是()A. B. C. D3.函数2+=xy中自变量x的取值范围是()A.x≥-2B.x>-2C.x≤-2D.x<-24.一组数据2,4,3,x,4的平均数是3,则x的值为()A.1B.2C.3D.45.在平面直角坐标系中,点P(m+1,2-m)在第二象限,则m的取值范围为()A.m<-1B.m<2C.m>2D.-1<m<26.某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()A.⎩⎨⎧=-=-52153yxxyB.⎩⎨⎧=-=-52153xyxyC.⎩⎨⎧=-=-52153yxyxD.⎩⎨⎧=-=-52153xyyx7.分式方程22125---=-xxx的解为()A.x=2B.x=-2C.x=1D.无解8.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=22.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(共8小题,每小题3分,共24分)9.长城的总长大约为6700000m,将数6700000用科学计数法表示为 .10.分解因式yyx822-的结果是 .11.有5张大小、背面都相同的卡片,正面上的数字分别为1,2-,0,π,-3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是 .12.如图,在□ABCD 中,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN ,分别交AD ,BC 于点E ,F ,连接AF ,∠B=50°,∠DAC=30°,则∠BAF 等于 .B13.若一个圆锥的底面圆半径为1cm ,其侧面展开图的圆心角为120°,则圆锥的母线长为 cm. 14.如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C 落在点E 处),连接BD ,则四边形AEDB 的面积为 .15.如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数xky =(x >0)的图像经过点E ,则k=.16.如图,在△ABC 中,AB=AC=6,∠A=2∠BDC ,BD 交AC 边于点E ,且AE=4,则BE ·DE= .三、解答题(共2小题,每小题8分,共16分)17.先化简,再求值:4212)211(2+++÷+-x x x x ,其中12-=x .18.如图,四边形ABCD 为平行四边形,∠BAD 和∠BCD 的平分线AE ,CF 分别交DC ,BA 的延长线于点E ,F,交边BC ,AD 于点H ,G.(1)求证:四边形AECF 是平行四边形. (2)若AB=5,BC=8,求AF+AG 的值.四、解答题(共2小题,每小题10分,共20分) 19.某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x (单位:min )进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题: (1)本次调查共抽取 名学生. (2)统计表中a= ,b= . (3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min 的有多少人.学生课外阅读时间频数分布直方图20.为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖. (1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为 . (2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.五、解答题(共2小题,每小题10分,共20分)21.如图,建筑物C 在观测点A 的北偏东65°方向上,从观测点A 出发向南偏东40°方向走了130m 到达观测点B ,此时测得建筑物C 在观测点B 的北偏东20°方向上,求观测点B 与建筑物C 之间的距离.(结果精确到0.1m.参考数据:73.13 )22.如图,△ACE ,△ACD 均为直角三角形,∠ACE=90°,∠ADC=90°,AE 与CD 相交于点P ,以CD 为直径的⊙O 恰好经过点E ,并与AC ,AE 分别交于点B 和点F. (1)求证:∠ADF=∠EAC. (2)若PC=32PA ,PF=1,求AF 的长.六、解答题(共2小题,每小题10分,共20分)23.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x 天(1≤x ≤30且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x 天的利润为W 元,试求出W 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.24.如图,一次函数643+=x y 的图像交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E. (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.备用图七、解答题(本大题共1小题,共12分)25.如图,∠MBN=90°,点C 是∠MBN 平分线上的一点,过点C 分别作AC ⊥BC ,CE ⊥BN ,垂足分别为点C ,E ,AC=24,点P 为线段BE 上的一点(点P 不与点B 、E 重合),连接CP ,以CP 为直角边,点P 为直角顶点,作等腰直角三角形CPD ,点D 落在BC 左侧. (1)求证:CBCECD CP =; (2)连接BD ,请你判断AC 与BD 的位置关系,并说明理由;(3)设PE=x ,△PBD 的面积为S ,求S 与x 之间的函数关系式.八、解答题(本大题共1小题,共14分) 26.如图,抛物线223212++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C. (1)试探究△ABC 的外接圆的圆心位置,求出圆心坐标;(2)点P 是抛物线上一点(不与点A 重合),且S △PBC =S △ABC ,求∠APB 的度数;(3)在(2)的条件下,点E 是x 轴上方抛物线上一点,点F 是抛物线对称轴上一点,是否存在这样的点E 和点F ,使得以点B 、P 、E 、F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.。
辽宁省鞍山市2024届九年级新中考(样卷)数学试卷(含解析)
2024年辽宁省鞍山市新中考数学试卷(样卷)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列与杭州亚运会有关的图案中,中心对称图形是( )A.B.C.D.2.(3分)方程3x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别是( )A.3,﹣1,4B.3,4,﹣1C.3,﹣4,﹣1D.3,﹣1,﹣43.(3分)如图,已知D、E分别在△ABC的AB、AC边上,△ABC∽△AED( )A.B.AB•AD=AE•ACC.D.AD•DE=AE•EC4.(3分)若二次函数y=x2﹣4x+k的图象经过点(﹣1,y1),(3,y2),则y1与y2的大小关系为( )A.y1=y2B.y1>y2C.y1<y2D.不能确定5.(3分)如图,小康利用复印机将一张长为5cm,宽为3cm的矩形图片放大,则放大后的矩形的宽为( )A.B.5cm C.10cm D.6cm6.(3分)已知点P(m﹣n,1)与点Q(3,m+n)关于原点对称( )A.2B.1C.﹣2D.﹣17.(3分)如图,将△ABC绕点A顺时针旋转一定的角度得到△AB′C′,此时点B′恰在边AC上,AC′=5,则B′C的长为( )A.2B.3C.4D.58.(3分)近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是x( )A.23(1﹣x)2=18.63B.18.63(1+x)2=23C.18.63(1﹣x)2=23D.23(1﹣2x)=18.639.(3分)如图,正方形网格图中的△ABC与△A′B′C是位似关系图,则位似中心是( )A.点R B.点P C.点Q D.点O10.(3分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是( )A.小球的飞行高度为15m时,小球飞行的时间是1sB.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4sD.小球的飞行高度可以达到25m二、填空题(本题共5小题,每小题3分,共15分)11.(3分)若x1,x2是一元二次方程x2+5x﹣1=0的两个实数根,则x1+x2的值为 .12.(3分)如图,以O为圆心,任意长为半径画弧,再以B为圆心,BO长为半径画弧,画射线OC,则tan ∠AOC的值为 .13.(3分)图1是伸缩折叠不锈钢晾衣架的实物图,图2是它的侧面示意图,AD与CB相交于点O,根据图2中的数据可得x的值为 .14.(3分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A,B(点A在点B左侧),与y轴交于点C.点P是此函数图象上在第一象限内的一动点,当S△PCB=3时,点P的坐标为 .15.(3分)如图,已知△ABC中,D,E分别是AC,,∠AED=∠ABC,DE与AB的延长线交于点F,EF=3,则BC= .三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)解下列方程:(1)x2+3x﹣4=0;(2)2x2﹣4x﹣1=0.17.(8分)如图,AE平分∠BAC,D为AE中点18.(8分)已知关于x的一元二次方程x2+2kx+k﹣1=0.求证:不论k为何值,方程总有两个不相等的实数根.19.(8分)已知抛物线y=2x2+4x﹣6.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移m(m>0)个单位长度,平移后所得新抛物线经过坐标原点20.(9分)在△ABC中,AB=2,将△ABC绕点B逆时针旋转得到△MBN,MA的延长线与CN交于点P,若AM=3,.(1)求证:△ABM∽△CBN;(2)求AP的长.21.(8分)随着互联网应用的日趋成熟和完善,电子商务在近几年得到了迅猛的发展,某电商以每件40元的价格购进某款T恤,“双11”的前一周(10月30日﹣11月5日)的销售量为500件(11月6日﹣11月12日)进行降价销售,经调查,每降价1元,周销售量就会增加50件.若要求销售单价不低于成本,如何定价才能使利润最大?并求出最大利润是多少元?(利润率=×100%)22.(12分)问题提出已知△ABC是等边三角形,将等边三角形ADE(A,D,E三点按逆时针排列)绕顶点A旋转,得到线段CF,连接BE,BF.观察发现(1)如图1,当点E在线段AB上,猜想△BEF的形状 ;探究迁移(2)如图2,当点E不在线段AB上,(1)中猜想的结论是否依然成立;拓展应用(3)若AB=2,,在△ADE绕着点A旋转的过程中,当EF⊥AC时23.(12分)问题提出:如图,四边形ABCD是矩形,AB=4,连接BE,过E作EF⊥BE(点F在BE的左侧),且,连接FG,设DE长为x(x,y均可等于0).初步感知:(1)如图1,当点E由点D运动到点A时,经探究发现y是关于x的二次函数,l为其对称轴,请根据图象信息求y关于x的函数解析式及线段AD的长;(2)当点E在线段DA的延长线上运动时,求y关于x的函数解析式;延伸探究:(3)若存在三个不同位置的点E(从右向左依次用E1,E2,E3表示),对应的四边形DGFE面积均相等.①试确定DE1,DE2的数量关系,并说明理由;②当2DE2=DE1+DE3时,求四边形DGFE3的面积.2024年辽宁省鞍山市新中考数学试卷(样卷)答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解析:解:选项B、C、D均不能找到这样的一个点,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,故选:A.2.解析:解:∵3x2﹣2x﹣1=0,∴二次项系数、一次项系数和常数项分别是7,﹣1,故选:C.3.解析:解:∵△ABC∽△AED,∴==,∵==,==,≠,∴,故A错误;∵=,∴AB•AD=AC•AE,故B正确;∵=,AE≠AD,∴,故C错误;∵AE•EC=AE(AC﹣AE)=AE•AC﹣AE2=AB•AD﹣AE5,AD•DE=AD=•AD2,∴无法推出AD•DE=AE•EC,故D错误.故选:B.4.解析:解:当x=﹣1时,y1=x5﹣4x+k=1+4+k=k+5;当x=3时,y8=x2﹣4x+k=3﹣12+k=k﹣3,所以y1>y2.故选:B.5.解析:解:设放大后矩形的宽为x cm.∵放大前后矩形相似,∴=,∴x=2.故选:D.6.解析:解:∵点P(m﹣n,1)与点Q(3,∴,∴,故选:C.7.解析:解:∵将△ABC绕点A顺时针旋转一定的角度得到△AB'C',∴AB=AB',AC=AC',∵AB=2,AC'=5,故选:B.8.解析:解:根据题意得:23(1﹣x)2=18.63.故选:A.9.解析:解:如图:∴点O是位似中心.故选:D.10.解析:解:20t﹣5t2=15的两根t3=1与t2=5,即h=15时所用的时间,∴小球的飞行高度是15m时,小球的飞行时间是1s或3s;h=20t﹣7t2=20﹣5(6﹣t)2,∴对称轴直线为:t=2,最大值为20;∴t=6时,h=15,故B错误;∵当h=0时,t1=2,t2=4,∴t3﹣t1=4,∴小球从飞出到落地要用5s,故C正确.故选:C.二、填空题(本题共5小题,每小题3分,共15分)11.解析:解:∵x1,x2是一元二次方程x7+5x﹣1=2的两个实数根,∴x1+x2=﹣4.故答案为:﹣5.12.解析:解:连接BC,如图所示: 根据作图可知:OB=OC=BC,∴△OBC为等边三角形,∴∠AOC=60°,∴tan∠AOC=tan60°=.13.解析:解:在图2中,过点O作MN⊥AB于点M,则ON=x,∵AB∥CD,∴△OCD∽△OBA,∴=,∴即=,∴x=0.96.故答案为:0.96.14.解析:解:令y=0,则﹣x2+5x+3=0,解得x3=﹣1,x2=5,∴A(﹣1,0),7),令x=0,则y=﹣3,∴C(2,﹣3),设直线BC的解析式为y=kx+b,将B(3,2)和C(0,解得:,∴直线BC的解析式为y=﹣x+3,过点P作PE⊥x轴于点E,交BC于点G,设P(t,﹣t2+7t+3),则G(t,∴PG=﹣t2+2t+3﹣(﹣t+3)=﹣t8+3t,∵S△PCB=3,∴PG•OB=3,即2+2t)×3=3,解得:t6=1,t2=2,∴点P的坐标为(1,4)或(8,故答案为:(1,4)或(7.15.解析:解:如图,过点A作AG∥BC,∵∠AED=∠ABC,∴180°﹣∠ABC=180°﹣∠AED,即∠EBF=∠AEF,又∵∠BFE=∠EFA,∴△EBF∽△AEF,∴,即,∴EB=,BF=1,∵AG∥BC,∴△BEF∽△AGF,∴=,即=,∴AG=,GF=27,∴DG=GF﹣DE﹣EF=27﹣9﹣4=15,∵AG∥BC,∴△ADG∽△CDE,∴,即,∴CE=,∴BC=BE+CE==.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.解析:解:(1)x2+3x﹣4=0,则(x﹣1)(x+8)=0,则x﹣1=4或x+4=0,解得x5=1,x2=﹣5;(2)2x2﹣5x﹣1=0,x7﹣2x=,∴x2﹣2x+5=+62=,∴x﹣1=±,∴x=1±,∴x1=1+,x2=3﹣.17.解析:证明:∵D为AE中点,∴AE=2AD,∵AE平分∠BAC,∴∠BAE=∠CAD,∵∠B=∠C.∴△ABE∽△ACD,∴==2,∴AB=2AC.18.解析:证明:根据题意可得;a=1,b=2k,∴,∵,∴,∴不论k为何值,方程总有两个不相等的实数根.19.解析:解:(1)由题知,y=2x2+3x﹣6=2(x4+2x+1)﹣2=2(x+1)2﹣8,所以抛物线的顶点坐标为(﹣1,﹣5).(2)令y=0得,2x7+4x﹣6=8,解得x1=1,x3=﹣3.又因为将该抛物线向右平移m(m>0)个单位长度,平移后所得新抛物线经过坐标原点,所以﹣5+m=0,解得m=3.故m的值为5.20.解析:(1)证明:∵将△ABC绕点B逆时针旋转得到△MBN,∴AB=MB,BC=BN,∴,∴∠MBN+∠ABN=∠ABC+∠ABN,即∠ABM=∠CBN,∴△ABM∽△CBN;(2)解:由(1)知,△ABM∽△CBN,∴∠BMA=∠BNC,∵CN∥BM,∴∠BMA=∠APN,∴∠APN=∠BNC,又∵BC=BN,∴∠BNC=∠BCN,∴∠APN=∠BCN,∴BC∥MP,∴四边形BCPM为平行四边形,∴BC=PM,∵△ABM∽△CBN,∴,即,∴CB=5=PM,∴AP=PM﹣AM=5﹣6=2.21.解析:解:设售价为每件x元,利润为y元,得:y=(x﹣40)[500+50(60﹣x)]=﹣50x2+5500x﹣140000=﹣50(x﹣55)2+11250,∵销售单价不低于成本,且按照物价部门规定销售利润率不高于30%,∴,解得40≤x≤52,∵a=﹣50<0,∴抛物线开口向下,∵抛物线的对称轴为直线x=55,∴当40≤x≤52时,y随x的增大而增大,∴当x=52时,y有最大值4+11250=10800(元),答:当定价为每件52元,才能使利润最大.22.解析:解:(1)点E在线段AB上时,∵△ABC,△ADE是等边三角形,∴∠ABC=60°,∠AED=60°=∠BEF,∴△BEF是等边三角形;故答案为:等边三角形;(2)当点E不在线段AB上,(1)中的结论依然成立延长AD交BC于M,如图:∵△ABC,△ADE是等边三角形,∴∠ABC=60°=∠DAE,AB=BC,∵平移线段AD使点A与顶点C重合,得到线段CF,∴AD=CF,AD∥CF,∴AE=CF,∠BCF=∠AMC,∵∠AMC=∠ABC+∠BAM=60°+∠BAM=∠DAE+∠BAM=∠BAE,∴∠BCF=∠BAE,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∠ABE=∠CBF,∴∠ABE+∠EBC=∠CBF+∠EBC,即∠ABC=∠EBF,∵∠ABC=60°,∴∠EBF=60°,∴△BEF是等边三角形;(3)设直线AC交EF于H,分两种情况:①当EF在BC下方时,如图:由(2)可知△BEF是等边三角形,∴∠BFE=60°,BF=EF,∵∠ACB=60°,∴∠BCH=120°,∵EF⊥AC,∴∠H=90°,∴∠FBC=360°﹣∠BFE﹣∠H﹣∠BCH=90°,∴BF=,∵平移线段AD使点A与顶点C重合,得到线段CF,∴CF=AD=,而BC=AB=2,∴BF==,∴EF=;设EH=x,CH=y,∵FH2+CH2=CF2,EH5+AH2=AE2,∴,∴,①﹣②得:3x﹣4y+,∴y=x+③,把③代入①得:+32+x2+x+=,解得x=(负值已舍去),∴y=×+=,∵AF2=FH2+AH6,∴AF2=(+x)2+(y+3)2=(+)2+(+2)2=,∴AF=;当EF在BC上方时,如图:同理可得∠ABE=360°﹣∠FEB﹣∠H﹣∠BAH=90°,∴BE===EF,设FH=m,AH=n,∵EH2+AH2=AE3,FH2+CH2=CF8=AD2,∴,解得(负值已舍去),∴AF==;综上所述,AF的值为或.23.解析:解;(1)设抛物线的解析式为:y=a(x﹣1)2+,将原点代入解析式得:0=a+,∴a=﹣,∴抛物线解析式为:y=﹣(x﹣6)2+=﹣x8+x(0≤x≤2),令y=5,解得:x1=0,x3=2,∴AD=2﹣7=2;(2)当E在DA延长线上时,如图:∵BE⊥EF,∴∠HEF+∠AEB=180°﹣∠BEF=90°,又∵AB⊥AE,∴∠AEB+∠HEF=90°,∴∠HEF=∠ABE,又∵EF∥DG,∴∠ADG=∠HEF,∴∠ADE=∠ABE,又∵∠DAG=∠EAB,∴△ADG∽△ABE,∴==,又∵,∴DG=EF,∴四边形DEFG为平行四边形,∴y=DE•AG,∵AE=DE﹣AD=x﹣2,∴AG==(x﹣2)=,∴y=x•(x﹣1)=x2﹣x(x≥2);(3)①画出y关于x的图形,如图:∴存在三个不同位置的点E时,4<y<,∴DE4和DE2的长度在抛物线y=﹣x2+x上,∴DE1+DE8=2;②∵2DE8=DE1+DE3,∴4DE2=2﹣DE5+DE3,∴DE3=2DE2﹣2,令DE8=a,则有:﹣a4+a=(6a﹣2)2﹣(6a﹣2),整理得:5a7﹣10a+4=0,解得:a=或(小于8,∴y=,即四边形DGFE5的面积为.。
鞍山中考数学试题及答案
鞍山中考数学试题及答案鞍山市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方根是2B. 圆的周长与直径的比值是πC. 绝对值是它本身的数只有正数D. 任何数的0次幂都等于1答案:B2. 如果一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 无法确定答案:A3. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 正五边形D. 以上都是答案:D4. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 21C. 26D. 无法确定答案:B5. 一个数列的前三项为1,2,4,那么第四项是:A. 7B. 8C. 16D. 无法确定答案:C6. 计算下列表达式的结果:(3x^2 - 2x + 1) - (x^2 - 4x + 3) =A. 2x^2 + 2x - 2B. 2x^2 + 2x + 2C. 2x^2 - 2x - 2D. 2x^2 - 2x + 2答案:D7. 一个直角三角形的两直角边长分别为3和4,那么斜边的长度是:A. 5B. 7C. 9D. 无法确定答案:A8. 一个二次函数的图像开口向上,且顶点坐标为(1,-2),那么这个函数的一般形式是:A. y = a(x - 1)^2 - 2B. y = a(x + 1)^2 - 2C. y = a(x - 1)^2 + 2D. y = a(x + 1)^2 + 2答案:A9. 一个扇形的圆心角为60°,半径为4,那么这个扇形的面积是:A. 4πB. 8πC. 12πD. 16π答案:A10. 一个多项式除以x-2,商为x^2 + 3x + 2,余数为3,那么这个多项式是:A. x^3 + x^2 + 7x + 7B. x^3 + 5x^2 + 7x + 7C. x^3 + 3x^2 + 7x + 7D. x^3 + 3x^2 + 5x + 7答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。
【中考真题精编】辽宁省鞍山市2013-2019年中考数学试题及参考答案与解析汇编
【中考数学真题精编】辽宁省鞍山市2013—2019年中考数学试题汇编(含参考答案与解析)1、辽宁省鞍山市2013年中考数学试题及参考答案与解析 (2)2、辽宁省鞍山市2014年中考数学试题及参考答案与解析 (20)3、辽宁省鞍山市2015年中考数学试题及参考答案与解析 (48)4、辽宁省鞍山市2017年中考数学试题及参考答案与解析 (77)5、辽宁省鞍山市2018年中考数学试题及参考答案与解析 (102)6、辽宁省鞍山市2019年中考数学试题及参考答案与解析 (131)辽宁省鞍山市2013年中考数学试题及参考答案与解析一、选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.3﹣1等于()A.3 B.13-C.﹣3 D.132.一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.63.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2D.x≤25.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题3分,满分24分)9.分解因式:m2﹣10m= .10.如图,∠A+∠B+∠C+∠D= 度.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.12.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)﹣(3x﹣5y)的值是.13.△ABC中,∠C=90°,AB=8,cosA=34,则BC的长.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)先化简,再求值:21112x x x x x ⎛⎫++÷-- ⎪⎝⎭,其中1x =. 18.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?19.(10分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜. (1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况. (2)请判断该游戏对双方是否公平?并说明理由.20.(10分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. 求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)21.(10分)如图,已知线段a 及∠O ,只用直尺和圆规,求做△ABC ,使BC=a ,∠B=∠O ,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)22.(10分)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)△AFD ≌△CEB ; (2)四边形ABCD 是平行四边形.23.(10分)如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D . (1)AC 与CD 相等吗?问什么?(2)若AC=2,OD 的长度.24.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.25.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.(14分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.参考答案与解析一、选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.3﹣1等于()A.3 B.13C.﹣3 D.13【知识考点】负整数指数幂.【思路分析】根据负整数指数幂:a﹣p=1pa(a≠0,p为正整数),进行运算即可.【解答过程】解:3﹣1=13.故选D.【总结归纳】此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6【知识考点】众数.【思路分析】根据众数的定义解答即可.【解答过程】解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.【总结归纳】此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°【知识考点】平行线的性质;三角形内角和定理.【思路分析】先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.【解答过程】解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.【总结归纳】本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列式计算即可得解.【解答过程】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【总结归纳】本题考查的知识点为:二次根式的被开方数是非负数.5.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°【知识考点】圆周角定理.【思路分析】直接根据圆周角定理进行解答即可.【解答过程】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.【总结归纳】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根【知识考点】解一元二次方程-直接开平方法.【思路分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答过程】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【总结归纳】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定.【解答过程】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选B.【总结归纳】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个【知识考点】二次函数图象与系数的关系.【思路分析】由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c <0.【解答过程】解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.【总结归纳】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题3分,满分24分)9.分解因式:m2﹣10m= .【知识考点】因式分解-提公因式法.【思路分析】直接提取公因式m即可.【解答过程】解:m2﹣10m=m(m﹣10),故答案为:m(m﹣10).【总结归纳】此题主要考查了提公因式法分解因式,关键是找准公因式.10.如图,∠A+∠B+∠C+∠D= 度.【知识考点】多边形内角与外角.【思路分析】根据四边形内角和等于360°即可求解.【解答过程】解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.【总结归纳】考查了四边形内角和等于360°的基础知识.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.【知识考点】一次函数图象与系数的关系.【思路分析】先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.【解答过程】解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.【总结归纳】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)﹣(3x﹣5y)的值是.【知识考点】解二元一次方程组.【思路分析】把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.【解答过程】解:∵7353 x yx y+=⎧⎨-=-⎩,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.【总结归纳】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.△ABC中,∠C=90°,AB=8,cosA=34,则BC的长.【知识考点】锐角三角函数的定义;勾股定理.【思路分析】首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.【解答过程】解:如图,∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.【总结归纳】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.【知识考点】代数式求值.【思路分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答过程】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.。
2024年辽宁省中考数学试卷(附答案解析)
2024年辽宁省中考数学试卷(附答案解析)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .【解答】解:从上边看,底层左边是一个小正方形,上层是两个小正方形,左齐.故选:A .2.(3分)亚洲、欧洲、非洲和南美洲的最低海拔如表:大洲亚洲欧洲非洲南美洲最低海拔/m﹣415﹣28﹣156﹣40其中最低海拔最小的大洲是()A .亚洲B .欧洲C .非洲D .南美洲【解答】解:∵﹣415<﹣156<﹣40<﹣28,∴海拔最低的是亚洲.故选:A .3.(3分)越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A .532×108B .53.2×109C .5.32×1010D .5.32×1011【答案】C .4.(3分)如图,在矩形ABCD 中,点E 在AD 上,当△EBC 是等边三角形时,∠AEB 为()A.30°B.45°C.60°D.120°【分析】根据平行线的性质和等边三角形的性质即可解答.【解答】证明:∵△EBC是等边三角形,∴∠CBE=60°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE=60°.故选:C.【点评】本题考查矩形的性质,等边三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.(a2)3=a5D.a(a+1)=a2+a【答案】D.6.(3分)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是()A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球【分析】分别求得各个事件发生的概率,即可得出答案.【解答】解:∵一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,共有10个球,∴从中随机摸出一个球,摸出白球的概率为=,摸出红球的概率为,摸出绿球的概率为=,摸出黑球的概率为.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】一个平面内,如果一个图形沿一条直线折叠,若直线两旁的图形能够完全重合,那么这个图形即为轴对称图形;一个平面内,如果一个图形绕某个点旋转180°,若旋转后的图形与原来的图形完全重合,那么这个图形即为中心对称图形;据此进行判断即可.【解答】解:A中图形既不是轴对称图形,也不是中心对称图形,则A不符合题意;B中图形既是轴对称图形,也是中心对称图形,则B符合题意;C中图形是轴对称图形,但不是中心对称图形,则C不符合题意;D中图形不是轴对称图形,但它是中心对称图形,则D不符合题意;故选:B.【点评】本题考查轴对称图形,中心对称图形,熟练掌握其定义是解题的关键.8.(3分)我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x只,兔有y只,根据题意可列方程组为()A.B.C.D.【分析】根据“上有35个头,下有94条腿”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵上有35个头,∴x+y=35;∵下有94条腿,∴2x+4y=94.∴根据题意可列方程组.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,▱ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若AC=3,BD=5,则四边形OCED的周长为()A.4B.6C.8D.16【分析】根据平行四边形对角线互相平分得出OC、OD的长,再证明四边形OCED是平行四边形即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OC=,OD=,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED的周长=2(OC+OD)=2×()=8,故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题的关键.10.(3分)如图,在平面直角坐标系xOy中,菱形AOBC的顶点A在x轴负半轴上,顶点B在直线上,若点B的横坐标是8,则点C的坐标为()A.(﹣1,6)B.(﹣2,6)C.(﹣3,6)D.(﹣4,6)【分析】利用一次函数图象上点的坐标特征,可求出点B的坐标,利用两点间的距离公式,可求出OB 的长,结合菱形的性质,可得出BC的长及BC∥x轴,再结合点B的坐标,即可得出点C的坐标.【解答】解:当x=8时,y=×8=6,∴点B的坐标为(8,6),∴OB==10.∵四边形AOBC是菱形,且AO在x轴上,∴BC=OB=10,且BC∥x轴,∴点C的坐标为(8﹣10,6),即(﹣2,6).故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,利用一次函数图象上点的坐标特征及菱形的性质,求出点B的坐标及BC的长是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)方程的解为x=3.【分析】先把分式方程变形成整式方程,求解后再检验即可.【解答】解:,方程的两边同乘(x+2),得5=x+2,解得:x=3,经检验x=3是分式方程的解,所以原分式方程的解为x=3.故答案为:x=3.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.(3分)在平面直角坐标系中,线段AB的端点坐标分别为A(2,﹣1),B(1,0),将线段AB平移后,点A的对应点A′的坐标为(2,1),则点B的对应点B′的坐标为(1,2).【分析】根据点A及点A对应点的坐标,得出平移的方向和距离,据此可解决问题.【解答】解:因为点A坐标为(2,﹣1),且平移后对应点A′的坐标为(2,1),所以2﹣2=0,1﹣(﹣1)=2,所以1+0=1,0+2=2,所以点B的对应点B′的坐标为(1,2).故答案为:(1,2).【点评】本题主要考查了坐标与图形变化﹣平移,熟知图形平移的性质是解题的关键.13.(3分)如图,AB∥CD,AD与BC相交于点O,且△AOB与△DOC的面积比是1:4,若AB=6,则CD的长为12.【分析】根据AB∥CD,得出△AOB和△DOC相似,从而得出,由此得出CD的长.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴,∴,∵AB=6,∴,∴DC=12,故答案为:12.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形面积之比等于相似比的平方是解题的关键.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于点A,B,点B的坐标为(3,0),若点C(2,3)在抛物线上,则AB的长为4.【分析】依据题意,由抛物线y=ax2+bx+3过B(3,0),C(2,3),可得,求出a,b后可得抛物线的解析式,再求得对称轴,依据对称性可得A的坐标,进而可以判断得解.【解答】解:由题意,∵抛物线y=ax2+bx+3过B(3,0),C(2,3),∴.∴.∴抛物线为y=﹣x2+2x+3.∴抛物线的对称轴是直线x=﹣=1.∵抛物线与x轴的一交点为B(3,0),∴另一交点为A(1﹣2,0),即A(﹣1,0).∴AB=3﹣(﹣1)=4.故答案为:4.【点评】本题主要考查了二次函数图象上点的坐标特征、抛物线与x轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.15.(3分)如图,四边形ABCD中,AD∥BC,AD>AB,AD=a,AB=10,以点A为圆心,以AB长为半径作弧,与BC相交于点E,连接AE.以点E为圆心,适当长为半径作弧,分别与EA,EC相交于点M,N,再分别以点M,N为圆心,大于的长为半径作弧,两弧在∠AEC的内部相交于点P,作射线EP,与AD相交于点F,则FD的长为a﹣10(用含a的代数式表示).【分析】利用基本作图得到AE=AB=10,EF平分∠AEC,接着证明∠AEF=∠AFE得到AF=AE=10,然后利用FD=AD﹣AF求解.【解答】解:由作法得AE=AB=10,EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD﹣AF=a﹣10.故答案为:a﹣10.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了列代数式、平行线的性质和角平分线的定义.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)计算:;(2)计算:.【分析】(1)先算乘方、化简二次根式,再化简绝对值算除法,最后加减;(2)先算分式乘法,再算加法.【解答】解:(1)=16﹣10+2+3﹣=9+;(2)=•+=+==1.【点评】本题考查了实数的混合运算及分式的混合运算,掌握实数的运算法则和绝对值的意义及分式的运算法则是解决本题的关键.17.(8分)甲、乙两个水池注满水,蓄水量均为36m3.工作期间需同时排水,乙池的排水速度是8m3/h.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于24m3,那么最多可以排水几小时?【分析】(1)设甲池的排水速度是x m3/h,根据“36﹣3×甲池的排水速度=2×(36﹣3×乙池的排水速度)”列方程并求解即可;(2)设排水t小时,根据“t小时后这两个水池剩余水量的和≥24”列关于t的一元一次不等式并求解即可.【解答】解:(1)设甲池的排水速度是x m3/h.根据题意,得36﹣3x=2(36﹣3×8),解得x=4,∴甲池的排水速度是4m3/h.(2)设排水t小时.根据题意,得36×2﹣(4+8)t≥24,解得t≤4,∴最多可以排水4小时.【点评】本题考查一元一次方程和一元一次不等式的应用,根据题意列一元一次方程和一元一次不等式并求解是解题的关键.18.(8分)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x均为不小于60的整数,分为四个等级:D:60≤x<70,C:70≤x<80,B:80≤x<90,A:90≤x≤100),部分信息如下:信息一:信息二:学生成绩在B等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89.请根据以上信息,解答下列问题;(1)求所抽取的学生成绩为C等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.【分析】(1)用B等级组人数除以40%可得样本容量,再用样本容量减去其它三个等级的人数可得C 等级的人数;(2)根据中位数的定义解答即可;(3)用360乘样本中成绩为A等级的人数所占比例即可.【解答】解:(1)样本容量为:12÷40%=30,30﹣1﹣12﹣10=7(人),即所抽取的学生成绩为C等级的人数为7人;(2)所抽取的学生成绩为C等级的人数为=85;(3)360×=120(人),答:该校七年级估计成绩为A等级的人数大约为120人.【点评】本题考查中位数以及用样本估计总体,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)某商场出售一种商品,经市场调查发现,日销售量y(件)与每件售价x(元)之间满足一次函数关系,部分数据如表所示:每件售价x/元…455565…日销售量y/件…554535…(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,说明理由.【分析】(1)依据题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),可得,求出k,b即可得解;(2)依据题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,从而可得x2﹣100x+2600=0,又Δ=(﹣100)2﹣4×2600=﹣400<0,进而可以判断得解.【解答】解:(1)由题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),∴.∴.∴所求函数关系式为y=﹣x+100.(2)由题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,∴2600=﹣x2+100x.∴x2﹣100x+2600=0.∴Δ=(﹣100)2﹣4×2600=10000﹣10400=﹣400<0.∴方程没有解,故该商品日销售额不能达到2600元.【点评】本题主要一元二次方程的应用、一次函数的应用,解题时要熟练掌握并能灵活运用是关键.20.(8分)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A到BC所在直线的距离AC=3m,∠CAB=60°,停止位置示意图如图3,此时测得∠CDB=37°(点C,A,D在同一直线上,且直线CD与地面平行),图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(1)求AB的长;(2)求物体上升的高度CE(结果精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)【分析】(1)在Rt△ABC中,由∠CAB的度数求出∠ABC=30°,利用30°角所对的直角边等于斜边的一半求出AB的长即可;(2)EC的长即为BD﹣BA的长,求出BD,在Rt△BCD中,利用锐角三角函数定义求出BD的长,由(1)得到AB的长,上升高度CE即为AB变为BD的长,即CE=BD﹣BA,求出即可.【解答】解:(1)如图2,在Rt△ABC中,AC=3m,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=6m,则AB的长为6m;(2)在Rt△ABC中,AB=6m,AC=3m,根据勾股定理得:BC===3m,在Rt△BCD中,∠CDB=37°,sin37°≈0.60,≈1.73,∴sin∠CDB=,即≈0.60,∴BD≈8.65m,∴CE=BD﹣BA=8.65﹣6=2.65≈2.7(m),则物体上升的高度CE约为2.7m.【点评】此题考查了解直角三角形的应用,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在上,,点E在BA的延长线上,∠CEA=∠CAD.(1)如图1,求证:CE是⊙O的切线;(2)如图2,若∠CEA=2∠DAB,OA=8,求的长.【分析】(1)连接OC,根据三角形外角的性质证得∠DAB=∠ACE,根据同弧所对的圆周角相等得出∠ABC=∠DAB,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出∠ABC+∠OAC=90°,再证∠OAC=∠OCA,即可得出∠ACE+∠OCA=90°,于是问题得证;(2)连接OD,设∠DAB=x,则∠CEA=∠CAD=2x,根据同弧所对的圆周角相等得出∠ABC=∠DAB =x,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出x+2x+x=90°,从而求出x的值,最后根据弧长公式即可得解.【解答】(1)证明:如图1,连接OC,∵∠CAO是△ACE的一个外角,∴∠CAO=∠CEA+∠ACE,即∠CAD+∠DAB=∠CEA+∠ACE,∵∠CEA=∠CAD.∴∠DAB=∠ACE,∵,∴∠ABC=∠DAB,∴∠ABC=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ABC+∠OCA=90°,∴∠ACE+∠OCA=90°,即∠OCE=90°,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:如图2,连接OD,设∠DAB=x,∵∠CEA=2∠DAB,∴∠CEA=2x,∵∠CEA=∠CAD,∴∠CAD=2x,∵,∴∠ABC=∠DAB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∴x+2x+x=90°,∴x=22.5°,即∠DAB=22.5°,∴∠BOD=2∠DAB=45°,∵OA=8,∴的长为=2π.【点评】本题考查了切线的判定与性质,圆周角定理及推论,弧长公式,熟练掌握这些知识点是解题的关键.22.(12分)如图,在△ABC中,∠ABC=90°,∠ACB=α(0°<α<45°).将线段CA绕点C顺时针旋转90°得到线段CD,过点D作DE⊥BC,垂足为E.(1)如图1,求证:△ABC≌△CED.(2)如图2,∠ACD的平分线与AB的延长线相交于点F,连接DF,DF的延长线与CB的延长线相交于点P,猜想PC与PD的数量关系,并加以证明.(3)如图3,在(2)的条件下,将△BFP沿AF折叠,在α变化过程中,当点P落在点E的位置时,连接EF.①求证:点F是PD的中点;②若CD=20,求△CEF的面积.【分析】(1)可证得∠D+∠DCE=90°,∠DCE+∠ACB=90°,从而∠ACB=∠D,进而证得△ABC ≌△CED;(2)可证得△ACF≌△DCF,从而∠A=∠PDC,进而证得∠PDC=∠DCE,从而得出PC=PD;(3)①由折叠得PF=EF,∠P=∠PEF,可证得∠PEF+∠DEF=90°,∠P+∠PDE=90°,从而∠PDE=∠DEF,从而得出EF=DF,进而得出PF=DF;②设CE=a,BC=DE=b,从而BE=BC﹣CE=b﹣a,可证得△PBF∽△PED,=,在Rt△∴,从而得出PE=2BE=2(b﹣a),BF=DE=,从而S△CEFPED中,根据勾股定理得出∠PED=90°,b2+[2(b﹣a)]2=(2b﹣a)2,从而得出b=3a,由∠DEC =90°得出a2+b2=202,从而得出a2+(3a)2=400,进一步得出结果.【解答】(1)证明:∵DE⊥BC,∴∠DEC=90°,∴∠D+∠DCE=90°,∵∠ABC=90°,∴∠ABC=∠DEC,∵线段CA绕点C顺时针旋转90°得到线段CD,∴∠ACD=90°,AC=CD,∴∠DCE+∠ACB=90°,∴∠ACB=∠D,∴△ABC≌△CED(AAS);(2)PC=PD,理由如下:∵CF是∠ACD的平分线,∴∠ACF=∠DCF,由(1)知,AC=CD,△ABC≌△CED,∴∠A=∠DCE,∵CF=CF,∴△ACF≌△DCF(SAS),∴∠A=∠PDC,∴∠PDC=∠DCE,∴PC=PD;(3)①∵△BFP沿AF折叠,点P落在点E,∴PF=EF,∠P=∠PEF,∵DE⊥BC,∴∠PED=90°,∴∠PEF+∠DEF=90°,∠P+∠PDE=90°,∴∠PEF+∠PDE=90°,∴∠PDE=∠DEF,∴EF=DF,∴PF=DF,∴点F是PD的中点;②解:设CE=a,BC=DE=b,∴BE=BC﹣CE=b﹣a,由①知,点F是PD的中点,∴PF=PD,∵∠ABC=∠PED=90°,∴BF∥DE,∴△PBF∽△PED,∴,∴PE=2BE=2(b﹣a),BF=DE=b,==,∴S△CEF∵∠PED=90°,DE=b,PE=2(b﹣a),PD=PC=PE+CE=2(b﹣a)+a=2b﹣a,∴b2+[2(b﹣a)]2=(2b﹣a)2,化简得,3a2﹣4ab+b2=0,∴b=a或b=3a,∵0°<α<45°,∴a=b舍去,∴b=3a,==,∴S△CEF∵∠DEC=90°,∴a2+b2=202,∴a2+(3a)2=400,∴a2=40,=,∴S△CEF∴△CEF的面积是30.【点评】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.23.(13分)已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.(1)求函数的“升幂函数”y2的函数表达式.(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB =2时,求点A的坐标.(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.①若点B与点A重合,求m的值;②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.【分析】(1)根据题意直接列出式子即可;(2)根据条件得出y2=3,再根据AB=2建立方程即可;(3)①将A、B坐标用含有m的式子表示出,再根据AB重合时,横纵坐标相等建立关于m的方程,进而求解即可;②根据题意画出图形,再将线段用m表示出来,需要注意的是分类讨论;③第一种情况:如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度,分别令m=2和4得解,第二种情况:点M是抛物线y=﹣2m2+6m 的顶点,由M坐标推出N坐标,进而求出MN的长度,再通过MN=EF得出F的坐标,即可求解.【解答】(1),图象如图2所示.(2)如图3,∵,设,B(m,3).因为点B在点A的上方,当AB=2时,解得m=3.所以A(3,1).(3)①因为,所以A(m,﹣m+4),B(m,﹣m2+4m).如果点B与点A重合,那么﹣m+4=﹣m2+4m.整理,得m2﹣5m+4=0.解得m=1,或m=4.②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.因为BC∥x轴,所以B、C两点关于直线x=2对称.如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.综上,y=2m2+14m﹣16或=﹣2m2+6m.③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.当m=2时,y=﹣2m2+6m=4,所以P(2,4).当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).所以t2﹣t1=8﹣4=4.情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.由,得,所以,第21页(共21页)所以点F 的横坐标,于是可得,所以.综上,t 2﹣t 1=4或3﹣2.。
2023年辽宁省鞍山市中考数学试题卷(含答案解析)
2023年辽宁省鞍山市中考数学试题卷(含答案解析)一、选择题1.已知∠A=60°,BC=3,AC=√7,则BC的长度为().A)√21 B)√24 C) √25 D)√28答案:A 解析:根据余弦定理可以求解BC,根据正弦定理可以求解∠ACB,结合两个角的关系即可解题。
2.设∠A和∠B是同位角,则∠A=()°.A)∠B B)2∠B C)∠B/2 D)180°-∠B答案:C 解析:同位角指的是两条直线被一条干扰线所切割而形成的一对内错角或外错角。
根据同位角的定义,∠A=∠B/2。
3.直线y=kx-3与x轴交于点A,直线y=-x-1与x轴交于点B。
若点P(1,2)在线段AB上,则k的取值范围是().A)[2,3) B)(-∞,1) C) (-1,4) D)(-∞,∞)答案:D 解析:首先,直线y=kx-3与x轴的交点为(-3/k,0),直线y=-x-1与x轴的交点为(-1,0)。
因为点P(1,2)在线段AB上,所以点P在线段AB的x坐标范围为-3/k 到-1之间,即-3/k < 1 < -1,整理得-1 < k < -3。
因此,k的取值范围是(-∞,∞)。
4.在直角坐标系中,若点A(1,2)关于原点O对称,则点A’的坐标是().A)(2,1) B)(-1,-2) C) (-1,2) D)(-2,-1)答案:D 解析:点A关于原点O对称,则A’的坐标的x坐标和y坐标分别是点A的x坐标和y坐标的相反数。
所以A’的坐标是(-1,-2)。
二、填空题1.在下面的分数中,分子是15,分母是在1到10之间的奇数,则这些分数的和是____.答案:15/1 + 15/3 + 15/5 + 15/7 + 15/9 = 8 4/52.一块圆形花坛的直径是4米,则它的周长是____米.答案:4π米3.方程2m-3=4的解是____.答案:m = 7/2三、解答题1.已知函数y=2x+3,求函数的零点.答案和解析:零点指的是函数图像与x轴相交的点,也就是函数的解。
2021年辽宁省鞍山市(初三学业水平考试)中考真题数学真题试卷含详解
2021年辽宁省鞍山市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的每小题3分,共24分)1.下列实数最小的是()A.-2B.-3.5C.0D.12.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案是中心对称图形的是()A.B. C. D.3.下列运算正确的是()A.235a a a += B.3412a a a ⋅= C.32a a a ÷= D.()236236a b a b -=4.不等式32x x -的解集在数轴上表示正确的是()A.B.C. D.5.如图,直线//a b ,将一个含30°角的三角尺按如图所示的位置放置,若124∠︒=,则2∠的度数为()A.120︒B.136︒C.144︒D.156︒6.某班40名同学一周参加体育锻炼时间统计如表所示:时间/h 6789人数218146那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.18,7.5B.18,7C.7,8D.7,7.57.如图,AB 为O 的直径,C ,D 为O 上的两点,若54ABD ∠︒=,则C ∠的度数为()A.34︒B.36︒C.46︒D.54︒8.如图,ABC 是等边三角形,6cm AB =,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动到点B ,同时点N 从点C 出发沿射线CA 方向以2cm/s 的速度匀速运动,当点M 停止运动时,点N 也随之停止.过点M 作//MP CA 交AB 于点P ,连接MN ,NP ,作MNP △关于直线MP 对称的MN P ' ,设运动时间为ts ,MN P ' 与BMP 重叠部分的面积为2cm S ,则能表示S 与t 之间函数关系的大致图象为()A. B.C. D.二、填空题(每小题3分,共24分)9.第七次全国人口普查数据结果显示,全国人口约为1411780000人.将1411780000用科学记数法可表示为_______________.10.一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_________________.11.如图,ABC 沿BC 所在直线向右平移得DEF ,已知2EC =,8BF =,则平移的距离为___.12.习近平总书记指出,中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是___________________.13.如图,矩形ABCD 中,3AB =,对角线AC ,BD 交于点O ,DH AC ⊥,垂足为点H ,若2ADH CDH ∠=∠,则AD 的长为_______________.14.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ' ,A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.15.如图,ABC 的顶点B 在反比例函数(0)ky x x=>的图象上,顶点C 在x 轴负半轴上,//AB x 轴,AB ,BC 分别交y 轴于点D ,E .若32BE CO CE AD ==,13ABC S = ,则k =_____.16.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,F 是线段OD 上的动点(点F 不与点O ,D 重合),连接CF ,过点F 作FG CF ⊥分别交AC ,AB 于点H ,G ,连接CG 交BD 于点M ,作//OE CD 交CG 于点E ,EF 交AC 于点N .有下列结论:①当BG BM =时,2AG BG =;②OH OFOM OC=;③当GM HF =时,2CF CN BC =⋅;④222CN BM DF =+.其中正确的是_______(填序号即可).三、解答题(每小题8分,共16分)17.先化简,再求值:22131242a a a a a-⎛⎫-÷⎪--+⎝⎭,其中62a =+.18.如图,在ABCD 中,G 为BC 边上一点,DG DC =,延长DG 交AB 的延长线于点E ,过点A 作//AF ED 交CD 的延长线于点F .求证:四边形AEDF 是菱形.四、解答题(每小题10分,共20分)19.为了加快推进我国全民新冠病毒疫苗接种,在全国范围内构筑最大免疫屏障,各级政府积极开展接种新冠病毒疫苗的宣传工作.某社区印刷了多套宣传海报,每套海报四张,海报内容分别是:A .防疫道路千万条,接种疫苗第一条;B .疫苗接种保安全,战胜新冠靠全员;C .接种疫苗别再拖,安全保障好处多;D .疫苗接种连万家,平安健康乐全家.志愿者小张和小李利用休息时间到某小区张贴海报.(1)小张从一套海报中随机抽取一张,抽到B 海报的概率是.(2)小张和小李从同一套海报中各随机抽取一张,用列表法或画树状图法,求他们两个人中有一个人抽到D 海报的概率.20.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.五、解答题(每小题10分,共20分)21.如图,在平面直角坐标系中,一次函数1y k x b =+的图象分别与x 轴、y 轴交于A ,B 两点,与反比例函数2k y x=的图象在第二象限交于C ,(6,2)D -两点,//DE OC 交x 轴于点E ,若13AD AC =.(1)求一次函数和反比例函数的表达式.(2)求四边形OCDE 的面积.22.小明和小华约定一同去公园游玩,公园有南北两个门,北门A 在南门B 的正北方向,小明自公园北门A 处出发,沿南偏东30°方向前往游乐场D 处;小华自南门B处出发,沿正东方向行走150m 到达C 处,再沿北偏东22.6︒方向前往游乐场D 处与小明汇合(如图所示),两人所走的路程相同.求公园北门A 与南门B 之间的距离.(结果取整数.参考数据:5sin22.613︒≈,12cos22.613︒≈,5tan22.612︒≈1.732≈)六、解答题(每小题10分,共20分)23.如图,AB 为O 的直径,C 为O 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ⊥交CD 的延长线于点E ,CE 交O 于点G ,连接AC ,AG ,在EA 的延长线上取点F ,使2FCA E ∠=∠.(1)求证:CF 是O 的切线;(2)若6AC =,AG =,求O 的半径.24.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x (元),每天的销售量为y (件).(1)求每天的销售量y (件)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?七、解答题(本题满分12分)25.如图,在ABC 中,AB AC =,0180BAC αα∠=︒<<︒(),过点A 作射线AM交射线BC 于点D ,将AM 绕点A 逆时针旋转α得到AN ,过点C 作//CF AM 交直线AN 于点F ,在AM 上取点E ,使AEB ACB ∠=∠.(1)当AM 与线段BC 相交时,①如图1,当60α=︒时,线段AE ,CE 和CF 之间的数量关系为.②如图2,当90α=︒时,写出线段AE ,CE 和CF 之间的数量关系,并说明理由.(2)当4tan 3α=,5AB =时,若CDE △是直角三角形,直接写出AF 的长.八、解答题(本题满分14分)26.如图,抛物线23y ax bx =+-交x 轴于点(1,0)A -,(3,0)B ,D 是抛物线的顶点,P 是抛物线上的动点,点P 的横坐标为03m m ≤≤(),//AE PD 交直线l :122y x =+于点E ,AP 交DE 于点F ,交y 轴于点Q .(1)求抛物线的表达式;(2)设 PDF 的面积为1S ,AEF 的面积为2S ,当12S S =时,求点P 的坐标;(3)连接BQ ,点M 在抛物线的对称轴上(位于第一象限内),且45BMQ ∠︒=,在点P 从点B 运动到点C 的过程中,点M 也随之运动,直接写出点M 的纵坐标t 的取值范围.2021年辽宁省鞍山市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的每小题3分,共24分)1.下列实数最小的是()A.-2 B.-3.5C.0D.1【答案】B【分析】根据实数大小比较的方法进行求解即可.【详解】解:因为 3.5201-<-<<,所以最小的实数是-3.5.故选:B .【点睛】本题主要考查了实数的大小比较,熟练掌握应用实数大小的比较方法进行求解是解题的关键.2.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案是中心对称图形的是()A. B. C. D.【答案】D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.据此判断即可.【详解】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C .不是中心对称图形,故本选项符合题意;D.是中心对称图形,故本选项符合题意.故选D .【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解答本题的关键.3.下列运算正确的是()A.235a a a +=B.3412a a a ⋅= C.32a a a÷= D.()236236a b a b-=【答案】C【分析】根据合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方的性质逐项计算可判断求解.【详解】解:A .2a 与3a 不是同类项,不能合并,故A 选项不符合题意;B .347a a a ⋅=,故B 选项不符合题意;C .32a a a ÷=,故C 选项符合题意;D .3262(3)9a b a b -=,故D 选项不符合题意,故选:C .【点睛】本题考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方,掌握以上知识是解题的关键.4.不等式32x x -的解集在数轴上表示正确的是()A.B.C. D.【答案】B【分析】求出不等式的解集,将解集在数轴上表示出来.【详解】解:∵32x x -≤,∴23x x --≤-,∴33x -≤-,解得:1≥x ,∴不等式的解集为:1≥x ,表示在数轴上如图:故选B .【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.5.如图,直线//a b ,将一个含30°角的三角尺按如图所示的位置放置,若124∠︒=,则2∠的度数为()A.120︒B.136︒C.144︒D.156︒【答案】C【分析】根据平行线的性质求解,找出图中1424∠=∠=︒,进而求出∠3,再根据平行线性质求出∠2即可.【详解】解:如图,作//c a ,三角尺是含30°角的三角尺,3460∴∠+∠=︒,//a c ,1424∴∠=∠=︒,3602436∴∠=︒-︒=︒,//a c ,//a b ,//b c ∴,218036144∴∠=︒-︒=︒,故选:C .【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.6.某班40名同学一周参加体育锻炼时间统计如表所示:时间/h 6789人数218146那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.18,7.5B.18,7C.7,8D.7,7.5【答案】D 【分析】根据众数和中位数的定义进行求解即可得出答案.【详解】解:根据题意可得,参加体育锻炼时间的众数为7,因为该班有40名同学,所以中位数为第20和21名同学时间,第20名同学的时间为7h ,第21名同学的时间为8h ,所以中位数为787.52+=.故选:D .【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.如图,AB 为O 的直径,C ,D 为O 上的两点,若54ABD ∠︒=,则C ∠的度数为()A.34︒B.36︒C.46︒D.54︒【答案】B 【分析】连接AD ,如图,根据圆周角定理得到90ADB ∠=︒,C A ∠=∠,然后利用互余计算出A ∠,从而得到C ∠的度数.【详解】解:连接AD ,如图,AB 为O 的直径,90ADB ∴∠=︒,90905436A ABD ∴∠=︒-∠=︒-︒=︒,36C A ∴∠=∠=︒.故选B .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.如图,ABC 是等边三角形,6cm AB =,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动到点B ,同时点N 从点C 出发沿射线CA 方向以2cm/s 的速度匀速运动,当点M 停止运动时,点N 也随之停止.过点M 作//MP CA 交AB 于点P ,连接MN ,NP ,作MNP △关于直线MP 对称的MN P ' ,设运动时间为ts ,MN P ' 与BMP 重叠部分的面积为2cm S ,则能表示S 与t 之间函数关系的大致图象为()A. B.C. D.【答案】A【分析】首先求出当点N '落在AB 上时,t 的值,分02t <≤或23t <≤两种情形,分别求出S 的解析式,可得结论.【详解】解:如图1中,当点N '落在AB 上时,取CN 的中点T ,连接MT .CM t = ,2CN t =,CT TN =,CT TN t ∴==,ABC 是等边三角形,60C A ∴∠=∠=︒,MCT ∴ 是等边三角形,TM TC TN ∴==,90CMN ∴∠=︒,//MP AC ,60BPM A MPN ∴∠=∠=∠=︒,60BMP C ∠=∠=︒,180C CMP ∠+∠=︒,120CMP ∴∠=︒,BMP 是等边三角形,BM MP ∴=,180CMP MPN ∠+∠=︒ ,//CM PN ∴,//MP CN ,∴四边形CMPN 是平行四边形,2PM CN BM t ∴===,36t ∴=,2t ∴=,如图2中,当02t <≤时,过点M 作MK AC ⊥于K ,则3sin602MK CM t =⋅︒=,21333(6)2242S t t t t ∴=⋅-⋅=-+.如图3中,当23t <≤时,21(6)24S t =⨯-,观察图象可知,选项A 符合题意,故选:A .【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.二、填空题(每小题3分,共24分)9.第七次全国人口普查数据结果显示,全国人口约为1411780000人.将1411780000用科学记数法可表示为_______________.【答案】91.4117810⨯【分析】根据把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,进行求解即可出得出答案.【详解】解:91411780000 1.4117810=⨯.故答案为:91.4117810⨯.【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_________________.【答案】14【分析】求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的18∴黑色方砖在整个地板中所占的比值14=,∴小球最终停留在黑色区域的概率14=,故答案为:14.【点睛】本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.11.如图,ABC 沿BC 所在直线向右平移得DEF ,已知2EC =,8BF =,则平移的距离为___.【答案】3【分析】利用平移的性质解决问题即可;【详解】由平移的性质可知,BE =CF ,∵BF =8,EC =2,∴BE +CF =8-2=6,∴BE =CF =3,∴平移的距离为3,故答案为:3.【点睛】本题考查平移的性质,解题的关键是熟练掌握平移变换的性质,属于中考常考题型;12.习近平总书记指出,中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是___________________.【答案】3600240040.8x x-=【分析】设第一批购买的“四大名著”每套的价格为x元,则设第二批购买的“四大名著”每套的价格为0.8x 元,利用数量=总价÷单价,结合第二批购买的套数比第一批少4套,即可得出关于x 的分式方程,此题得解.【详解】解:设第一批购买的“四大名著”每套的价格为x 元,则设第二批购买的“四大名著”每套的价格为0.8x 元,依题意得:3600240040.8x x-=.故答案为:3600240040.8x x -=.【点睛】本题主要考查了分式方程的实际应用,解题的关键在于能够准确找到等量关系列出方程.13.如图,矩形ABCD 中,3AB =,对角线AC ,BD 交于点O ,DH AC ⊥,垂足为点H ,若2ADH CDH ∠=∠,则AD 的长为_______________.【答案】【分析】由矩形的性质得3CD AB ==,90ADC ∠=︒,求出30CDH ∠=︒,利用30°角的直角三角形的性质求出CH 的长度,再利用勾股定理求出DH 的长度,根据60ADH ∠=︒求出30DAC ∠=︒,然后由含30°角的直角三角形的性质即可求解.【详解】解: 四边形ABCD 是矩形,3CD AB ∴==,90ADC ∠=︒,2ADH CDH ∠=∠ ,30CDH ∴∠=︒,60ADH ∠=︒,∴1322CH CD ==在RT DHC 中,332DH ==DH AC ⊥ ,90DHA ∴∠=︒,906030DAC ∴∠=︒-︒=︒,2AD DH ∴==故答案为:【点睛】本题考查的是矩形的性质以及直角三角形30°的性质,熟练掌握直角三角形30°的性质是解决本题的关键.14.如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ' ,A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.【答案】67.5︒或72︒【分析】结合折叠及直角三角形斜边中线等于斜边一半的性质可得COA COA BAO ∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,然后利用三角形外角和等腰三角形的性质表示出2BCO x ∠=︒,902A OB x ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,从而利用分类讨论思想解题.【详解】解:90POQ ∠=︒ ,C 为AB 的中点,OC AC BC ∴==,COA BAO ∴∠=∠,OBC BOC ∠=∠,又由折叠性质可得COA COA ∠=∠',COA COA BAO ∴∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,则2BCO x ∠=︒,902A OB x ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,①当OB OD =时,ABO BDO ∠=∠,903x x ∴︒-︒=︒,解得22.5x =︒,9022.567.5OBD ∴∠=︒-︒=︒;②当BD OD =时,OBD A OB ∠=∠',90902x x ∴︒-︒=︒-︒,方程无解,∴此情况不存在;③当OB DB =时,BDO A OB ∠=∠',3902x x ∴︒=︒-︒,解得:18x =︒,901872OBD ∴∠=︒-︒=︒;综上,OBD ∠的度数为67.5︒或72︒,故答案为:67.5︒或72︒.【点睛】此题考查折叠及直角三角形斜边中线等于斜边一半的性质,三角形外角和等腰三角形的性质,难度一般.15.如图,ABC 的顶点B 在反比例函数(0)k y x x =>的图象上,顶点C 在x 轴负半轴上,//AB x 轴,AB ,BC 分别交y 轴于点D ,E .若32BE CO CE AD ==,13ABC S = ,则k =_____.【答案】18【分析】过点B 作BF x ⊥轴于点F ,通过设参数表示出△ABC 的面积,从而求出参数的值,再利用△ABC 与矩形ODBF 的关系求出矩形面积,即可求得k 的值.【详解】解:如图,过点B 作BF x ⊥轴于点F .//AB x 轴,DBE COE ∴ ∽,DB BE DE CO CE EO ∴==,32BE CO CE AD == ,32DB DE BE CO CO EO CE AD ∴====,设3CO a =,3DE b =,则2AD a =,2OE b =,332DB a ∴=,5OD b =,92a BD ∴=,132a AB AD DB ∴=+=,1113513222ABC a S AB ODb =⋅⋅=⨯⨯= ,45ab ∴=,94551822ODBF a ab S BD OD b ⋅=⋅=== 矩形,又 反比例函数图象在第一象限,18k ∴=,故答案为18.【点睛】此题考查反比例函数知识,涉及三角形相似及利用相似求长度,矩形面积公式等,难度一般.16.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,F 是线段OD 上的动点(点F 不与点O ,D 重合),连接CF ,过点F 作FG CF ⊥分别交AC ,AB 于点H ,G ,连接CG 交BD 于点M ,作//OE CD 交CG 于点E ,EF交AC 于点N .有下列结论:①当BG BM =时,AG =;②OH OF OM OC=;③当GM HF =时,2CF CN BC =⋅;④222CN BM DF =+.其中正确的是_______(填序号即可).【答案】①③④【分析】①正确.利用面积法证明AG AC BG BC==②错误.假设成立,推出OFH OCM ∠=∠,显然不符合条件.③正确.如图2中,过点M 作MP BC ⊥于P ,MQ AB ⊥于Q ,连接AF .想办法证明CM CF =,再利用相似三角形的性质,解决问题即可.④正确.如图3中,将CBM 绕点C 顺时针旋转90︒得到CDW ,连接FW .则CM CW =,BM DW =,90MCW ∠=︒,45CBM CDW ∠=∠=︒,证明FM FW=,利用勾股定理,即可解决问题.【详解】解:如图1中,过点G 作GT AC ⊥于T .BG BM = ,BGM BMG ∴∠=∠,BGM GAC ACG ∠=∠+∠ ,BMG MBC BCM ∠=∠+∠, 四边形ABCD 是正方形,45GAC MBC ∴∠∠︒==,AC ,ACG BCG ∴∠∠=,GB CB ⊥ ,GT AC ⊥,GB GT ∴=,1212BCG ACG BC GB S BG BC S AG AC AC GT ⋅⋅====⋅⋅,AG ∴,故①正确,假设OH OF OM OC=成立,FOH COM ∠∠ =,FOH COM ∴ ∽,OFH OCM ∴∠∠=,显然这个条件不成立,故②错误,如图2中,过点M 作MP BC ⊥于P ,MQ AB ⊥于Q ,连接AF .90OFH FHO ∠+∠︒ =,90FHO FCO ∠+∠︒=,OFH FCO ∴∠∠=,AB CB =,ABF CBF ∠∠=,BF BF =,ABF CBF SAS ∴ ≌(),AF CF ∴=,BAF BCF ∠∠=,90CFG CBG ∠∠︒ ==,180BCF BGF ∴∠+∠︒=,180BGF AGF ∠+∠︒ =,AGF BCF GAF ∴∠∠∠==,AF FG ∴=,FG FC ∴=,45FCG BCA ∴∠∠︒==,ACF BCG ∴∠∠=,//MQ CB ,GMQ BCG ACF OFH ∴∠∠∠∠===,90MQG FOH ∠∠︒ ==,FH MG =,FOH MQG AAS ∴ ≌(),MQ OF ∴=,BMP MBQ ∠∠ =,MQ AB ⊥,MP BC ⊥,MQ MP ∴=,MP OF ∴=,90CPM COF ∠∠︒ ==,PCM OCF ∠∠=,CPM COF AAS ∴ ≌(),CM CF ∴=,//OE AG ,OA OC =,EG EC ∴=,FCG 是等腰直角三角形,45CFN ∴∠︒=,CFN CBM ∴∠∠=,FCN BCM ∠∠ =,BCM FCN ∴ ∽,CM CB CN CF∴=,2CF CB CN ∴⋅=,故③正确,如图3中,将CBM 绕点C 顺时针旋转90︒得到CDW ,连接FW .则CM CW =,BM DW =,90MCW ∠︒=,45CBM CDW ∠∠︒==,∵FG =FC ,∠GFO =∠FCN ,∠FGM =∠CFN =45°,∴△FGM ≌△CFN ,∴FM =CN ,45FCG FCW ∠∠︒ ==,CM CW =,CF CF =,CFN CFW SAS ∴ ≌(),FM FW ∴=,454590FDW FDC CDW ∠∠+∠︒+︒︒ ===,222FW DF DW ∴+=,2222CN FM BM DF ∴=+=,故④正确,故答案为:①③④.【点睛】本题主要考查了相似三角形的性质与判定,全等三角形的性质与判定,等腰直角三角形的性质,正方形的性质,旋转的性质,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题(每小题8分,共16分)17.先化简,再求值:22131242a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中62a =+.【答案】2a a -,613+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值.【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+--2a a =-.当2a +时,原式6163+===+.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.18.如图,在ABCD 中,G 为BC 边上一点,DG DC =,延长DG 交AB 的延长线于点E ,过点A 作//AF ED 交CD 的延长线于点F .求证:四边形AEDF 是菱形.【答案】见解析【分析】先证四边形AEDF 是平行四边形,再证BAD ADE ∠∠=,则AE DE =,即可得出结论.【详解】证明: 四边形ABCD 是平行四边形,BAD C ∴∠∠=,//AD BC ,//AB CD ,//AF ED ,∴四边形AEDF 是平行四边形,//AD BC ,DGC ADE ∴∠∠=,DG DC =,DGC C ∴∠∠=,BAD ADE ∴∠∠=,AE DE∴=,∴平行四边形AEDF是菱形.【点睛】本题考查了平行四边形的性质,等边对等角,菱形的判定定理,熟练掌握以上几何性质是解题的关键.四、解答题(每小题10分,共20分)19.为了加快推进我国全民新冠病毒疫苗接种,在全国范围内构筑最大免疫屏障,各级政府积极开展接种新冠病毒疫苗的宣传工作.某社区印刷了多套宣传海报,每套海报四张,海报内容分别是:A.防疫道路千万条,接种疫苗第一条;B.疫苗接种保安全,战胜新冠靠全员;C.接种疫苗别再拖,安全保障好处多;D.疫苗接种连万家,平安健康乐全家.志愿者小张和小李利用休息时间到某小区张贴海报.(1)小张从一套海报中随机抽取一张,抽到B海报的概率是.(2)小张和小李从同一套海报中各随机抽取一张,用列表法或画树状图法,求他们两个人中有一个人抽到D海报的概率.【答案】(1)14;(2)12.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,小张和小李两个人中有一个人抽到D海报的结果有6种,再由概率公式求解即可.【详解】解:(1) 每套海报四张∴小张从一套海报中随机抽取一张,抽到B海报的概率是1 4,故答案为:1 4;(2)画树状图如图:共有12种等可能的结果,小张和小李两个人中有一个人抽到D海报的结果有6种,∴小张和小李两个人中有一个人抽到D海报的概率为61= 122.【点睛】本题考查了概率的计算,用列表法或画树状图法求概率,掌握概率的计算方法是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.20.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.【答案】(1)120;(2)图形见解析;(3)360件【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.÷=(件),【详解】解:(1)根据题意得:1210%120所抽取的学生作品的样本容量是120;-++=(件),(2)绘画作品为120(423012)36补全统计图,如图所示:(3)根据题意得:361200360120⨯=(件),则绘画作品约有360件.答:本次活动共征集作品1200件时,绘画作品约有360件.【点睛】本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(每小题10分,共20分)21.如图,在平面直角坐标系中,一次函数1y k x b =+的图象分别与x 轴、y 轴交于A ,B 两点,与反比例函数2k y x =的图象在第二象限交于C ,(6,2)D -两点,//DE OC 交x 轴于点E ,若13AD AC =.(1)求一次函数和反比例函数的表达式.(2)求四边形OCDE 的面积.【答案】(1)8y x +=,12y x =-;(2)643【分析】(1)先利用待定系数法求反比例函数解析式,然后结合相似三角形的判定和性质求得C 点坐标,再利用待定系数法求函数关系式;(2)根据一次函数图象上点的坐标特征并结合待定系数法求得A 点和E 点坐标,然后用AOC △的面积减去AED 的面积求解.【详解】解:(1)将(62)D -,代入2k y x =中,26212k ⨯=-=-,∴反比例函数的解析式为12y x=-;过点D 作DM x ⊥轴,过点C 作CN x ⊥轴,//DE OC ,ADE ACO ∴ ∽,13AD AE DM AC AO CN ∴===,36CN DM ∴==,将6y =代入12y x =-中,126x=-,解得:2x =-,∴C 点坐标为()2,6-,将()2,6C -,()6,2D -代入1y k x b +=中,可得112662k b k b -+=⎧⎨-+=⎩,解得:118k b =⎧⎨=⎩,∴一次函数的解析式为8y x +=;(2)设直线OC 的解析式为y mx =,将()2,6C -代入,得:26m -=,解得:3m =-,∴直线OC 的解析式为3y x =-,由//DE OC ,设直线DE 的解析式为3y x n +=-,将()6,2D -代入可得:()362n ⨯+--=,解得:16n =-,∴直线DE 的解析式为316y x -=-,当0y =时,3160x --=,解得:163x =-,∴E 点坐标为16,03⎛⎫- ⎪⎝⎭,163OE ∴=,在8y x +=中,当0y =时,80x +=,解得:8x =-,∴A 点坐标为()8,0-,8OA ∴=,168833AE ∴-==,AOC AEDOCDE S S S 四边形=﹣1122OA CN AE DM =⋅-⋅118862223=⨯⨯-⨯⨯8243=-643=.【点睛】本题考查反比例函数与一次函数的应用,相似三角形的判定和性质,掌握一次函数及反比例函数图象上点的坐标特征,利用待定系数法求函数解析式是解题关键.22.小明和小华约定一同去公园游玩,公园有南北两个门,北门A 在南门B 的正北方向,小明自公园北门A 处出发,沿南偏东30°方向前往游乐场D 处;小华自南门B 处出发,沿正东方向行走150m 到达C 处,再沿北偏东22.6︒方向前往游乐场D 处与小明汇合(如图所示),两人所走的路程相同.求公园北门A 与南门B 之间的距离.(结果取整数.参考数据:5sin22.613︒≈,12cos22.613︒≈,5tan22.612︒≈ 1.732≈)【答案】1293m【分析】作DE AB ⊥于E ,CF DE ⊥于F ,易得四边形BCFE 是矩形,则BE CF =,15==EF BC m ,设m DF x =,则()150=+DE x m ,在Rt ADE △中利用含30度的直角三角形三边的关系得到()22150m AD DE x +==,在Rt DCF 中,13m sin 22.65DF CD x ≈︒=,根据题意得到()1321501505x x ++=,求得x 的值,然后根据勾股定理求得AE 和BE ,进而求得AB .【详解】解:如图,作DE AB ⊥于E ,CF DE ⊥于F ,BC AB ⊥ ,∴四边形BCFE 是矩形,BE CF ∴=,150m EF BC ==,设m DF x =,则150m DE x +=(),在Rt ADE △中,30BAD ∠︒=,()22150m AD DE x ∴+==,在Rt DCF 中,22.6FCD ∠︒=,13m 5sin 22.6513=∴≈=︒DF x CD x ,AD CD BC + =,()1321501505x x ∴++=,解得:250m =x ,250m DF ∴=,250150400m DE ∴+==,2800m AD DE ∴==,800150650m CD ∴=﹣=,由勾股定理得AE ===,600m BE CF =,6001293(m)AB AE BE ∴+≈==,答:公园北门A 与南门B 之间的距离约为1293m .【点睛】本题主要考查了解直角三角形的应用——方向角问题,正确构建直角三角形是解题的关键.六、解答题(每小题10分,共20分)23.如图,AB 为O 的直径,C 为O 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ⊥交CD 的延长线于点E ,CE 交O 于点G ,连接AC ,AG ,在EA 的延长线上取点F ,使2FCA E ∠=∠.(1)求证:CF 是O 的切线;(2)若6AC =,AG =,求O的半径.【答案】(1)见解析;(2)5【分析】(1)根据题意判定ADG DCB ∽,然后结合相似三角形的性质求得2AGD E ∠∠=,从而可得FCA AGD ∠∠=,然后结合等腰三角形的性质求得90FCO ∠︒=。
2024年辽宁省中考数学真题(学生版+解析版)
2024年辽宁省中考数学真题第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中;有一项是符合题目要求的)1.如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()2.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲亚洲欧洲非洲南美洲最低海拔/m -415-28-156-40其中最低海拔最小的大洲是()A.亚洲B.欧洲C.非洲D.南美洲3.越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大型产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A. 532xl08B. 53.2X109C. 5.32xlO 10D. 5.32X10114.如图,在矩形A8C 。
中,点E 在AQ 上,当一EBC 是等边三角形时,ZAEB 为()B. 45°5.下列计算正确的是()A. a 2 + a 3 = 2a 5 C. 60° D. 120°C.(疽)3=/D. = a 2 a B. q 2 .次二 /6. 一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸3出一个球,则下列事件发生的概率为一的是()10A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球7.纹样是我国古代艺术中 瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()' " °^°C D 8.我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? ”其大意:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有尤只,兔有》只,根据题意可列方程组为()x+y = 94A. <4% + 2y = 35x+y = 94B. <2x + 4y = 35x+ y = 35x+ y = 35D. <4x + 2y = 94 [2x + 4y = 949.如图,YABCD 的对角线 AC, BQ 相交于点。
辽宁省鞍山市中考数学试卷及答案
辽宁省鞍山市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
2014年辽宁省鞍山市中考数学试卷(含解析版)
2014年辽宁省鞍山市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(2014•鞍山)的平方根是()A.2 B.±2 C.D.±2.(3分)(2014•鞍山)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁3.(3分)(2014•鞍山)不等式组的解集在数轴上表示为()A.B.C.D.4.(3分)(2014•鞍山)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=45.(3分)(2014•鞍山)下列说法正确的是()A.数据1,2,3,2,5的中位数是3B.数据5,5,7,5,7,6,11的众数是7C.若甲组数据方差S2甲=0.15,乙组数据方差S2乙=0.15,则乙组数据比甲组数据稳定D.数据1,2,2,3,7的平均数是36.(3分)(2014•鞍山)如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.67.(3分)(2014•鞍山)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米8.(3分)(2014•鞍山)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论中错误的是()A.∠AGE=67.5°B.四边形AEFG是菱形C.BE=2OF D.S△DOG:S四边形OGEF=:1二、填空题(每小题3分,共24分)9.(3分)(2014•鞍山)如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=.10.(3分)(2014•鞍山)在五张完全相同的卡片上,分别画有等边三角形、平行四边形、正方形、菱形、圆,现从中随机抽出一张,卡片上的图形是中心对称图形的概率是.11.(3分)(2014•鞍山)对于实数a,b,我们定义一种运算“※”为:a※b=a2﹣ab,例如1※3=12﹣1×3.若x※4=0,则x=.12.(3分)(2014•鞍山)学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为分.13.(3分)(2014•鞍山)如图,H是△ABC的边BC的中点,AG平分∠BAC,点D是AC 上一点,且AG⊥BD于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为.14.(3分)(2014•鞍山)在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为cm2(结果用含π的式子表示).15.(3分)(2014•鞍山)如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=.16.(3分)(2014•鞍山)如图,在平面直角坐标系中有一个等边△OBA,其中A点坐标为(1,0).将△OBA绕顶点A顺时针旋转120°,得到△AO1B1;将得到的△AO1B1绕顶点B1顺时针旋转120°,得到△B1A1O2;然后再将得到的△B1A1O2绕顶点O2顺时针旋转120°,得到△O2B2A2…按照此规律,继续旋转下去,则A2014点的坐标为.三、解答题(每小题8分,共24分)17.(8分)(2014•鞍山)先化简,再求值:(1﹣)÷,其中x=﹣2.18.(8分)(2014•鞍山)在平面直角坐标系中,△ABC的顶点坐标A(﹣4,1),B(﹣2,1),C(﹣2,3)(1)作△ABC关于y轴的对称图形△A1B1C1;(2)将△ABC向下平移4个单位长度,作出平移后的△A2B2C2;(3)求四边形AA2B2C的面积.19.(8分)(2014•鞍山)数学小组的同学为了解2014年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将数据进行了整理:请回答以下问题:(1)根据表中数据可得到a=,b=,并将频数分布直方图中10<x≤15的部分补充完整;(2)求月均用水量不超过20t的家庭占被调查家庭总数的百分比;(3)若该小区有1200户家庭,根据调查数据估计,该小区月均用水量超过25t的家庭大约有多少户?四、解答题(每小题10分,共20分)20.(10分)(2014•鞍山)学习概率知识以后,小庆和小丽设计了一个游戏.在一个不透明的布袋A里面装有三个分别标有数字5,6,7的小球(小球除数字不同外,其余都相同);同时制作了一个可以自由转动的转盘B,转盘B被平均分成2部分,在每一部分内分别标上数字3,4.现在其中一人从布袋A中随机摸取一个小球,记下数字为x;另一人转动转盘B,转盘停止后,指针指向的数字记为y(若指针指在边界线上时视为无效,重新转动),从而确定点P的坐标为P(x,y).(1)请用树状图或列表的方法写出所有可能得到的点P的坐标;(2)若S=xy,当S为奇数时小庆获胜,否则小丽获胜,你认为这个游戏公平吗?对谁更有利呢?21.(10分)(2014•鞍山)甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?五、解答题(每小题10分,共20分)22.(10分)(2014•鞍山)如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°.现在请你帮助课外活动小组算一算塔高DE大约是多少米?(结果精确到个位)(参考数据:sin25.6°≈0.4,cos25.6°≈0.9,tan25.6°≈0.5,sin61.4°≈0.9,cos61.4°≈0.5,tan61.4°≈1.8)23.(10分)(2014•鞍山)如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P 在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)六、解答题(本题满分12分)24.(12分)(2014•鞍山)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为;当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为.(2)试求出第11天的销售金额;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?七、解答题(本题满分12分)25.(12分)(2014•鞍山)如图,在直角△ABD中,∠ADB=90°,∠ABD=45°,点F为直线AD上任意一点,过点A作直线AC⊥BF,垂足为点E,直线AC交直线BD于点C.过点F作FG∥BD,交直线AB于点G.(1)如图1,点F在边AD上,则线段FG,DC,BD之间满足的数量关系是;(2)如图2,点F在边AD的延长线上,则线段FG,DC,BD之间满足的数量关系是,证明你的结论;(3)如图3,在(2)的条件下,若DF=6,GF=10,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于M,N两点,当FM=2时,求线段NG的长.八、解答题(本题满分14分)26.(14分)(2014•鞍山)如图,在平面直角坐标系中,将抛物线y=x2先向右平移1个单位,再向下平移个单位,得到新的抛物线y=ax2+bx+c,该抛物线与y轴交于点B,与x轴正半轴交于点C.(1)求点B和点C的坐标;(2)如图1,有一条与y轴重合的直线l向右匀速平移,移动的速度为每秒1个单位,移动的时间为t秒,直线l与抛物线y=ax2+bx+c交于点P,当点P在x轴上方时,求出使△PBC的面积为2的t值;(3)如图2,将直线BC绕点B逆时针旋转,与x轴交于点M(1,0),与抛物线y=ax2+bx+c交于点A,在y轴上有一点D(0,),在x轴上另取两点E,F(点E在点F的左侧),EF=2,线段EF在x轴上平移,当四边形ADEF的周长最小时,先简单描述如何确定此时点E的位置?再直接写出点E的坐标.2014年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2014•鞍山)的平方根是()A.2 B.±2 C.D.±【考点】算术平方根;平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选D.2.(3分)(2014•鞍山)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“力”是相对面,“爱”与“辽”是相对面,“魅”与“宁”是相对面.故选D.3.(3分)(2014•鞍山)不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组,由①得:x>1;由②得:x≤3,∴不等式组的解集为1<x≤3,表示在数轴上,如图所示:故选A4.(3分)(2014•鞍山)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4【考点】解分式方程.【分析】首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.【解答】解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.5.(3分)(2014•鞍山)下列说法正确的是()A.数据1,2,3,2,5的中位数是3B.数据5,5,7,5,7,6,11的众数是7C.若甲组数据方差S2甲=0.15,乙组数据方差S2乙=0.15,则乙组数据比甲组数据稳定D.数据1,2,2,3,7的平均数是3【考点】方差;算术平均数;中位数;众数.【分析】根据方差、众数、中位数、平均数的计算公式和定义分别进行分析,即可得出答案.【解答】解:A、把这组数据从小到大排列为:1,2,2,3,5,中位数是2,故本选项错误;B、在数据5,5,7,5,7,6,11中,5出现了3次,出现的次数最多,则众数是5,故本选项错误;C、因为甲组数据方差S2甲=0.15,乙组数据方差S2乙=0.15,则S甲2=S乙2,所以乙组数据和甲组数据同样稳定,故本选项错误;D、数据1,2,2,3,7的平均数是(1+2+2+3+7)÷5=3,故本选项正确;故选D.6.(3分)(2014•鞍山)如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.7.(3分)(2014•鞍山)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米【考点】一次函数的应用.【分析】观察图形可发现客车出租车行驶路程均为600千米,客车行驶了10小时,出租车行驶了6小时,即可求得客车和出租车行驶时间和速度;易求得直线AC和直线OD的解析式,即可求得交点横坐标x,即可求得相遇时间,和客车行驶距离,即可解题.【解答】解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;(3)∵设出租车行驶时间为x,距离目的地距离为y,则y=﹣100x+600,设客车行驶时间为x,距离目的地距离为y,则y=60x;当两车相遇时即60x=﹣100x+600时,x=3.75h,故C正确;∵3.75小时客车行驶了60×3.75=225千米,∴距离乙地600﹣225=375千米,故D错误;故选 D.8.(3分)(2014•鞍山)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的F重合.展开后,折痕DE 分别交AB,AC于点E,G.连接GF.下列结论中错误的是()A.∠AGE=67.5°B.四边形AEFG是菱形C.BE=2OF D.S△DOG:S四边形OGEF=:1【考点】翻折变换(折叠问题).【分析】根据正方形的性质得∠AOB=90°,∠BAO=∠OAD=∠ODA=45°,再根据折叠的性质得∠1=∠2=∠ODA=22.5°,EA=EF,∠4=∠5,∠EFD=∠EAD=90°,于是根据三角形外角性质可计算出∠3=67.5°,即∠AGE=67.5°;根据三角形内角和可计算出∠4=67.5°,则∠3=∠4=∠5,所以AE=AG=EF,AG∥EF,于是可判断四边形AEFG为菱形;根据菱形性质得GF∥AB,EF=GF,利用平行线性质得∠6=∠7=45°,则可判断△BEF和△OGF 都是等腰直角三角形,得到BE=EF,GF=OF,所以BE=2OF;设OF=a,则GF= a,BF=a,可计算出OB=(+1)a,则OD=(+1)a,DF=DO+OF=(2+)a,再证明△DOG∽△DFE,利用相似三角形的性质可计算出=()2=,则S△DOG:S四边形OGEF=1:1,即D选项的结论错误.【解答】解:∵四边形ABCD为正方形,∴∠AOB=90°,∠BAO=∠OAD=∠ODA=45°,∵折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的F重合,∴∠1=∠2=∠ODA=22.5°,EA=EF,∠4=∠5,∠EFD=∠EAD=90°,∴∠3=∠GAD+∠1=45°+22.5°=67.5°,即∠AGE=67.5°;∵∠4=90°﹣∠1=67.5°,∴∠3=∠4=∠5,∴AE=AG=EF,AG∥EF,∴四边形AEFG为菱形;∴GF∥AB,EF=GF,∴∠6=∠7=45°,∴△BEF和△OGF都是等腰直角三角形,∴BE=EF,GF=OF,∴BE=•OF=2OF;设OF=a,则GF=a,BF=a,∴OB=(+1)a,∴OD=(+1)a,DF=DO+OF=(2+)a,∵∠DOG=∠DFE=90°,∴△DOG∽△DFE,∴=()2=[]2=,∴S△DOG:S四边形OGEF=1:1.故选D.二、填空题(每小题3分,共24分)9.(3分)(2014•鞍山)如图,直线l1∥l2,AB⊥EF,∠1=20°,那么∠2=70°.【考点】平行线的性质.【分析】根据平行线的性质求出∠3,根据三角形的外角性质得出∠2=∠FOB﹣∠3,代入求出即可.【解答】解:∵l1∥l2,∠1=20°,∴∠3=∠1=20°,∵AB⊥EF,∴∠FOB=90°,∴∠2=∠FOB﹣∠3=70°,故答案为:70°.10.(3分)(2014•鞍山)在五张完全相同的卡片上,分别画有等边三角形、平行四边形、正方形、菱形、圆,现从中随机抽出一张,卡片上的图形是中心对称图形的概率是.【考点】概率公式;中心对称图形.【分析】由五张完全相同的卡片上分别画有等边三角形、平行四边形、菱形、正方形、圆,其中是中心对称图形的有有平行四边形、正方形、菱形、圆,然后直接利用概率公式求解即可求得答案.【解答】解:∵在等边三角形、平行四边形、正方形、菱形、圆中,是中心对称图形的有平行四边形、正方形、菱形、圆,∴现从中任意抽取一张,卡片上所画的图形是中心对称图形的概率为:;故答案为:.11.(3分)(2014•鞍山)对于实数a,b,我们定义一种运算“※”为:a※b=a2﹣ab,例如1※3=12﹣1×3.若x※4=0,则x=0或4.【考点】解一元二次方程-因式分解法.【分析】先认真阅读题目,根据题意得出方程x2﹣4x=0,解方程即可.【解答】解:∵x※4=0,∴x2﹣4x=0,∴x(x﹣4)=0,∴x=0,x﹣4=0,∴x=0或4,故答案为:0或4.12.(3分)(2014•鞍山)学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为95.8分.【考点】加权平均数.【分析】根据加权平均数的计算方法进行计算即可.【解答】解:根据题意得:(98×1+95×3+96×1)÷5=95.8(分),答:小明的平均成绩为95.8分.故答案为:95.8.13.(3分)(2014•鞍山)如图,H是△ABC的边BC的中点,AG平分∠BAC,点D是AC 上一点,且AG⊥BD于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为49.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】判断出△ABD是等腰三角形,根据等腰三角形三线合一的性质可得BG=DG,然后求出GH是△BCD的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2GH,然后根据三角形的周长的定义列式计算即可得解.【解答】解:∵AG平分∠BAC,AG⊥BD,∴△ABD是等腰三角形,∴AB=AD,BG=DG,又∵H是△ABC的边BC的中点,∴出GH是△BCD的中位线,∴CD=2GH=2×5=10,∴△ABC的周长=12+15+(12+10)=49.故答案为:49.14.(3分)(2014•鞍山)在△ABC纸板中,AB=3cm,BC=4cm,AC=5cm,将△ABC纸板以AB所在直线为轴旋转一周,则所形成的几何体的侧面积为20πcm2(结果用含π的式子表示).【考点】圆锥的计算;点、线、面、体;勾股定理的逆定理.【分析】易得此几何体为圆锥,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵在△ABC中,AB=3,BC=4,AC=5,∴△ABC为直角三角形,∴底面周长=8π,侧面积=×8π×5=20πcm2.故答案为:20π.15.(3分)(2014•鞍山)如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=﹣15.【考点】三角形的内切圆与内心;反比例函数图象上点的坐标特征.【分析】根据内心的性质得OB平分∠ABC,再由点B的坐标是(2,0),点C的坐标是(0,﹣2)得到△OBC为等腰直角三角形,则∠OBC=45°,所以∠ABC=90°,利用勾股定理有AB2+BC2=AC2,根据两点间的距离公式得到(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴AB2+BC2=AC2,∴(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.16.(3分)(2014•鞍山)如图,在平面直角坐标系中有一个等边△OBA,其中A点坐标为(1,0).将△OBA绕顶点A顺时针旋转120°,得到△AO1B1;将得到的△AO1B1绕顶点B1顺时针旋转120°,得到△B1A1O2;然后再将得到的△B1A1O2绕顶点O2顺时针旋转120°,得到△O2B2A2…按照此规律,继续旋转下去,则A2014点的坐标为(3022,0).【考点】坐标与图形变化-旋转.【分析】计算出A1、A2、A3、A4的坐标,推出A n的坐标,代入2014即可得到A2014的坐标.【解答】解:A1=,A2=+=,A3=+=,A4=+=.A n=,A2014=3022.三、解答题(每小题8分,共24分)17.(8分)(2014•鞍山)先化简,再求值:(1﹣)÷,其中x=﹣2.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=x+2,当x=﹣2时,原式=﹣2+2=.18.(8分)(2014•鞍山)在平面直角坐标系中,△ABC的顶点坐标A(﹣4,1),B(﹣2,1),C(﹣2,3)(1)作△ABC关于y轴的对称图形△A1B1C1;(2)将△ABC向下平移4个单位长度,作出平移后的△A2B2C2;(3)求四边形AA2B2C的面积.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)分别作出点A、B、C关于y轴的对称的点,然后顺次连接;(2)分别作出点A、B、C向下平移4个单位长度后的点,然后顺次连接;(3)根据梯形的面积公式求出四边形AA2B2C的面积即可.【解答】解:(1)(2)所作图形如图所示:;(3)四边形AA2B2C的面积为:(4+6)×2=10.即四边形AA2B2C的面积为10.19.(8分)(2014•鞍山)数学小组的同学为了解2014年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将数据进行了整理:月均用水量x(t)频数频率0<x≤512 0.155<x≤1016 0.2010<x≤15 a 0.3515<x≤2012 0.1520<x≤258 b25<x≤30 4 0.05请回答以下问题:(1)根据表中数据可得到a=28,b=0.10,并将频数分布直方图中10<x≤15的部分补充完整;(2)求月均用水量不超过20t的家庭占被调查家庭总数的百分比;(3)若该小区有1200户家庭,根据调查数据估计,该小区月均用水量超过25t的家庭大约有多少户?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据0<x≤5中频数为12,频率为0.15,则调查总户数为12÷0.15=80,进而得出a、b的值;(2)根据(1)中所求即可得出不超过20t的家庭总数即可求出,不超过20t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过25t的家庭数,即可得出1000户家庭超过20t的家庭数.【解答】解:(1)如图所示:根据0<x≤5中频数为12,频率为0.15,则12÷0.15=80,a=80×0.15=28户,b=8÷80=0.10,故频数分布直方图为:;(2)×100%=85%;(3)1200×0.05=60户,答:该小区月均用水量超过25t的家庭大约有60户.四、解答题(每小题10分,共20分)20.(10分)(2014•鞍山)学习概率知识以后,小庆和小丽设计了一个游戏.在一个不透明的布袋A里面装有三个分别标有数字5,6,7的小球(小球除数字不同外,其余都相同);同时制作了一个可以自由转动的转盘B,转盘B被平均分成2部分,在每一部分内分别标上数字3,4.现在其中一人从布袋A中随机摸取一个小球,记下数字为x;另一人转动转盘B,转盘停止后,指针指向的数字记为y(若指针指在边界线上时视为无效,重新转动),从而确定点P的坐标为P(x,y).(1)请用树状图或列表的方法写出所有可能得到的点P的坐标;(2)若S=xy,当S为奇数时小庆获胜,否则小丽获胜,你认为这个游戏公平吗?对谁更有利呢?【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况,写出即可;(2)找出S为奇数的情况有,求出小庆获胜的概率,进而求出小丽获胜的概率,比较即可得到结果.【解答】解:(1)列表如下:3 45 (5,3)(5,4)6 (6,3)(6,4)7 (7,3)(7,4)由表格得所有可能得到的点P坐标为(5,3);(6,3);(7,3);(5,4);(6,4);(7,4),共6种;(2)S为奇数的情况有(5,3);(7,3)共2种,即P(小庆获胜)==;P(小丽获胜)=1﹣=,∵<,∴该游戏不公平,对小丽更有利.21.(10分)(2014•鞍山)甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?【考点】一元一次方程的应用.【分析】(1)可设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,两人同向而行相遇属于追及问题,等量关系为:甲路程与乙路程的差=环形场地的路程,列出方程即可求解;(2)在环形跑道上两人背向而行属于相遇问题,等量关系为:甲路程+乙路程=环形场地的路程,列出算式求解即可.【解答】解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有3x+150=200×3,解得x=150,x+200=150+200=350.答:甲的速度是每分钟350米,乙的速度是每分钟150米.(2)(200×3﹣300×1.2)÷1.2=(600﹣360)÷1.2=240÷1.2=200(米),200﹣150=50(米).答:乙的速度至少要提高每分钟50米.五、解答题(每小题10分,共20分)22.(10分)(2014•鞍山)如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°.现在请你帮助课外活动小组算一算塔高DE大约是多少米?(结果精确到个位)(参考数据:sin25.6°≈0.4,cos25.6°≈0.9,tan25.6°≈0.5,sin61.4°≈0.9,cos61.4°≈0.5,tan61.4°≈1.8)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据锐角三角函数关系表示出BF的长,进而求出EF的长,进而得出答案.【解答】解:延长DE交AB延长线于点F,则∠DFA=90°,∵∠A=45°,∴AF=DF,设EF=x,则tan25.6°==0.5,故BF=2x,则AF=50+2x,故tan61.4°===1.8,解得;x≈31,故DE=50+31×2﹣31=81(m),答:塔高DE大约是81米.23.(10分)(2014•鞍山)如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P 在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【解答】解:(1)如图,连接OA;∵∠C=60°,∴∠AOB=120°;而OA=OB,∴∠OAB=∠OBA=30°;而AB=AP,∴∠P=∠ABO=30°;∵∠AOB=∠OAP+∠P,∴∠OAP=120°﹣30°=90°,∴PA是⊙O的切线.(2)如图,过点O作OM⊥AB,则AM=BM=,∵tan30°=,sin30°=,∴OM=1,OA=2;∴=××1=,=,∴图中阴影部分的面积=.六、解答题(本题满分12分)24.(12分)(2014•鞍山)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为y=x;当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为y=﹣10x+200.(2)试求出第11天的销售金额;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?【考点】二次函数的应用.【分析】(1)当0≤x≤11时,设y与x之间的函数关系式为y=kx,当11≤x≤20时设y与x 之间的函数关系式为y=k1x+b,由待定系数法求出其解即可;(2)当3≤x<16时,设w与x的关系式为w=k2x+b2,当x=11时,代入解析式求出w的值,由销售金额=单价×数量就可以求出结论;(3)当x=15时代入(1)的解析式求出y的值,再当x=15时代入(2)的解析式求出w 的值,再由利润=销售总额﹣进价总额﹣车费就可以得出结论.【解答】解:(1)当0≤x≤11时,设y与x之间的函数关系式为y=kx,当11≤x≤20时设y 与x之间的函数关系式为y=k1x+b,由题意,得90=11k,,解得:k=,,∴y=,故答案为:y=x,y=﹣10x+200;(2)当3≤x<16时,设w与x的关系式为w=k2x+b2,由题意,得,解得:,∴w=﹣x+33.当x=11时,y=90,w=22,∴90×22=1980元.答:第11天的销售总额为1980元;(3)由题意,得当x=15时,y=﹣10×15+200=50千克.w=﹣15+33=18元,利润为:50(1﹣2%)×18﹣50×15﹣20=112元.答:当天能赚到112元.七、解答题(本题满分12分)25.(12分)(2014•鞍山)如图,在直角△ABD中,∠ADB=90°,∠ABD=45°,点F为直线AD上任意一点,过点A作直线AC⊥BF,垂足为点E,直线AC交直线BD于点C.过点F作FG∥BD,交直线AB于点G.(1)如图1,点F在边AD上,则线段FG,DC,BD之间满足的数量关系是FG+DC=BD;(2)如图2,点F在边AD的延长线上,则线段FG,DC,BD之间满足的数量关系是FG=DC+BD,证明你的结论;(3)如图3,在(2)的条件下,若DF=6,GF=10,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于M,N两点,当FM=2时,求线段NG的长.【考点】几何变换综合题.【分析】(1)先证明△BDF≌△ADC,得出DF=DC,再证明FG=AF,即可得出结论;(2)过点B作BH⊥GF于点H,由△ABD 和△AGF都是等腰直角三角形.得出AD=BD,AF=FG,再证明△ADC≌△BDF,得出DC=DF,即可得出结论;(3)作NP⊥AG于P,由四边形DFHB是矩形,△PGN是等腰直角三角形,得出BH=DF=6,PG=PN,设PG=PN=x,则NG=x,再证出∠PBN=∠MBH,得出tan∠PBN=tan∠MBH=,得BP=3PN=3x,列出方程x+3x=6,解方程即可得出结果.【解答】解:(1)FG+DC=BD;理由:∵∠ADB=90°,∠ABD=45°,∴∠ADC=90°,∠BAD=45°,∴AD=BD,∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=DC,∵FG∥BD,∴∠AFG=∠ADB=90°,∠AGF=∠ABD=45°,∴FG=AF,∴FG+DC=AF+DF=AD=BD;(2)FG=DC+BD;理由如下:过点B作BH⊥GF于点H,如图2所示:则四边形DFHB是矩形,∵在Rt△ABD中,∠ADB=90°,∠ABD=45°,FG∥BD,∴△ABD 和△AGF都是等腰直角三角形,∴AD=BD,AF=FG,∵AC⊥BF,∴∠CEB=90°,∴∠C+∠CBE=90°,∵∠C+∠DAC=90°,∠CBE=∠DBF,∴∠DAC=∠DBF,∠ADB=90°,。
2023年辽宁省鞍山市中考数学试卷及其答案
2023年辽宁省鞍山市中考数学试卷一、选择题(本大题共8小题,每小题只有一个选项符合题意,每小题3分,共24分)1.(3分)﹣2023的绝对值是()A.2023B.﹣2023C.D.﹣2.(3分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是()A.B.C.D.3.(3分)下列运算正确的是()A.(4ab)2=8a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b24.(3分)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3B.8,2C.3,3D.3,25.(3分)甲、乙两台机器运输某种货物,已知乙比甲每小时多运60kg,甲运输500kg所用的时间与乙运输800kg所用的时间相等,求甲、乙两台机器每小时分别运输多少千克货物,设甲每小时运输xkg货物,则可列方程为()A.B.C.D.6.(3分)如图,直线a∥b,将含有30°角的直角三角尺按如图所示的位置放置,若∠1=15°,那么∠2的大小为()A.60°B.55°C.45°D.35°7.(3分)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为()A.2B.C.D.8.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,AB=4,,垂直于BC的直线MN 从AB出发,沿BC方向以每秒个单位长度的速度平移,当直线MN与CD重合时停止运动,运动过程中MN分别交矩形的对角线AC,BD于点E,F,以EF为边在MN左侧作正方形EFGH,设正方形EFGH与△AOB重叠部分的面积为S,直线MN的运动时间为ts,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)2023年5月3日,被誉为近五年最火的“五一”假期圆满收官,据文旅部发布的数据显示,2023年“五一”假期5天,全国国内旅游出游合计约为274000000人次.将数据274000000用科学记数法可表示为.10.(3分)因式分解:3x2﹣9x=.11.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有个.12.(3分)若关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,则a的取值范围是.13.(3分)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D 在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处,若OA=8,OB=10,则点D 的坐标是.14.(3分)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.15.(3分)如图,在△ABC中,BA=BC,顶点C,B分别在x轴的正、负半轴上,点A在第一象限,经过点A的反比例函数的图象交AC于点E,过点E作EF⊥x轴,垂足为点F,若点E 为AC的中点,BD=2AD,BF﹣CF=3,则k的值为.16.(3分)如图,在正方形ABCD中,点M为CD边上一点,连接AM,将△ADM绕点A顺时针旋转90°得到△ABN,在AM,AN上分别截取AE,AF,使AE=AF=BC,连接EF,交对角线BD于点G,连接AG并延长交BC于点H.若AM=,CH=2,则AG的长为.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(+1),其中x=4.18.(8分)如图,在▱ABCD中,对角线BD的垂直平分线分别与AD,BD,BC相交于点E,O,F,连接BE,DF,求证:四边形EBFD是菱形.19.(10分)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.20.(10分)二十四节气是中国古代一种用来指导农事的补充历法,在国际气象界被誉为“中国的第五大发明”,并位列联合国教科文组织人类非物质文化遗产代表作名录,小明和小亮对二十四节气非常感兴趣,在课间玩游戏时,准备了四张完全相同的不透明卡片,卡片正面分别写有“A.惊蛰”“B.夏至”“C.白露”“D.霜降”四个节气,两人商量将卡片背面朝上洗匀后,从中随机抽取一张,并讲述所抽卡片上的节气的由来与习俗.(1)小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是.(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用列表或画树状图的方法,求两人都没有抽到“B.夏至”的概率.21.(10分)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE,遮阳棚与墙面连接处点B距地面高3m,即BC=3m,遮阳棚AB与窗户所在墙面BC 垂直,即∠ABC=∠BCE=90°,假设此地正午时太阳光与地面的夹角恰为60°(若经过点A的光线恰好照射在地面点D处,则∠ADE=60°),为使正午时窗前地面上能有1m宽的阴影区域,即CD =1m,求遮阳棚的宽度AB.(结果精确到0.1m,参考数据:≈1.73)22.(10分)如图,直线AB与反比例函数的图象交于点A(﹣2,m),B(n,2),过点A 作AC∥y轴交x轴于点C,在x轴正半轴上取一点D,使OC=2OD,连接BC,AD,若△ACD的面积是6.(1)求反比例函数的解析式.(2)点P为第一象限内直线AB上一点,且△PAC的面积等于△BAC面积的2倍,求点P的坐标.六、解答题(每小题10分,共20分)23.(10分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点D作DF⊥BC,交BC的延长线于点F,交BA的延长线于点E,连接BD.若∠EAD+∠BDF=180°.(1)求证:EF为⊙O的切线.(2)若BE=10,sin∠BDC=,求⊙O的半径.24.(10分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?七、解答题(本题满分12分)25.(12分)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN 的长.八、解答题(本大题满分14分)26.(14分)如图1,抛物线y=ax2+x+c经过点(3,1),与y轴交于点B(0,5),点E为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线y=x﹣4与x轴交于点A,与y轴交于点D,过点E作直线EF⊥x轴,交AD于点F,连接BE,当BE=DF时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,OE与BN交于点M,若OE=BN,tan∠BME=,求点E 的坐标.2023年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个选项符合题意,每小题3分,共24分)1.(3分)﹣2023的绝对值是()A.2023B.﹣2023C.D.﹣【解答】解:由题意,根据一个负数的绝对值是它的相反数,∴|﹣2023|=2023.故选:A.2.(3分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是()A.B.C.D.【解答】解:这个组合体的左视图如下:故选:D.3.(3分)下列运算正确的是()A.(4ab)2=8a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b2【解答】解:A、(4ab)2=16a2b2,故A不符合题意;B、2a2+a2=3a2,故B不符合题意;C、a6÷a4=a2,故C符合题意;D、(a+b)2=a2+2ab+b2,故D不符合题意;故选:C.4.(3分)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3B.8,2C.3,3D.3,2【解答】解:这30名学生测试成绩呈现次数最多的是3分,共出现14次,因此学生测试成绩的众数是3,将这30名学生测试成绩从小到大排列,处在中间位置的两个数都是3分,因此中位数是3,故选:C.5.(3分)甲、乙两台机器运输某种货物,已知乙比甲每小时多运60kg,甲运输500kg所用的时间与乙运输800kg所用的时间相等,求甲、乙两台机器每小时分别运输多少千克货物,设甲每小时运输xkg货物,则可列方程为()A.B.C.D.【解答】解:设甲每小时搬运xkg货物,则乙每小时搬运(x+60)kg货物,由题意得:=.故选:A.6.(3分)如图,直线a∥b,将含有30°角的直角三角尺按如图所示的位置放置,若∠1=15°,那么∠2的大小为()A.60°B.55°C.45°D.35°【解答】解:∵图中是一个含有30°角的直角三角尺,∴∠1+∠4=60°,∵∠1=15°,∴∠4=60°﹣∠1=45°,∵a∥b,∴∠3=∠4=45°,∵∠2+∠3+90°=180°,∴∠2=180°﹣∠3﹣90°=180°﹣45°﹣90°=45°.故选:C.7.(3分)如图,AC,BC为⊙O的两条弦,D、G分别为AC,BC的中点,⊙O的半径为2.若∠C=45°,则DG的长为()A.2B.C.D.【解答】解:如图,连接AO、BO、AB,∵∠C=45°,∴∠AOB=2∠C=90°,∵⊙O的半径为2,∴AO=BO=2,∴AB=2,∵点D、E分别是AC、BC的中点,∴DE=AB=.故选:D.8.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,AB=4,,垂直于BC的直线MN 从AB出发,沿BC方向以每秒个单位长度的速度平移,当直线MN与CD重合时停止运动,运动过程中MN分别交矩形的对角线AC,BD于点E,F,以EF为边在MN左侧作正方形EFGH,设正方形EFGH与△AOB重叠部分的面积为S,直线MN的运动时间为ts,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【解答】解:在运动的第一阶段,令HE和FG与AB的交点分别为I和K,因为直线MN沿BC方向以每秒个单位长度的速度平移,则IE=FK=,又AB=4,BC=,则∠BAO=60°.所以AI=BK=t,则IK=4﹣2t,即EF=4﹣2t.故S==.据此可以排除掉A和D.再继续向右运动时,正方形全部在△AOB内,此时S=(4﹣2t)2.据此又可以排除掉C.故选:B.二、填空题(每小题3分,共24分)9.(3分)2023年5月3日,被誉为近五年最火的“五一”假期圆满收官,据文旅部发布的数据显示,2023年“五一”假期5天,全国国内旅游出游合计约为274000000人次.将数据274000000用科学记数法可表示为 2.74×108.【解答】解:274000000=2.74×108.故答案为:2.74×108.10.(3分)因式分解:3x2﹣9x=3x(x﹣3).【解答】解:原式=3x(x﹣3).故答案为:3x(x﹣3).11.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有3个.【解答】解:由题意可得,口袋中红球的个数约为:12×=3(个).故答案为:3.12.(3分)若关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,则a的取值范围是a >﹣.【解答】解:∵关于x的一元二次方程x2+3x﹣a=0有两个不相等的实数根,∴Δ>0,即Δ=32﹣4×1×(﹣a)>0,解得a>﹣.故答案为:a>﹣.13.(3分)如图,在平面直角坐标系中,矩形AOBC的边OB,OA分别在x轴、y轴正半轴上,点D 在BC边上,将矩形AOBC沿AD折叠,点C恰好落在边OB上的点E处,若OA=8,OB=10,则点D 的坐标是(10,3).【解答】解:∵A(0,8),B(10,0),∴OA=8,OB=10,∵四边形OACB是矩形,∴AC=OB=10,OA=BC=8,∵将该长方形沿AD折叠,点C恰好落在边OB上的E处.∴AE=AC=10,CD=DE,由勾股定理得,OE=6,∴BE=4,设BD=m,则CD=DE=8﹣m,在Rt△BDE中,42+m2=(8﹣m)2,解得m=3,∴D(10,3),故答案为:(10,3).14.(3分)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为6.【解答】解:由题中作图可知:CM平分∠ACB,∴∠ACM=∠BCM,∵MN⊥BC,BN=CN,∴MB=MC,∴∠B=∠BCM,∴∠ACM=∠B,∵∠CAM=∠CAB,∴△ACM∽△ABC,∴AC:AB=AM:AC,∵AM=4,BM=5,∴AB=AM+BM=9,∴AC:9=4:AC,∴AC=6.故答案为:6.15.(3分)如图,在△ABC中,BA=BC,顶点C,B分别在x轴的正、负半轴上,点A在第一象限,经过点A的反比例函数的图象交AC于点E,过点E作EF⊥x轴,垂足为点F,若点E 为AC的中点,BD=2AD,BF﹣CF=3,则k的值为4.【解答】解:过点A作AH⊥x轴于H,如图:∵EF⊥x轴,∴EF∥AH,又点E为AF的中点,∴EF为△AHF的中位线,∴AH=2EF,CF=HF,∵BF﹣CF=3,∴BF﹣HF=3,即:BH=3,∵AH⊥x轴,∴AH∥OB,∴BD:AD=OB:OH,∵BD=2AD,∴OB=2OH,∴BH=OB+OH=3OH=3,∴OH=1,OB=2,BH=3,设CF=HF=a,EF=b,则AH=2EF=2b,CH=2a,∴点A的坐标为(1,2b),点E的坐标为(1+a,b),∵点A,E在反比例函数y=k/x(x>0)的图象上,∴k=1×2b=(1+a)×b,解得:a=1,∴CH=2a=2,∴BA=BC=BH+CH=3+2=5,在Rt△ABH中,BH=3,BA=5,由勾股定理得:AH=√BA2﹣BH2=4,∴点A的坐标为(1,4),∴k=1×4=4.故答案为:4.16.(3分)如图,在正方形ABCD中,点M为CD边上一点,连接AM,将△ADM绕点A顺时针旋转90°得到△ABN,在AM,AN上分别截取AE,AF,使AE=AF=BC,连接EF,交对角线BD于点G,连接AG并延长交BC于点H.若AM=,CH=2,则AG的长为或.【解答】解:∵将△ADM绕点A顺时针旋90°得到△ABN,∴AM=AN,DM=BN,∠MAN=90°,∠DAM=∠BAN,∠AMD=∠ANB,如图,连接DE,BF,∵AE=AF=BC,FN=AN﹣AF,EM=AM﹣AE,∴FN=EM,在△BFN和△DEM中,,∴△BFN≌△DEM(SAS),∴BF=DE,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,AB=AD=BC,∴AF=AB,AE=AD,∴△ABF和△AED都是等腰三角形,∴∠ABF=∠AFB=(180°﹣∠BAF),∠ADE=∠AED=(180°﹣∠DAE),∵∠DAE=∠BAF,∴∠ABF=∠AFB=∠ADE=∠AED,∵AF=AE,∠MAN=90°,∴△AFE为等腰直角三角形,∴∠AEG=∠AFG=45°,∵∠GDE=∠ADE﹣∠ADB=∠ADE﹣45°,∠GFB=∠AFB﹣∠AFG=∠AEB﹣45°,∴∠GFB=∠GDE,在△GFB和△GDE中,,∴△GFB≌△GDE(AAS),∴FG=DG,BG=EG,在△AFG和△ADG中,,∴△AFG≌△ADG(SSS),∴∠FAG=∠DAG,即∠DAH=∠NAH,∵AD∥BC,∴∠DAH=∠AHN,∴∠AHN=∠NAH,∴AN=NH=AM=,设BH=x,则AB=BC=BH+CH=x+2,,在Rt△ABN中,AN2=BN2+AB2,∴,解得:x=6,,1∴BH=6或,如图,过点G作PG∥BC,交AB于点P,∴△APG∽△ABH,∴,即,∵PG∥BC,∴∠GPB=180°﹣∠PBH=180°﹣90°=90°,∵PBG=45°,∴∠PGB=90°﹣∠PBG=45°=∠PBG,∴PG=PB,①当BH=6时,AB=BC=BH+CH=8,∴==,∴设AP=4a,PG=3a=PB,∵AB=AP+PB=8,∴4a+3a=8,解得:,在Rt△APG中,==5a=;②当时,AB=BC=BH+CH=,∴==7,∴设AP=7b,PG=b=PB,∵,∴7b+b=,解得:b=,在Rt△APG中,===.综上,AG的长为或.故答案为:或.三、解答题(每小题8分,共16分)17.(8分)先化简,再求值:(+1),其中x=4.【解答】解:(+1)=•=•=,当x=4时,原式==.18.(8分)如图,在▱ABCD中,对角线BD的垂直平分线分别与AD,BD,BC相交于点E,O,F,连接BE,DF,求证:四边形EBFD是菱形.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EDO=∠OBF,∵O是BD中点,∴BO=DO,∵∠EOD=∠BOF,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴四边形EBFD是平行四边形,又∵EF⊥BD,∴四边形EBFD是菱形.四、解答题(每小题10分,共20分)19.(10分)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了100名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.【解答】解:(1)20÷20%=100(名),故答案为:100;(2)样本中获得“B.魅力色彩”的人数为:100﹣8﹣48﹣20=24(名),补全条形统计图如下:(3)800×=64(人),答:全校有800名学生中获得“A.非凡创意”奖的学生大约有64人.20.(10分)二十四节气是中国古代一种用来指导农事的补充历法,在国际气象界被誉为“中国的第五大发明”,并位列联合国教科文组织人类非物质文化遗产代表作名录,小明和小亮对二十四节气非常感兴趣,在课间玩游戏时,准备了四张完全相同的不透明卡片,卡片正面分别写有“A.惊蛰”“B.夏至”“C.白露”“D.霜降”四个节气,两人商量将卡片背面朝上洗匀后,从中随机抽取一张,并讲述所抽卡片上的节气的由来与习俗.(1)小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是.(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用列表或画树状图的方法,求两人都没有抽到“B.夏至”的概率.【解答】解:(1)共有4种等可能出现的结果,其中抽到“A.惊蛰”的只有1种,所以小明从四张卡片中随机抽取一张卡片,抽到“A.惊蛰”的概率是,故答案为:;(2)用树状图表示所有等可能出现的结果如下:共有12种等可能出现的结果,其中两人都没有抽到“B.夏至”的有6种,所以两人都没有抽到“B.夏至”的概率为=.五、解答题(每小题10分,共20分)21.(10分)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE,遮阳棚与墙面连接处点B距地面高3m,即BC=3m,遮阳棚AB与窗户所在墙面BC垂直,即∠ABC=∠BCE=90°,假设此地正午时太阳光与地面的夹角恰为60°(若经过点A的光线恰好照射在地面点D处,则∠ADE=60°),为使正午时窗前地面上能有1m宽的阴影区域,即CD =1m,求遮阳棚的宽度AB.(结果精确到0.1m,参考数据:≈1.73)【解答】解:过点D作DF⊥AB,垂足为F,∴∠DFB=∠DFA=90°,∵∠ABC=∠BCE=90°,∴四边形ABCD是矩形,∴BC=DF=3m,CD=BF=1m,AB∥CE,∴∠BAD=∠ADE=60°,在Rt△ADF中,AF===(m),∴AB=AF+BF=1+≈2.7(m),∴遮阳棚的宽度AB约为2.7m.22.(10分)如图,直线AB与反比例函数的图象交于点A(﹣2,m),B(n,2),过点A 作AC∥y轴交x轴于点C,在x轴正半轴上取一点D,使OC=2OD,连接BC,AD,若△ACD的面积是6.(1)求反比例函数的解析式.(2)点P为第一象限内直线AB上一点,且△PAC的面积等于△BAC面积的2倍,求点P的坐标.【解答】解:(1)∵OC=2OD,△ACD的面积是6,∴S△AOC=4,∴‖k‖=8.∵图象在第二象限,∴k=﹣8,∴反比例函数解析式为:y=﹣.(2)∵点A(﹣2,m),B(n,2)在y=﹣的图象上,∴A(﹣2,4),B(﹣4,2),设直线AB的解析式为y=kx+b,,解得,∴直线AB的解析式为y=x+6,∵AC∥y轴交x轴于点C,∴C(﹣2,0),∴S△ABC=×4×2=4.设直线AB上在第一象限的点P(m.m+6),∴S△PAC =×4×(m+2)=2S△ABC=8,∴2m+4=8,∴m=2,∴P(2,8).六、解答题(每小题10分,共20分)23.(10分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点D作DF⊥BC,交BC的延长线于点F,交BA的延长线于点E,连接BD.若∠EAD+∠BDF=180°.(1)求证:EF为⊙O的切线.(2)若BE=10,sin∠BDC=,求⊙O的半径.【解答】(1)证明:连接OD,如图:∵AB为⊙O的直径,∴∠ADB=90°,∵DF⊥BC,∴∠F=90°,∵∠EAD+∠BDF=180°.∴∠BDF=∠BAD,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠ODB=∠DBF,∴OD∥BF,∵BF⊥EF,∴OD⊥EF,∵OD是半径,∴EF为⊙O的切线.(2)解:连接AC,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵DF⊥BC,∴AC∥EF,∴∠E=∠BAC=∠BDC,设半径为r,则OE=10﹣r,在Rt△EOD中,sin E=sin∠BDC=,即,解得r=4,∴⊙O的半径为4.24.(10分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?【解答】解:(1)设每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系为y=kx+b,∴,解得,∴y与x的函数解析式为y=﹣100x+3000;(2)设每千克荔枝的销售价格定为x元时,销售这种荔枝日获利为w元,根据题意得,w=(x﹣6﹣2)(﹣100x+3000)=﹣100x2+3800x﹣24000=﹣100(x﹣19)2+12000,∵a=﹣100<0,对称轴为x=19,∴当x=19时,w有最大值为12000元,∴当销售单价定为18时,销售这种荔枝日获利最大,最大利润为12000元.七、解答题(本题满分12分)25.(12分)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是垂直,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN的长.【解答】(1)解:如图1,连接BF并延长交AC于R,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,同理可得:∠AED=45°,∴∠AED=∠ABD,∴A、B、E、D共圆,∴∠ABE+∠ADE=180°,∵∠ADE=90°,∴∠ABE=90°,∴AB与BE垂直,∵F是AE的中点,∴BE=DF=AB,∵G是BD的中点,∴FG⊥BC,∵∠ABE+∠BAC=90°+90°=180°,∴BE∥AC,∴∠EAR=∠FEB,∵∠AFR=∠BFE,AF=EF,∴△BEF≌△RAF(ASA),∴BF=RF,∴RB∥FG,FG=,∵FG⊥BC,∴RD⊥BC,∵∠C=45°,∴CD=RD,∴FG=,故答案为:垂直,;(2)证明:如图2,作AQ⊥BC于Q,作EH⊥CB,交CB的延长线于H,连接BF,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵∠ADE=90°,,∴∠AED=60°,∴∠AED=∠ABC,∴点A、E、B、D共圆,∴∠ABE=∠ADE=90°,∵F是AE的中点,∴BF=DF=AE,∴FG⊥BC,∴EH∥FG∥AQ,∴,∴HG=QG,∴FG是梯形AEHQ的中位线,∴EH+AQ=2FG,∴,∵∠H=90°,∠EBH=180°﹣∠ABE﹣∠ABC=30°,∴BH=EH,∵HG=QG,BG=DG,∴BH=DQ,∴DQ=EH,∵∠AQC=90°,∠C=60°,∴CQ=AQ,∴DQ+3CQ=2FG,∴(DQ+CQ)+2CQ=2FG,∴BC+CD=2FG;(3)解:如图3,当点D在BC上时,作EH⊥CB,交CB的延长线于点H,作AQ⊥BC于Q,作CX⊥EB,交EB的延长线于X,∵△ABC是等边三角形,∴∠C=60°,BQ=CQ=BC=3,∴DQ=CD﹣CQ=2,AQ=AC=3,∵∠ADE=90°,∴∠EDH+∠ADQ=90°,∵∠H=∠ADQ=90°,∴∠ADQ+∠DAQ=90°,∴∠EDH=∠DAQ,∴△DHE∽△AQD,∴=,∴EH==,∴BE=2EH=,BH=EH=2,∴CH=BH+BC=8,∴CE==,在Rt△BCX中,BC=6,∠BCX=∠EBH=30°,∴BX=6•cos30°=3,∴EX=EB+BX=,∵BN∥CX,∴,∴,∴CN=,如图4,当点D在BC的延长线上时,作EH⊥CB于H,作AQ⊥BC于Q,作CX⊥EB,交EB的延长线于X,由上可知:AQ=3,CQ=3,△DHE∽△AQD,∴DQ=CQ+CD=8,=,∴EH=DQ=,∴BH=EH=8,BE=2EH=,∴CH=BH﹣BC=2,∴CE===,∵BX=BC=3,∴EX=BE﹣BX=,∵BN∥CX,∴,∴∴CN=,综上所述:CN=或.八、解答题(本大题满分14分)26.(14分)如图1,抛物线y=ax2+x+c经过点(3,1),与y轴交于点B(0,5),点E为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线y=x﹣4与x轴交于点A,与y轴交于点D,过点E作直线EF⊥x轴,交AD于点F,连接BE,当BE=DF时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,OE与BN交于点M,若OE=BN,tan∠BME=,求点E 的坐标.【解答】解:(1)把(3,1)和(0,5)代入到解析式中可得:,解得,∴抛物线的解析式为:;(2)直线y=x﹣4中,令y=0可得A(6,0),直线y=x﹣4中,令x=0,可得D(0,﹣4),分别过E、F向y轴作垂线,垂足为G、H,根据题意可得EG=FH,∵EG⊥y轴,FH⊥y轴,∴△BEG和△DFH为直角三角形,在Rt△BEG和Rt△DFH中:,∴Rt△BEG≌Rt△DFH(HL),∴BG=DH,设E(),则F(),∴G(),H(),从而BG=,DH=,则有,解得t=0(舍去)或,故E点的横坐标为:;(3)将OE平移到NP,连接EP,则四边形ONPE为平行四边形,tan∠BNP=tan∠BME=,过P作PQ⊥BN于Q,过Q作QR⊥y轴于R,过P作PS⊥RQ交延长线于S,延长PE交y轴于T,设BN=OE=NP=5m,则PQ=3m,QN=4m,BQ=m,∵RQ∥x轴,∴△BRQ∽△BON,∴,∴,RO=4,EP=NO=5RQ=5n,设RQ=n,∵PQ⊥BM,PS⊥RS,BR⊥RS,∴∠BRQ=∠QSP=∠BQP=90°,∴∠BQR+∠PQS=90°,∠BQR+∠QBR=90°,∴∠PQS=∠QBR,∴△BRQ∽△QSP,∴,∴PS=3n,QS=3,则RS=3+n,∴x=TE=TP﹣EP=RS﹣EP=3+n﹣5n=3﹣4n,Ey=TO=TR+RO=PS+RO=3n+4,E∴E(3﹣4n,3n+4),代入抛物线解析式中有:3n+4=,解得:或,当时,E();当时,E().。
鞍山中考数学试题及答案
鞍山中考数学试题及答案1. 选择题1. 已知函数$f(x)=3x^2-2x+1$,则$f(-2)$的值为()。
A. 13B. 17C. 19D. 232. 在抛物线$y=x^2+4x+3$上,点$P$的横坐标为2,纵坐标为$m$。
则实数$m$的取值范围是()。
A. $m\leq-2$B. $-2<m\leq3$C. $3<m\leq 7$D. $7<m$3. 若正方形$ABCD$的边长为2,$P$为$BC$的中点,$Q,R$分别是$AD,AP$的延长线上的一点,则$\triangle PQR$的面积为()。
A. 2B. 4C. 6D. 84. 已知集合$A=\{x \mid x \text{是偶数,且} -4\leq x<4\}$,集合$B=\{-1, 2, 5\}$,则$A \cap B$是()。
A. $\{2, 5\}$B. $\{-1, 5\}$C. $\{-4, 2, 5\}$D. $\{-4, 2\}$5. 下列各组数中,互质的是()。
A. 12, 15B. 16, 21C. 18, 27D. 20, 252. 解答题(1)计算$(-\frac{3}{4})^2-\frac{1}{2}\times(-\frac{3}{4})$的值。
解析:根据指数和乘法运算法则,$(-\frac{3}{4})^2=(-\frac{3}{4})\times(-\frac{3}{4})=\frac{9}{16}$。
再根据乘法的交换律和结合律,$-\frac{1}{2}\times(-\frac{3}{4})=(-1)\times\frac{1}{2}\times(-\frac{3}{4})=\frac{3}{8}$。
综上所述,$(-\frac{3}{4})^2-\frac{1}{2}\times(-\frac{3}{4})=\frac{9}{16}-\frac{3}{8}=\frac{3}{16}$。
辽宁省鞍山市中考数学试题(含解析)-人教版初中九年级全册数学试题
2015年某某省某某市中考数学试卷一、单项选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣5的倒数是()A.5 B.C.﹣ D.252.下列图形不是轴对称图形的是()A.B.C.D.3.若y=有意义,则x的取值X围是()A.x≠4 B.x≤4 C.x≥4 D.x<44.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.三角形任意两边之差小于第三边5.某校开展“中国梦•快乐阅读”的活动,为了解某班同学寒假的阅读情况,随机调查了10名同学,结果如下表:阅读量/本 4 5 6 9 人数 3 4 2 1关于这10名同学的阅读量,下列说法正确的是()C.平均数是5.3本D.方差是36.如图,在▱ABCD中,AB=4,∠A=120°,DE平分∠ADC交BC于点E,则△CDE的周长为()A.4+8 B.4+4 C.2+8 D.2+47.已知二次函数y=ax2+bx+c(a,b,c为常数a≠0)的图象如图所示,下列结论正确的是()A.2a+b<0 B.4a+2b+c>0C.m(am+b)>a+b(m为大于1的实数)D.3a+c<08.如图,点O在线段AB上,AO=1,OB=2,OC为射线,且∠BOC=120°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC作匀速直线运动.设运动时间为t秒,当△ABP为直角三角形时,t的值为()A.t=1 B.t=1或C.t=D.t=1或二、填空题(共8小题,每小题3分,满分24分)9.据有关部门统计,2014年全国骚扰高达270亿通,数据270亿可用科学记数法表示为.10.分解因式:m3﹣2m2+m=.11.一个角的余角是54°38′,则这个角的补角是.12.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用(填“全面调查”或“抽样调查”).13.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)14.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB,OC,点E在线段BC上(点E不与B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为.15.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D 恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为.16.如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AG 是∠DAE的平分线,分别交DE,BC于点F,G,连接CE,∠GAC=25°,下面结论正确的是(填序号).①∠BAD=∠CAE;②tan∠ABE=;③AG∥CE;④2AF+CE=BE;⑤AD=CG.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.18.现在人们学习、工作、生活压力较大,身体常常处于亚健康状态,为了缓解压力,人们往往会通过不同的方式减压,某高校学生社团对本校部分老师的减压方式进行了调查(教师可根据自己的情况必选且只选其中一项),并将调查结果分析整理后制成了统计图:(1)这次抽样调查中,一共抽查了多少名教师?(2)请补全条形统计图.(3)请计算,扇形统计图中,“K歌”所对应的圆心角是多少度?(4)请根据调查结果估计该校550名教师采用“美食”减压的人数是多少?19.在一个不透明的盒子里,装有五个乒乓球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些乒乓球除所标数字不同外其余均相同,先从盒子中随机摸出一个乒乓球,记下数字不放回,再从剩下的乒乓球中随机摸出一个,记下数字.(1)用画树状图或列表的方法,求出两次摸出的数字之积不大于1的概率;(2)若直线y=﹣x﹣3与两个坐标轴围成△AOB,请直接写出以第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率.20.如图,▱ABCD的对角线相交于点O,点E,F,P分别是OB,OC,AD的中点,分别连接EP,EF,PF,EP与AC相交于点G,且AC=2AB.(1)求证:△APG≌△FEG;(2)求证:△PEF为等腰三角形.21.近两个月,由于受到“中东呼吸综合症”的影响,赴韩旅游的人数明显减少.某旅行社为了吸引游客,决定将赴韩旅游的人均费用下调300元.下调后,总费用同样是25200元,赴韩旅游的人数却可以比过去增加2人.求该旅游社下调后的赴韩旅游的人均费用是多少元?22.如图,一艘海上巡逻船在A地巡航,测得A地在观测站B的南偏东45°方向上,在观测站C的南偏西60°方向上,观测站B在观测站C的正西方向,此时A地与观测站B的距离为20海里.(1)求A地与观测站C的距离是多少海里?(2)现收到故障船D的求救信号,要求巡逻船从A地马上前去救援(C,A,D共线).已知D船位于观测站B的南偏西15°方向上,巡逻船的速度是12海里/小时,求巡逻船从A地到达故障船D处需要多少时间?(结果保留小数点后一位,参考数据≈1.41,≈1.73,≈2.24)23.⊙O是△ABC的外接圆,∠ABC=90°,弦BD=BA,BE是⊙O的切线交DC的延长线于点E.(1)求证:BE⊥CE;(2)若BC=,⊙O的半径为,求线段CD的长度.24.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获得W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?25.如图1所示,在菱形ABCD和菱形AEFG中,点A,B,E在同一条直线上,P是线段CF的中点,连接PD,PG.(1)若∠BAD=∠AEF=120°,请直接写出∠DPG的度数及的值.(2)若∠BAD=∠AEF=120°,将菱形ABCD绕点A顺时针旋转,使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上,如图2,此时,(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°﹣2α(0°<α<90°),将菱形ABCD绕点A顺时针旋转到图3的位置,求出的值.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c为常数a≠0)与x轴,y轴分别交于A,B,C三点,已知A(﹣1,0),B(3,0),C(0,3),动点E从抛物线的顶点点D出发沿线段DB向终点B运动.(1)求抛物线解析式和顶点D的坐标;(2)过点E作EF⊥y轴于点F,交抛物线对称轴左侧的部分于点G,交直线BC于点H,过点H作HP ⊥x轴于点P,连接PF,求当线段PF最短时G点的坐标;(3)在点E运动的同时,另一个动点Q从点B出发沿直线x=3向上运动,且速度均为每秒1个单位长度,当点E到达终点B时点Q也随之停止运动,设点E的运动时间为t秒,试问存在几个t值能使△BEQ为等腰三角形?并直接写出相应t值.2015年某某省某某市中考数学试卷参考答案与试题解析一、单项选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣5的倒数是()A.5 B.C.﹣ D.25【考点】倒数.【分析】利用倒数的意义直接选择答案即可.【解答】解:﹣5的倒数是﹣.故选:C.【点评】此题考查倒数的意义,掌握倒数的意义是解决问题的关键.2.下列图形不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若y=有意义,则x的取值X围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【考点】函数自变量的取值X围.【专题】计算题.【分析】根据负数没有平方根及0不能做分母,求出x的X围即可.【解答】解:要使y=有意义,则有4﹣x>0,即x<4,故选D.【点评】此题考查了函数自变量的取值X围,函数自变量的X围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.三角形任意两边之差小于第三边【考点】命题与定理.【分析】根据垂径定理及正方形的性质对各选项进行逐一判断即可.【解答】解:A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、符合三角形的三边关系,是真命题,故本选项正确.故选D.【点评】本题考查的是命题与定理,熟知垂径定理及正方形的性质是解答此题的关键.5.某校开展“中国梦•快乐阅读”的活动,为了解某班同学寒假的阅读情况,随机调查了10名同学,结果如下表:阅读量/本 4 5 6 9 人数 3 4 2 1关于这10名同学的阅读量,下列说法正确的是()C.平均数是5.3本D.方差是3【考点】方差;加权平均数;中位数;众数.【分析】根据众数、中位数、平均数以及方差的计算公式分别进行解答即可得出答案.【解答】解:A、阅读5本的学生有4人,人数最多,则众数是5本,故本选项错误;B、共有10名同学,中位数是=5,故本选项错误;C、平均数是(4×3+5×4+6×2+9×1)÷10═5.3(本),故本选项正确;D、方差是: [3×(4﹣5.3)2+4×(5﹣5.3)2+2×(6﹣5.3)2+(9﹣5.3)2]=2.01,故本选项错误;故选C.【点评】此题考查了众数、中位数、平均数以及方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2];众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.6.如图,在▱ABCD中,AB=4,∠A=120°,DE平分∠ADC交BC于点E,则△CDE的周长为()A.4+8 B.4+4 C.2+8 D.2+4【考点】平行四边形的性质;含30度角的直角三角形;勾股定理.【分析】由四边形ABCD是平行四边形,可得CD=AB=4,∠A=∠C=120°,AD∥BC,得∠ADE=∠DEC,∠DCF=60°又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,根据30°角的直角三角形的性质求得CF=2,然后根据勾股定理求得DF,进而得出ED=4,所以求得△CDE的周长为4+8.【解答】解:作DF⊥BC,交BC的延长线于F,∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C=120°,AB=CD=4,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD,∴∠DEC=∠EDC=30°,∴∠DCF=60°,∴∠CDF=30°,∴CF=CD=2,∴DF==2,∴DE=2DF=4,∴△CDE的周长为4+8.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义、等腰三角形的判定定理、勾股定理以及30°角的直角三角形的性质.注意当有平行线和角平分线出现时,会出现等腰三角形.7.已知二次函数y=ax2+bx+c(a,b,c为常数a≠0)的图象如图所示,下列结论正确的是()A.2a+b<0 B.4a+2b+c>0C.m(am+b)>a+b(m为大于1的实数)D.3a+c<0【考点】二次函数图象与系数的关系.【分析】根据图象得出函数对称轴进而分别利用函数图象与坐标轴交点得出对应函数关系的大小关系.【解答】解:A、由图象可得:x=﹣=1,则2a+b=0,∴2a+b<0错误;B、由图象可得:抛物线与x轴正半轴交点大于2,故4a+2b+c<0,故此选项错误;C、∵x=1时,二次函数取到最小值,∴m(am+b)=am2+bm>a+b,故此选项正确;D、由选项A得:b=﹣2a,当x=﹣1时,y=a﹣b+c=3a+c>0,故此选项错误.故选:C.【点评】此题主要考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.8.如图,点O在线段AB上,AO=1,OB=2,OC为射线,且∠BOC=120°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC作匀速直线运动.设运动时间为t秒,当△ABP为直角三角形时,t的值为()A.t=1 B.t=1或C.t=D.t=1或【考点】勾股定理的逆定理;一元二次方程的应用;勾股定理.【专题】几何动点问题.【分析】根据题意分三种情况考虑:当∠PAB=90°;当∠APB=90°;当∠ABP=90°,根据△ABP为直角三角形,分别求出t的值即可.【解答】解:如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=OP=t,PD=OP•sin∠POD=t,∴AD=AO﹣OD=1﹣t,在Rt△ABP中,根据勾股定理得:AP2+BP2=AB2,即(2+t)2+(t)2+(t)2+(1﹣t)2=32,解得:t=(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=时,△ABP是直角三角形.故选B.【点评】此题考查了勾股定理、锐角三角函数以及一元二次方程的解法,本题利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.二、填空题(共8小题,每小题3分,满分24分)9.据有关部门统计,2014年全国骚扰高达270亿通,数据270亿可用科学记数法表示为×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×1010.×1010.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:m3﹣2m2+m= m(m﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:m3﹣2m2+m=m(m2﹣2m+1)=m(m﹣1)2.故答案为m(m﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.一个角的余角是54°38′,则这个角的补角是144°38′.【考点】余角和补角;度分秒的换算.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.12.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用抽样调查(填“全面调查”或“抽样调查”).【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,由此分析得出答案即可.【解答】解:由于食品数量庞大,且抽测具有破坏性,适用抽样调查.故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】圆锥的计算;由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.14.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB,OC,点E在线段BC上(点E不与B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为.【考点】矩形的性质;勾股定理.【分析】过B作BH⊥OC于H,过E作EM⊥BH于M,由四边形EGHN是矩形,得到EN=HM,根据矩形的性质得到∠A=∠D=90°,AB=CD,证得△ABO≌△CDO,得到OB=OC,推出△BEM≌△BEG,得到BG=EM,等量代换得到BH=EM+EN,由△BCH∽△CDO,得到比例式,即可得到结论.【解答】解:过B作BH⊥OC于H,过E作EG⊥BH于G,则四边形EGHN是矩形,∴EN=HM,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵O是AD的中点,∴AO=DO,在△ABO与△CDO中,,∴△ABO≌△CDO,∴OB=OC,∴∠OBC=∠OCB,∴∠GEB=∠OCB,在△BEM与△BGE中,,∴△BEM≌△BEG,∴BG=EM,∴BH=EM+EN,∵AD∥BC,∴∠DOC=∠OCB,∵∠D=∠BHC=90°,∴△BCH∽△CDO,∴,∵OC==,∴BH=,∴EM+EN的值为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.15.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D 恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为10 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,于是可表示出C(t,t﹣a),D (t+a,t﹣a),利用等腰直角三角形的性质得OA=t,AD=a,则由OA2﹣AD2=20可得t2﹣a2=10,然后根据反比例函数图象上点的坐标特征得k=(t+a)(t﹣a)=t2﹣a2=10.【解答】解:设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,∴C(t,t﹣a),D(t+a,t﹣a),∴OA=t,AD=a,∵OA2﹣AD2=20,∴(t)2﹣(a)2=20,∴t2﹣a2=10,∵点D在反比例函数y=的图象上,∴k=(t+a)(t﹣a)=t2﹣a2=10.故答案为10.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了正方形的性质和反比例函数图象上点的坐标特征.16.如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AG 是∠DAE的平分线,分别交DE,BC于点F,G,连接CE,∠GAC=25°,下面结论正确的是①③④(填序号).①∠BAD=∠CAE;②tan∠ABE=;③AG∥CE;④2AF+CE=BE;⑤AD=CG.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】计算题;图形的全等.【分析】根据已知一对直角相等,利用等式的性质得到∠BAD=∠CAE,再由两对边相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应边相等,对应角相等得到CE=BD,∠CAE=∠BAD,由题意确定出三角形ABF为直角三角形,求出∠ABE度数,进而求出tan∠ABE的值;根据题意确定出一对内错角相等,进而得到AG与CE平行,利用直角三角形斜边上的中线等于斜边的一半得到ED=2AF,再由CE=DB,根据BE=ED+DB,等量代换得到2AF+CE=BE;AD不一定等于CG.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,即∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∠CAE=∠BAD,选项①正确;∵AG平分∠DAE,∴∠GAE=∠GAD=45°,∵∠GAC=20°,∴∠CAE=∠BAD=20,∴∠BAF=∠DAF+∠DAB=70°,∵AD=AE,F为DE中点,∴AG⊥DE,在Rt△ABF中,∠ABF=20°,故tan∠ABE≠,即选项②错误;∵∠ACE=∠GAC=20°,∴AG∥CE,选项③正确;∵AF=DE,即DE=2AF,CE=BD,∴BE=ED+DB=2AF+CE,选项④正确;AD不一定等于CG,选项⑤错误,故答案为:①③④【点评】此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用特殊角的三角函数值,求得α,进一步按照运算顺序,化简二次根式,计算0指数幂,负整数指数幂,特殊角的三角函数值,最后合并即可.【解答】解:∵cos(α﹣15°)=,∴α﹣15°=30°,∴α=45°,则﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1=3﹣3+1﹣1﹣2=﹣2.【点评】此题考查实数的运算,特殊角的三角函数,掌握运算顺序与计算方法是解决问题的关键.18.现在人们学习、工作、生活压力较大,身体常常处于亚健康状态,为了缓解压力,人们往往会通过不同的方式减压,某高校学生社团对本校部分老师的减压方式进行了调查(教师可根据自己的情况必选且只选其中一项),并将调查结果分析整理后制成了统计图:(1)这次抽样调查中,一共抽查了多少名教师?(2)请补全条形统计图.(3)请计算,扇形统计图中,“K歌”所对应的圆心角是多少度?(4)请根据调查结果估计该校550名教师采用“美食”减压的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据旅游的人数共16人,占总人数的32%求出总人数即可;(2)求出运动和美食的人数,补全条形统计图即可;(3)根据K歌人数求出其圆心角的度数即可;(4)求出总人数与k歌人数所占百分比的积即可.【解答】解:(1)∵旅游的人数共16人,占总人数的32%,∴16÷32%=50(名).答:一共抽查了50名教师;(2)∵喜欢运动的人数占28%,∴50×28%=14(人),∴美食人数=50﹣14﹣16﹣7﹣5=8(人).条形统计图如图;(3)∵“K歌”的人数是7人,∴×360°=50.4°.答:“K歌”所对应的圆心角是50.4度;(4)550×=88(人).答:该校550名教师采用“美食”减压的人数是88人.【点评】本题考查的是条形统计图,熟知条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来是解答此题的关键.19.在一个不透明的盒子里,装有五个乒乓球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些乒乓球除所标数字不同外其余均相同,先从盒子中随机摸出一个乒乓球,记下数字不放回,再从剩下的乒乓球中随机摸出一个,记下数字.(1)用画树状图或列表的方法,求出两次摸出的数字之积不大于1的概率;(2)若直线y=﹣x﹣3与两个坐标轴围成△AOB,请直接写出以第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率.【考点】列表法与树状图法.【分析】(1)根据题意画出树状图,即可得到所有可能的结果,进一步计算得出两次摸出的数字之积不大于1的概率;(2)求得与x、y轴交点的坐标分别为(﹣3,0)(0,﹣3),进一步求得第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率即可.【解答】解:(1)画树状图如下:共有20种情况,其中两次摸出的数字之积不大于1的有(﹣3,﹣)、(﹣2,﹣)、(﹣2,﹣)、(﹣1,﹣)、(﹣1,﹣)、(﹣,﹣2)、(﹣,﹣1)、(﹣,﹣)、(﹣,﹣3)、(﹣,﹣2)、(﹣,﹣1),(﹣,﹣)共12种情况P(积不大于1)==;(2)第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)共有:(﹣2,﹣)、(﹣2,﹣)、(﹣1,﹣)、(﹣1,﹣)、(﹣,﹣2)、(﹣,﹣1)、(﹣,﹣)、(﹣,﹣2)、(﹣,﹣1),(﹣,﹣)10种情况,P(在△AOB内部)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,▱ABCD的对角线相交于点O,点E,F,P分别是OB,OC,AD的中点,分别连接EP,EF,PF,EP与AC相交于点G,且AC=2AB.(1)求证:△APG≌△FEG;(2)求证:△PEF为等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定;直角三角形斜边上的中线;平行四边形的性质.【专题】证明题.【分析】(1)利用三角形的中位线求得EF∥BC,EF=BC,中点得出AP=AD,结合平行四边形的性质得出AP=EF,AP∥EF,求得∠APG=∠GEF,∠PAG=∠GFE,证得结论;(2)连接AE,求出AB=AO,得出AE⊥BD,求出EP=AD,求出EF=BC,根据AD=BC求出即可.【解答】证明:(1)∵E,F分别是OB,OC的中点,∴EF∥BC,EF=BC,∵P是AD的中点,∴AP=AD,在平行四边形ABCD中,AD=BC,AD∥BC,∴AP=EF,AP∥EF,∴∠APG=∠GEF,∠PAG=∠GFE,在△APG和△FEG中,,∴:△APG≌△FEG.(2)连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AC=2OA=2OC,∵AC=2AB,∴OA=AB,∵E为OB中点,∴AE⊥BD(三线合一定理),∴∠AED=90°,∵P为AD中点,∴AD=2EP(直角三角形斜边上的中线等于斜边的一半),∵BC=AD,∴BC=2EP,∵E、F分别是OB、OC中点,∴BC=2EF,∴EP=EF.【点评】本题考查了三角形全等的判定与性质,平行四边形性质,直角三角形斜边上中线性质,等腰三角形性质,三角形的中位线性质的应用,题目综合性比较强.21.近两个月,由于受到“中东呼吸综合症”的影响,赴韩旅游的人数明显减少.某旅行社为了吸引游客,决定将赴韩旅游的人均费用下调300元.下调后,总费用同样是25200元,赴韩旅游的人数却可以比过去增加2人.求该旅游社下调后的赴韩旅游的人均费用是多少元?【考点】分式方程的应用.【分析】可设该旅游社下调后的赴韩旅游的人均费用是x元,根据等量关系:赴韩旅游的人数比过去增加2人,列出方程求解即可.【解答】解:设该旅游社下调后的赴韩旅游的人均费用是x元,依题意有﹣2=,解得x1=1800,x2=﹣2100,经检验:x1=1800,x2=﹣2100都是原方程的解.x2=﹣2100<0,不符合实际舍去.答:该旅游社下调后的赴韩旅游的人均费用是1800元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.如图,一艘海上巡逻船在A地巡航,测得A地在观测站B的南偏东45°方向上,在观测站C的南偏西60°方向上,观测站B在观测站C的正西方向,此时A地与观测站B的距离为20海里.(1)求A地与观测站C的距离是多少海里?(2)现收到故障船D的求救信号,要求巡逻船从A地马上前去救援(C,A,D共线).已知D船位于观测站B的南偏西15°方向上,巡逻船的速度是12海里/小时,求巡逻船从A地到达故障船D处需要多少时间?(结果保留小数点后一位,参考数据≈1.41,≈1.73,≈2.24)【考点】解直角三角形的应用﹣方向角问题.【分析】(1)过点A作AE⊥BC于点E,过点B作BF⊥BC于点B,过点B作BF⊥BC于点B,过点C 作CG⊥BC于点C,在Rt△ABE中,利用边角关系求得答案即可;(2)过点A作AH⊥BD于点H,在Rt△ABH和Rt△ABH中,利用边角关系求得答案即可.【解答】解:如图,(1)过点A作AE⊥BC于点E,过点B作BF⊥BC于点B,过点B作BF⊥BC于点B,过点C作CG⊥BC 于点C,∵∠ABF=45°,∠ACG=60°,∴∠ABC=45°,∠ACB=30°,在Rt△ABE中,AE=AB•sin45°=20×=20,∴AC=2AE=40(海里).。
鞍山市中考数学 有理数解答题(及答案)
鞍山市中考数学有理数解答题(及答案)一、解答题1.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.4.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.5.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.7.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。
2018年辽宁省鞍山市中考数学考试试卷(含解析)
2018年辽宁省鞍山市中考数学试卷一、选择题(每小题3分,满分24分)1.2018的相反数是()2.2018年3月5日,李克强总理代表国务院在十三届全国人大一次会议上,作政府工作报告时向全国人民交出亮丽成绩单.五年来,中央财政投入专项扶贫资金2800多亿元,贫困人口减少6800多万.将数据2800亿用科学记数法可表示为()A.0.28X1012B.0.28X10110. 2.8X1012 D. 2.8X10113.下列图形中,是中心对称图形但不是轴对称图形的是()4.近年来,共享单车已成为人们出行的一种交通工具,下表是从某高校随机调查的100名师生在一天,中使用共享单车次数的统计表:使用次数012345人数51510253015则这组数据的众数和中位数分别是()A.4, 2.5B.4,3C.30,17.5D.30,155.甲、乙两人分别从/I,8两地同时出发,骑自行车前往。
地.已知瓦。
两地的距离为60如,B,。
两地的距离为50km,甲骑行的平均速度比乙快3W/7,两人同时到达C地.设乙骑行的平均速度为xkm/h,则可列方程为()«6050n6050°6050、6050A.----=---B.---=-----G.----=--- D.---=-----x x+36.若关于x的一元二次方程仃-对1=0有实数根,则力的取值范围是()A.力>1且力主0B.A-<—K A-^0C./<•〈【且"去0D.k<—44447.如图,在等边三角形48C中,AE=CD,区与8〃相交于点G,EFLBD于点月若EF=2,则苗的长为(A•半D.48.如■图,在正方形阳阳中,点£,£分别在位?,血上,AE=AF,4C与研相交于点G.下列结论:①4C垂直平分研;②BRDF=EF:③当ZZZ4A-=15°时,欧为等边三角形;④当n&F=60°时,&瘁=§S△做其中正确的是()A.①③B.②④C.①③④D.②③④二、填空题(共8小题,每小题3分,共24分)9.分解因式:ax^+?.ax+a=.10.5'颖和小芳两人参加学校组织的理化动手实验操作测试,近期的5次测试成绩如图所示,则小颖和小芳理化动手实验操作成绩较稳定的是.11.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为12.不等式组x-3(x-l)<72x+l〉3x的整数解为13.如图,在中,以点4为圆心,48长为半径的圆恰好与阳相切于点G交如于点E,若布的长为2n,贝的半径为14,已知,点》(-4,出),B y2)在二次函数*=-x+2a+c的图象上,则的与处的大小关系为15.已知,在等腰三角形48。
辽宁省鞍山市第二十六中学2024届中考联考数学试题含解析
辽宁省鞍山市第二十六中学2024届中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列四个标志中,既是中心对称又是轴对称图形的是( )A .B .C .D .2.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mn x 的图象可能是( )A .B .C .D .3.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定4.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB ′,则∠CAB′的度数为( )A .45°B .60°C .70°D .90°5.下列关于x 的方程一定有实数解的是( )A .2x mx 10--=B .ax 3=C.x64x0-⋅-=D.1x x1x1=--6.下列各式中,正确的是()A.t5·t5 = 2t5B.t4+t2 = t 6C.t3·t4 = t12D.t2·t3 = t57.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°8.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A.52B.32C.352D.729.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-410.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是()A.18 B.36 C.54 D.7211.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B12.如图,在ABC△中,D、E分别为AB、AC边上的点,DE BC,BE与CD相交于点F,则下列结论一定正确的是( )A .DF AE FC AC =B .AD EC AB AC = C .AD DE DB BC = D .DF EF BF FC= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是 .14.已知一次函数的图象与直线y=12x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为_____. 15.方程233x x=-的解是 . 16.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 .17.分解因式:244m m ++=___________.18.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.20.(6分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.21.(6分)已知点E 为正方形ABCD 的边AD 上一点,连接BE ,过点C 作CN ⊥BE ,垂足为M ,交AB 于点N . (1)求证:△ABE ≌△BCN ;(2)若N 为AB 的中点,求tan ∠ABE .22.(8分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线1y x 32=-+交AB ,BC 分别于点M ,N ,反比例函数k y x=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).24.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).25.(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?26.(12分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.27.(12分)先化简,再求值:(12a+-1)÷212aa-+,其中a31参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【题目详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y =mx +n 的图象经过第一、二、四象限,反比例函数mn y x =的图象在第二、四象限. 故选D.3、C【解题分析】根据数轴上点的位置判断出a ﹣4与a ﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【题目详解】解:根据数轴上点的位置得:5<a <10,∴a ﹣4>0,a ﹣11<0,则原式=|a ﹣4|﹣|a ﹣11|=a ﹣4+a ﹣11=2a ﹣15,故选:C .【题目点拨】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.4、D【解题分析】已知△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D .5、A【解题分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【题目详解】A .x 2-mx-1=0中△=m 2+4>0,一定有两个不相等的实数根,符合题意;B .ax=3中当a=0时,方程无解,不符合题意;C .由6040x x -≥⎧⎨-≥⎩可解得不等式组无解,不符合题意; D .111x x x =--有增根x=1,此方程无解,不符合题意; 故选A .本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.6、D【解题分析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.7、A【解题分析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.8、C【解题分析】由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得AD DMFG GM=,求出GM的长,再利用勾股定理求解可得答案.【题目详解】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG-CD=2,AD∥GF,则△ADM∽△FGM,∴AD DMFG GM=,即123GMGM-=,解得:GM=3 2,∴,故选:C.【题目点拨】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理9、D【解题分析】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m +1x =x ﹣1,由分母可知,分式方程的增根可能是1.当x =1时,m +4=1﹣1,m =﹣4,故选D .10、B【解题分析】根据题意可知AP 为∠CAB 的平分线,由角平分线的性质得出CD=DH ,再由三角形的面积公式可得出结论.【题目详解】由题意可知AP 为∠CAB 的平分线,过点D 作DH ⊥AB 于点H ,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S △ABD =12AB•DH=12×18×1=36 故选B .【题目点拨】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.11、A【解题分析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间. 故选A .考点:1、计算器—数的开方;2、实数与数轴12、A【解题分析】根据平行线分线段成比例定理逐项分析即可.A.∵DE BC,∴DF DEFC BC=,AE DEAC BC=,∴DF AEFC AC=,故A正确;B. ∵DE BC,∴AD AEAB AC=,故B不正确;C. ∵DE BC,∴AD DEAB BC=,故C不正确;D. ∵DE BC,∴DF EFCF BF=,故D不正确;故选A.【题目点拨】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、①③⑤【解题分析】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【题目详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD 和△AEB 中,AE AP EAB PAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△APD ≌△AEB (SAS ); 故此选项成立; ③∵△APD ≌△AEB , ∴∠APD =∠AEB ,∵∠AEB =∠AEP +∠BEP ,∠APD =∠AEP +∠PAE , ∴∠BEP =∠PAE =90°, ∴EB ⊥ED ; 故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F , ∵AE =AP ,∠EAP =90°, ∴∠AEP =∠APE =45°, 又∵③中EB ⊥ED ,BF ⊥AF , ∴∠FEB =∠FBE =45°,又∵BE = 22BP PE -= 52-= 3, ∴BF =EF =62, 故此选项不正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1, ∴EP 2, 又∵PB 5 ∴BE 3,∵△APD ≌△AEB ,∴PD =BE∴S △ABP +S △ADP =S △ABD -S △BDP = 12S 正方形ABCD - 12×DP ×BE = 12×()- 12×12 故此选项不正确.⑤∵EF =BF =2AE=1,∴在Rt △ABF 中,AB 2=(AE +EF ) 2+BF 2,∴S 正方形ABCD =AB 2, 故此选项正确. 故答案为①③⑤. 【题目点拨】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识. 14、y=12x ﹣1 【解题分析】分析:根据互相平行的两直线解析式的k 值相等设出一次函数的解析式,再把点(﹣2,﹣4)的坐标代入解析式求解即可.详解:∵一次函数的图象与直线y =12x +1平行,∴设一次函数的解析式为y =12x +b . ∵一次函数经过点(﹣2,﹣4),∴12×(﹣2)+b =﹣4,解得:b =﹣1,所以这个一次函数的表达式是:y =12x ﹣1.故答案为y =12x ﹣1.点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k 值相等设出一次函数解析式是解题的关键. 15、x=1. 【解题分析】根据解分式方程的步骤解答即可. 【题目详解】去分母得:2x=3x ﹣1, 解得:x=1,经检验x=1是分式方程的解,故答案为x=1. 【题目点拨】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键. 16、1 【解题分析】试题分析:先求出m 2﹣2m 的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解. 解:由m 2﹣2m ﹣1=0得m 2﹣2m=1,所以,2m 2﹣4m+3=2(m 2﹣2m )+3=2×1+3=1. 故答案为1. 考点:代数式求值. 17、()22m + 【解题分析】直接利用完全平方公式分解因式得出答案. 【题目详解】解:244m m ++=()22m +, 故答案为()22m +. 【题目点拨】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键. 18、两点确定一条直线;同圆或等圆中半径相等 【解题分析】根据尺规作图的方法,两点之间确定一条直线的原理即可解题. 【题目详解】解:∵两点之间确定一条直线,CD 和AB 都是圆的半径, ∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等. 【题目点拨】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1)36(2)不公平 【解题分析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论. 【题目详解】 (1)列表得:∴一共有36种等可能的结果, (2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P (两次掷的骰子的点数相同)61.366== P (两次掷的骰子的点数的和是6)=5.36∴不公平. 【题目点拨】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等 就公平,否则就不公平. 20、1a b -= 【解题分析】过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,由后坡度AB 与前坡度AC 相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得. 【题目详解】解:过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,∵房子后坡度AB与前坡度AC相等,∴∠BAD=∠CAE,∵∠BAC=120°,∴∠BAD=∠CAE=30°,在直角△ABD中,AB=4米,∴BD=2米,在直角△ACE中,AC=6米,∴CE=3米,∴a-b=1米.【题目点拨】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.21、(1)证明见解析;(2)【解题分析】(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.【题目详解】(1)证明:∵四边形ABCD为正方形∴AB =BC ,∠A =∠CBN =90°,∠1+∠2=90° ∵CM ⊥BE , ∴∠2+∠3=90° ∴∠1=∠3在△ABE 和△BCN 中,∴△ABE ≌△BCN (ASA ); (2)∵N 为AB 中点, ∴BN =AB又∵△ABE ≌△BCN , ∴AE =BN =AB在Rt △ABE 中,tan ∠ABE ═.【题目点拨】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE ≌△BCN 是解此题的关键. 22、(1)4y x=;(2)点P 的坐标是(0,4)或(0,-4). 【解题分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标. 【题目详解】(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入ky x=得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形.∵△OPM的面积与四边形BMON的面积相等,∴1OP AM4 2⋅⋅=.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).23、(1)23;(2)这两个数字之和是3的倍数的概率为13.【解题分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【题目详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为23;(2)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【题目点拨】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.24、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解题分析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.25、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解题分析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M、点N重合,则,3x-2=2x,解得x=2.所以经过2秒或2秒,点M、点N分别到原点O的距离相等.26、(1)见解析;(2)①120°;②45°【解题分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【题目详解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中,PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CPM ≌△AOM (AAS ), ∴PC =OA .∵AB 是半圆O 的直径, ∴OA =OB , ∴PC =OB . 又PC ∥AB ,∴四边形OBCP 是平行四边形. (2)①∵四边形AOCP 是菱形, ∴OA =PA , ∵OA =OP , ∴OA =OP =PA , ∴△AOP 是等边三角形, ∴∠A =∠AOP =60°, ∴∠BOP =120°; 故答案为120°; ②∵PC 是⊙O 的切线, ∴OP ⊥PC ,∠OPC =90°, ∵PC ∥AB , ∴∠BOP =90°, ∵OP =OB ,∴△OBP 是等腰直角三角形, ∴∠ABP =∠OPB =45°, 故答案为45°. 【题目点拨】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.27、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式3==- 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.。
最新辽宁省鞍山市中考数学试卷(含答案解析版)资料
.
16.(3 分)(2017•鞍山)如图,在△ABC 中,AB=AC=6,∠A=2∠BDC,BD 交 AC
边于点 E,且 AE=4,则 BE•DE=
.
三、解答题(共 2 小题,每小题 8 分,共 16 分)
17.(8 分)(2017•鞍山)先化简,再求值:(1﹣ )÷
,其中 x= ﹣1.
18.(8 分)(2017•鞍山)如图,四边形 ABCD 为平行四边形,∠BAD 和∠BCD 的 平分线 AE,CF 分别交 DC,BA 的延长线于点 E,F,交边 BC,AD 于点 H,G.
为 1,﹣ ,0,π,﹣3,若将这 5 张卡片背面朝上洗匀后,从中任意抽取 1 张,
那么这张卡片正面上的数字为无理数的概率是
.
12.(3 分)(2017•鞍山)如图,在□ABCD 中,分别以点 A 和点 C 为圆心,大于 AC 的长
为半径作弧,两弧相交于 M,N 两点,作直线 MN,分别交 AD,BC 于点 E,F,
五、解答题(共 2 小题,每小题 10 分,共 20 分) 21.(10 分)(2017•鞍山)如图,建筑物 C 在观测点 A 的北偏东 65°方向上,从 观测点 A 出发向南偏东 40°方向走了 130m 到达观测点 B,此时测得建筑物 C 在 观测点 B 的北偏东 20°方向上,求观测点 B 与建筑物 C 之间的距离.(结果精确 到 0.1m.参考数据: ≈1.73)
精品文档
2017 年辽宁省鞍山市中考数学试卷
一、选择题(共 8 小题,每小题 3 分,共 24 分) 1.(3 分)(2017•鞍山)下列各数中,比﹣3 小的数是( ) A.﹣2 B.0 C.1 D.﹣4 2.(3 分)(2017•鞍山)如图所示几何体的左视图是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
往年辽宁省鞍山市中考数学真题及答案一.选择题(共8小题,每小题2分,满分16分)1.(2013鞍山)3﹣1等于()A.3 B.﹣C.﹣3 D.考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),进行运算即可.解答:解:3﹣1=.故选D.点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.(2013鞍山)一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6考点:众数.分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.(2013鞍山)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90° C.80° D.70°考点:平行线的性质;三角形内角和定理.专题:探究型.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4.(2013鞍山)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,2﹣x≥0,解得x≤2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45° B.35° C.25° D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2013鞍山)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根考点:解一元二次方程-直接开平方法.分析:根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.解答:解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.点评:此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.(2013鞍山)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁考点:方差.专题:图表型.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(2013鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个考点:二次函数图象与系数的关系.分析:由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c<0.解答:解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共8小题,每小题2分,满分16分)9.(2013鞍山)分解因式:m2﹣10m= .考点:因式分解-提公因式法.分析:直接提取公因式m即可.解答:解:m2﹣10m=m(m﹣10),故答案为:m(m﹣10).点评:此题主要考查了提公因式法分解因式,关键是找准公因式.10.(2013鞍山)如图,∠A+∠B+∠C+∠D=度.考点:多边形内角与外角.分析:根据四边形内角和等于360°即可求解.解答:解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.点评:考查了四边形内角和等于360°的基础知识.11.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.(2013鞍山)若方程组,则3(x+y)﹣(3x﹣5y)的值是.考点:解二元一次方程组.专题:整体思想.分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.解答:解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.(2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(2013鞍山)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.解答:解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.点评:依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.15.(2013鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是 cm.考点:二元一次方程组的应用.分析:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.解答:解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.16.(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.三.计算题(共2小题,每小题6分,满分12分)17.(2013鞍山)先化简,再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为后解答.解答:解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1,=﹣1=﹣1.点评:本题考查了分式的化简求值,能正确进行因式分解是解题的关键.18.(2013鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.四.应用题(共2小题,每小题6分,满分12分)19.(2013鞍山)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可解答:解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(2013鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.解答:解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.点评:本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.五.应用题(共2小题,每小题6分,满分12分)21.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.22.(2013鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.考点:平行四边形的判定;全等三角形的判定.专题:证明题.分析:(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.解答:证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).点评:此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.六.应用题(共2小题,每小题6分,满分12分)23.(2013鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.考点:切线的性质;勾股定理.专题:计算题.(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC 分析:为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.解答:解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.点评:此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(2013鞍山)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.考点:反比例函数综合题.专题:计算题;数形结合.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.七.应用题(满分10分)25.(2013鞍山)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?考点:正方形的性质;全等三角形的判定与性质.专题:证明题;探究型.分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)点评:本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.八.应用题(满分10分)26.(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=, ∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.。