江苏省南京中考数学总复习锐角三角函数
苏教版中考复习:《锐角三角函数复习》课件
B A
则a= ,∠B= ,∠A= .
C
4.如图,在Rt△ABC中,∠C=90,b= 2 3 ,c=4.
5.如果
1 cos A 3 tan B 3 0 2
那么△ABC是( D )
A.直角三角形 C.钝角三角形 B.锐角三角形 D.等边三角形
例5.海中有一个小岛P,它的周围18海里内有暗礁,渔船 跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60° 方向上,航行12海里到达B点,这时测得小岛P在北偏东 45°方向上.如果渔船不改变航线继续向东航行,有没 有触礁危险?请说明理由.
锐角三角函数复习
B
斜边c
对边aC一.锐角三 Nhomakorabea函数的概念
c
A
邻边b
正弦:把锐角A的对边与斜边的比叫做∠A a 的正弦,记作 sin A 余弦:把锐角A的邻边与斜边的比叫做∠A的 b cos A 余弦,记作 c
正切:把锐角A的对边与邻边的比叫做∠A的 a 正切,记作 tan A
b
锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
D
例6.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块 平地,如图所示.BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为 防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行 改造.经地质人员勘测,当坡角不超过45°时,可确保山体不 滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至 少是多少米(结果保留根号)?
A C
12 (2)若sinC= ,BC=12,求AD的长. 13
D
1.若
2 sin 2 0 ,则锐角α= .
.
2.若 tan( 20) 3 0 ,则锐角α=
【中考数学考点复习】第六节 锐角三角函数及其应用 课件(共33张PPT)
返回目录
第1题图
第六节 锐角三角函数及其应用
返回目录
改编条件:题干改变“测量点的高度”;“两个非特殊角”改为“两个 特殊角” 2.(2020 贺州)如图,小丽站在电子显示屏正前方 5 m 远的 A1 处看“防溺 水六不准”,她看显示屏顶端 B 的仰角为 60°,显示屏底端 C 的仰角为 45°,已知小丽的眼睛与地面距离 AA1=1.6 m, 3.求电子显示屏高 BC 的值.(结果保留一位小数. 4.参考数据: 2≈1.414, 3≈1.732).
第 6 题图
第六节 锐角三角函数及其应用
解:如解图,延长 BC 交 MN 于点 F, 由题意得 AD=BE=3.5 米,AB=DE=FN=1.6 米,
在 Rt△MFE 中,∠MEF=45°,∴MF=EF,
在 Rt△MFB 中,∠MBF=33°,
∴MF=BF·tan33°=(MF+3.5)·tan33°,
第六节 锐角三角函数及其应用
返回目录
3. .如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔 附近一建筑物楼顶 D 处测得塔 A 处的仰角为 45°,塔底部 B 处的俯角为 22°.已知建筑物的高 CD 约为 61 米,请计算观景台的高 AB 的值.(结果 精确到 1 米,参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)
形的边角 1. 三边关系:a2+b2=c2
关系
2. 两锐角关系:∠A+∠B=90° 3. 边角关系:sinA=cosB= a ;cosA=sinB= b;
tanA=
a
c
;tanB=
b
c
图②用
返回思维导图
返回目录
1.仰角、俯角:如图③,当从低处观测高处的目标时,视线与水平线 锐角三角 所成的锐角称为__仰__角____,当从高处观测低处的目标时,视线与水平 函数的实 线所成的锐角称为___俯__角___ 际应用 2.坡度(坡比)、坡角:如图④,坡面的铅直高度h和水平宽度l的比叫坡
江苏省南京中考数学总复习锐角三角函数
2011南京中考数学总复习:锐角三角函数【例1——特殊的锐角三角函数值】填写表格:45sin a cos a tan a【反馈】①已知/ A 是锐角,且sinA= 艾,那么90。
一z A 等于 ②当锐角a >30°时,贝U cos a 的值是()【例2——与三角形的有关计算】已知 Rt △ ABC 中,Z C=90° , tanA=4 , BC=8则AC 等于3 1【反馈】①如图,在等腰 Rt △ ABg, / C=90o , AC=6, D 是AC 上一点,若tan / DBA 己,5则AD 的长为 .②在△ ABC 中,Z A=75° , Z B=60° , AB=2』2,贝U AC=. 【例3 --- 锐角三角函数之间的关系】若 sin28 ° =cos a ,贝U a =. 【反馈】①直角三角形两锐角的正切函数的积为 .② 在 Rt △ ABC 中,/ C=90° ,若 sinA 是方程 5x2-14x+8=0 的一个根,贝U sin A ___________tan A .③ tan2 ° - tan4 ° - tan6 ° - • tan88°【例4 --- 锐角三角函数的计算】 sin 230° +cos 245° + J2 sin60 ° - tan45 °A.大于B.小于一2 D.小于-3 2B. 32C. 10D. 12 22【反馈】① 2cos60 °—(2009 —兀0 +s/92 ^.2 a ...②先化简.再求代数式的值. (——+ —)+——其中a= tan60 —2sin30a 1 a2 _1 a -15 ...... …【例5——解直角二角形】在^ ABC中,90 , BO 24cm, cosA =—,求这个二角形13的周长.【反馈】已知:如图,在RtA ABC中,E C =90 =, AC=J3 .点D为BC边上一点,且BD=2AD , 2ADC =60。
南京精选中考数学易错题专题复习锐角三角函数
南京精选中考数学易错题专题复习锐角三角函数一、锐角三角函数1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB =90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点P作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG.设运动时间为 t ( s )(0<t<5),解答下列问题:(1)当 t 为何值时,点 E 在BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE, OQ,在运动过程中,是否存在某一时刻 t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】 【分析】(1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQOC OG=,由此构建方程即可解决问题. 【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB , ∴∠BAC=∠DCO , ∵∠DOC=∠ACB , ∴△DOC ∽△BCA , ∴AC AB BCOC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ), ∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t ,当点E 在∠BAC 的平分线上时, ∵EP ⊥AB ,EC ⊥AC , ∴PE=EC ,∴34t=8-54t ,∴t=4.∴当t 为4秒时,点E 在∠BAC 的平分线上. (2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC ) =1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在.∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭,∴t=52时,四边形OPEG 的面积最大,最大值为683.(4)存在.如图,连接OQ . ∵OE ⊥OQ ,∴∠EOC+∠QOC=90°, ∵∠QOC+∠QOG=90°, ∴∠EOC=∠QOG ,∴tan ∠EOC=tan ∠QOG , ∴EC GQOC OG=, ∴358544345t tt -=-, 整理得:5t 2-66t+160=0, 解得165t =或10(舍弃) ∴当165t =秒时,OE ⊥OQ . 【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.3.小红将笔记本电脑水平放置在桌子上,显示屏OB 与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠A O′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.4.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.∵∠BPE=12∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=900.又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=12 BM.∴BF=12PE,即BF1PE2=.(3)如图,过P作PM//AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM,∠MBN=∠EPN.∵∠BNM=∠PNE=900,∴△BMN∽△PEN.∴BM BNPE PN=.在Rt△BNP中,BNtan=PNα,∴BM=tanPEα,即2BF=tanPEα.∴BF1=tanPE2α.(1)由正方形的性质可由AAS证得△BOG≌△POE.(2)过P作PM//AC交BG于M,交BO于N,通过ASA证明△BMN≌△PEN得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.5.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP . (1)求证:直线CP 是⊙O 的切线. (2)若BC=2,sin ∠BCP=,求点B 到AC 的距离.(3)在第(2)的条件下,求△ACP 的周长.【答案】(1)证明见解析(2)4(3)20 【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB ,∠CAB=2∠BCP 判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可. 试题解析:(1)∵∠ABC=∠ACB , ∴AB=AC , ∵AC 为⊙O 的直径, ∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB , ∵∠CAB=2∠BCP , ∴∠BCP=∠CAN ,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°, ∵点D 在⊙O 上, ∴直线CP 是⊙O 的切线; (2)如图,作BF ⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定6.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.7.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置8.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数9.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(634+305+98)米,面积是1470平方米. 【解析】试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案. 试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,在RT △ADE 中,AD=22DE AE +=634米 ∵背水坡坡比为1:2, ∴BF=60米,在RT △BCF 中,BC=22CF BF +=305米,∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米, 面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.10.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD=. (1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 10. 【解析】 【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =HM n =,则有22LK KG ==,2222FK FL LK n =+=,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HFFK HM=,再代入LK 和FK 的值可得n=4,再求得FG 10. 【详解】解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+, ∴»»AB CD =, ∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ∆≅∆, ∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥, ∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG , ∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒, ∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =, 在Rt FHL ∆中,222FL FH HL =+,22FL = 设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ∆中,222LG LK KG =+,22LK KG n ==,2222FK FL LK n =+=+, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,∴KG HFFK HM=,∴2222222n nn =+,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,210FG =,10FO =. 即O e 的半径的长为10. 【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.11.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米. 【解析】 【分析】据题意得出tan3B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF的长.【详解】解:由题意得,tan B=∵MN∥AD,∴∠A=∠B,∴tan A,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=3.在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CFx≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.12.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 秒、695- . 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32,∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x +185)2=36, 解得:x =669-,x =669--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AB 2+BB ′2=AN 2+A ′N 2∴36+4x 2=(6﹣245)2+(2x +185)2 解得:x =32. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.13.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G 在正方形ABCD 对角线上,∴BG =DG ,∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,∴∠CGF+∠AGB =90°,∴∠AGD+∠CGF =90°,∴∠DGF =90°,∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,∴GH =3=323=6,∴DG =2GH =26,∴DF =2DG =43,在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.14.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD b ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .(3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(36+2 【解析】【分析】 (1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值.【详解】解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°,∵ABsinC =sinBCA,∴45ABsin o=60sin60o,即22=32,解得:AB=206.(2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sinABACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:6.答:货轮距灯塔的距离6海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,AB=156,所以AM=153,在直角三角形BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以AC=153+15,由题意得,1531575sin+o=15660sin o,sin75°=6+24.【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.15.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB=-73.2 (米).…6分(2) 此车制速度v==18.3米/秒。
中考总复习:锐角三角函数综合复习--知识讲解(提高)
中考总复习:锐角三角函数综合复习—知识讲解(提高)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A a A c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA >0. 考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就Ca bc是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 考点七、解直角三角形相关的知识如图所示,在Rt △ABC 中,∠C =90°, (1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则 ①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高) ②如图所示,1()2ABC S r a b c =++△. 【典型例题】类型一、锐角三角函数的概念与性质【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例2】1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己尝试完成.举一反三:【变式】(2015•乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.类型二、特殊角的三角函数值【高清课堂:锐角三角函数综合复习 例1】2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.【思路点拨】第(2)题可以先利用关系式sin 2 A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【答案与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)∵12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,∴12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例1】 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角, ∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°. 3.(2015春•凉州区校级月考)如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.【思路点拨】(1)过A 作AD ⊥BC 于点D ,利用面积公式求出高AD 的长,从而求出BD 、CD 、AC 的长,此时再求tanC 的值就不那么难了.(2)同理作AC 边上的高,利用面积公式求出高的长,从而求出sinA 的值. 【答案与解析】 解:(1)过A 作AD ⊥BC 于点D . ∵S △ABC =BC •AD=84, ∴×14×AD=84,∴AD=12. 又∵AB=14, ∴BD==9.∴CD=14﹣9=5. 在Rt △ADC 中,AC==13,∴tanC==;(2)过B 作BE ⊥AC 于点E . ∵S △ABC =AC •EB=84, ∴BE=,∴sin ∠BAC===.【总结升华】考查了锐角三角函数的定义,注意辅助线的添法和面积公式,以及解直角三角形公式的灵活应用. 举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到)【答案】过点C 作CD ⊥AB 于点D.EABCCD 就是连接两岸最短的桥.设CD=x (千米). 在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°=x.因为AD+DB=AB ,所以x+x=3,x=≈答:从C 处连接两岸的最短的桥长约为. 类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE =∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高相同,∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k =+==.∴AB =AD+DB =AD+32AD =541. 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到).(参考数据:sin10°≈°≈°≈°≈°≈°≈ 【思路点拨】本题是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 【答案与解析】解:如图所示,延长CD 交PB 于F ,则DF ⊥PB . ∴DF =DB ·sinl5°≈50× CE =BF =DB ·cos15°≈50× ∴AE =CE ·tan10°≈× ∴≈答:树高约为. 【总结升华】一些特殊的四边形,可以通过切割补图形的方法将其转化为若干个直角三角形来解. 举一反三:【变式】如图所示,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 【答案】解:(1)作PE ⊥BC 于E ,则BP =AB-AP =2-t(0≤t <2). ∵∠B =60°, ∴1133sin (2)2222PCD S CD PE CD BP B t ===-△, 即3333(02)42y t t =-+≤<. (2)由(1)不难得出,3(2)2PE t =-,1(2)2BE t =-. ∴112(2)(2)22EC BC BE t t =-=--=+. ∵22222231(2)(2)2444PC PE EC t t t t =+=-++=-+.∴224(02)z t t t =-+≤<.6.如图(1)所示,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子与地面的倾斜角α为60°.(1)求AO 与BO 的长.(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.①如图(2)所示,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD =2:3,试计算梯子顶端A 沿NO 下滑了多少米;②如图(3)所示,当A 点下滑到A ′点,B 点向右滑行到B ′点时,梯子AB 的中点P 也随之运动到P ′点,若∠POP ′=15°,试求AA ′的长.【思路点拨】(1)在直角△AOB 中,已知斜边AB ,和锐角∠ABO ,即可根据正弦和余弦的定义求得OA ,OB 的长;(2)△APO 和△P′A′O 都是等腰三角形,根据等腰三角形的两底角相等,即可求得∠PAO 的度数, 和∠P′A′O 的度数,在直角△ABO 和△A′B′O 中,根据三角函数即可求得OA 与OA′,即可求得AA′的长.【答案与解析】解:(1)Rt △AOB 中,∠O =90°,α=60°,∴∠OAB =30°.又AB =4米,∴OB =12AB =2米.OA =AB ·sin 60°=4×2=米). (2)①设AC =2x ,BD =3x ,在Rt △COD 中,OC =2x ,OD =2+3x ,CD =4,根据勾股定理:OC 2+OD 2=CD 2,∴2222)(23)4x x ++=.∴213(120x x +-=.∵x ≠0,∴13120x +-=.∴1213x =.24213AC x ==.即梯子顶端A 沿NO 下滑了2413米. ②∵点P 和点P ′分别是Rt △AOB 的斜边AB 与Rt △A ′OB ′的斜边A ′B ′的中点,∴PA =PO ,P ′A ′=P ′O .∴∠PAO =∠AOP ,∠P ′A ′O =∠A ′OP ′.∴∠P ′A ′O-∠PAO =∠POP ′=15°.∵∠PAO =30°,∴∠P ′A ′O =45°.∴A ′O =A ′B ′·cos 45°=42⨯=∴AA ′=OA-A ′O =米.【总结升华】解答本题的关键是理解题意.此题的妙处在于恰到好处地利用了直角三角形斜边上的中线等于斜边的一半,从而求出∠P′A′O=45°,让我们感受到了数学题真的很有意思,做数学题是一种享受.。
苏教科版初中数学九年级下册7锐角三角函数单元复习
;
cosB= tanA =
; ; tanB =
;cotA =
A
;cotB =
。
6. 图中角 可以看作是点 A 的
也可看作是点 B 的
角;
角,
B
C
(1)
7. sin2 A cos2 A
,tan A•cotA =
; sin A
。
cos A
8. (1)坡度(或坡比)是坡面的
高度( h )和
长度( l )的比。记作 i ,即 i
苏科版初中数学
苏教科版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 苏科版初中数学 和你一起共同进步学业有成!
TB:小初高题库
锐角三角函数单元复习
苏科版初中数学
一、知识点回顾
1. 锐角∠A 的三角函数(按右图 Rt△ABC 填空) c
∠A 的正弦:sinA =
,
∠A 的余弦:cosA = 2. 锐角三角函数值,都是
的长。
D 36 3 海里/小时
A
求 AB
B
C
37. 如图,河对岸有铁塔 AB,在 C 处测 顶 A 的仰角为 30°,向塔前进 14 米到达 D 处测得 A 的仰角为 45°,求铁塔 AB 的
C
得塔
A
D,在
高。
D
B
第 43 题图
TB:小初高题库
苏科版初中数学
38. 如图,已知两座高度相等的建筑物 AB、CD 的水平距离 BC=60 米,在建筑物 CD 上有一铁塔 PD,在塔顶 P 处观察建筑物的底部 B 和
。
13.已知 Rt△ ABC 中,若 C 900 , cos A 5 , BC 24 ,则 AC _______ 。 13
中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)
8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.
2024年中考数学一轮复习:锐角三角函数+课件
D.90°
5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若
AC=2,BC=1,则sin∠ACD=
.
tanα.tan(90°-α)=1
sin2α+cos2α=1
自学自练展素养
B
c a
A
b
C
随堂练习
Hale Waihona Puke 研学随练展收获1.已知在△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为( )
A. 3tanα B. 3cotα C.
D.
2.△ABC中,∠B=90°,BC=2AB,则cosA的值为( )
A.
B.
C.
D.
知识点2 特殊角的三角函数值
自学自练展素养
随堂练习
1.△ABC中,∠A、∠B是锐角,
则∠C=
度。
2.在△ABC中,若 三角形。
3.
研学随练展收获
,
,则△ABC是
知识点3 解直角三角形
自学自练展素养
1.定义:在直角三角形中,由已知元素求未知元素的过程,叫做解直角三角形.
2.常用关系:在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,则:
2024年中考数学一轮复习
一、素养展示
自学自练展素养
二、教学目标
1.掌握锐角三角函数的定义及特殊角的三角函数值。 2.会用锐角三角函数解直角三角形。
知识梳理
自学自练展素养
知识点1 锐角三角函数
1.定义:
2.重要变形: 设α是一个锐角,则
sinα=cos(90°-α)
cosα=sin(90°-α)
B
a2+b2=
c a
c2∠A+∠B= 90°
2024年中考数学一轮复习考点精讲课件—锐角三角形及其应用
【详解】解:∵ tan − 3 + 2cos − 3 =0,
∴ tan − 3 = 0, 2cos − 3
2
= 0,
∴ tan = 3,2cos − 3 = 0,
∴ ∠ = 60°,cos =
3
,∠
2
= 30°,
在△ 中,∠ = 180° − 60° − 30° = 90°,且∠ ≠ ∠,
−2
.
考点一 锐角三角函数
题型09 求特殊角的三角函数值
3
【例9】(2023·山东淄博·统考一模)在实数 2,x0(x≠0),cos30°, 8中,有理数的个数是(
A.1个
B.2个
C.3个
D.4个
【变式9-1】(2023·广东潮州·二模)计算|1 − tan60°|的值为(
A.1 − 3
B.0
C. 3 − 1
3
∴tan∠ABE=tan30°= 3 ,
3
故答案为: 3 .
.
考点一 锐角三角函数
题型05 已知正弦值求边长
3
【例5】(2022·云南昆明·官渡六中校考一模)在△ 中,∠ = 90°,若 = 100, sin = 5,则的长是
(
)
500
3
A.
503
5
B.
C.60
D.80
【变式5-1】(2023·广东佛山·校联考模拟预测)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,
∠A的邻边
斜边
cos A =
b
c
正切
tanA =
∠A的对边
∠A的邻边
tan A =
a
b
3. 锐角三角函数的关系:
中考专项复习锐角三角函数
与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函
数
汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度
苏教版九年级数学第七章三角函数知识点梳理
学习必备精品知识点第七章:锐角三角函数知识点总结一、锐角三角函数的意义:(1)一个锐角的正弦、余弦、正切就叫做这个角的三角函数。
①锐角 A 的对边与邻边的比叫做∠ A 的正切,记作tanA。
(即直角三角形中两条直角边的比)②锐角 A 的对边与斜边的比叫做∠ A 的正弦,记作 sinA。
(即直角三角形中锐角 A 所对的直角边与斜边的比)③锐角 A 的邻边与斜边的比叫做∠ A 的余弦,记作 cosA。
(即直角三角形中锐角 A 相邻的直角边与斜边的比)(2)如图,在△ ABC中 ,∠c=900tanA A的对边A的邻边sinAA的对边斜边cosAA的邻边斜边0<sin A <1,0<cos A < 1二、锐角三角函数之间的关系:(1)等角(锐角)的三角函数之间的关系:如果几个锐角相等,则其三角函数值对应相等;反之,如果几个锐角的三角函数值对应相等,则这几个锐角相等。
即锐角的三角函数值只与角的度数有关;若度数相等,则其三角函数值则对应相等。
(2)同一个锐角的三角函数之间的关系①sin2A+cos2 A=1(即同一个锐角的正弦值和余弦值的平方和为1。
)sinA②tanAcosA(即同一个锐角的正切值=这个角的正弦值与该角余弦值的商。
)(3)互余两锐角之间的三角函数之间的关系①若∠ A与∠ B互为余角,则sin A= cos(90 - A ) = cosB②若∠ A与∠ B互为余角,则tan A×tan ( 90 - A )=1即tanA×tanB= 1即:若∠ A 与∠ B 互为余角,则①∠ A 的正弦值 =∠B 的余弦值;∠ A 的余弦值 =∠B 的正弦值。
②∠ A 的正切值与∠ B 的正切值互为倒数。
三、锐角三角函数值的变化规律(或增减性)①当角度在 0---90 之间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小)。
②当角度在 0---90 之间变化时,余弦值随着角度的增大(或减小)而减小(或增大)。
中考总复习锐角三角函数综合复习--知识讲解
中考总复习锐角三角函数综合复习--知识讲解锐角三角函数是初中数学中的一个重要内容,也是中考数学考试中常考的内容之一、掌握了锐角三角函数的定义、性质和相关的计算方法,可以帮助我们解决与角度有关的各种问题,如计算角度的大小、求角的三角函数值等。
下面是锐角三角函数的综合复习知识讲解。
1.弧度制和角度制在介绍锐角三角函数之前,我们首先要了解弧度制和角度制。
在角度制中,一个圆的周长被定义为360度,而在弧度制中,一个圆的周长被定义为2π弧度。
所以可以得到以下关系:360度=2π弧度180度=π弧度90度=π/2弧度2.定义对于任意一个锐角A,我们可以在一个单位圆上面取点P,使得∠POA 的顶点为O,点O为圆心,点P在单位圆上。
这样,我们可以定义以下几个锐角三角函数:正弦函数sinA、余弦函数cosA、正切函数tanA、余切函数cotA。
3.性质(1) 正弦函数sinA:在单位圆上,点P的纵坐标就是正弦值sinA。
(2) 余弦函数cosA:在单位圆上,点P的横坐标就是余弦值cosA。
(3) 正切函数tanA:tanA的值等于sinA/cosA。
(4) 余切函数cotA:cotA的值等于cosA/sinA。
(5) 错位现象:sinA等于cos(90度-A),cosA等于sin(90度-A)。
4.基本关系式(1) sin²A + cos²A = 1,即sin²A = 1 - cos²A,cos²A = 1 -sin²A。
(2) tanA = sinA/cosA,cotA = 1/tanA = cosA/sinA。
(3) sin(180度 - A) = sinA,cos(180度 - A) = -cosA。
(4) cos(360度 - A) = cosA,sin(360度 - A) = -sinA。
5.锐角三角函数的值(1)0度、30度、45度、60度、90度的正弦、余弦、正切值是特殊的,需要进行熟记。
2024年中考数学总复习:锐角三角形函数(附答案解析)
一.选择题(共25小题)
1.若用我们数学课本上采用的科学计算器计算tan35°12',按键顺序正确的是( )
A.
Байду номын сангаасB.
C.
D.
2.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是( )
A.sinC B.sinC C.sinC D.sinC
A. 海里B. 海里C.40海里D. 海里
6.tan45°的值等于( )
A. B. C.1D.
7.已知sina ,那么锐角a的取值范围是( )
A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°
8.如图,在“庆国庆,手拉手”活动中,某小组从营地A出发,沿北偏东53°方向走了1200m到达B点,然后再沿北偏西37°方向走了500m到达目的地C点,此时A,C两点之间的距离为( )
A.15+5 B.10+5 C.10 5 D.15+5
18.一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为( )
A.700米B.10 米C.2 米D.4 米
19.在Rt△ABC中,∠B=90°,如果∠A=α,BC=α.那么AC的长是( )
A.α•tanαB.α•tanαα•cotα
A.900mB.900 mC.900 mD.1800m
24.在Rt△ABC中,∠C=90°,BC=1,AC ,那么tanB的值是( )
A. B. C. D.
25.图1是一款平板电脑支架,由托板、支撑板和底座构成.工作时,可将平板电脑吸附在托板上,底座放置在桌面上.图2是其侧面结构示意图,已知托板AB长200mm,支撑板CB长80mm,当∠ABC=130°,∠BCD=70°时,则托板顶点A到底座CD所在平面的距离为( )(结果精确到1mm).
2024年中考数学总复习考点梳理第四章第六节锐角三角函数及其实际应用
/
/
)
间接
sin45°,cos30°
解答题(三
求值 2020 25(3)
4 30°,45° ,cos45°,
/
/
)
tan30°
解答题(三
第六节 锐角三角函数及其实际应用
返回目录
命题点2 锐角三角函数的实际应用(6年2考) 课标要求 1.能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际 问题; 2.在平面上,能用方位角和距离刻画两个物体的相对位置.(2022年版课 标将“能用”改为“运用”)
题情境 海等,该考法试题详见练习册.
第六节 锐角三角函数及其实际应用
返回目录
教材改编题课前测
1. [北师九下P25习题改编]如图为东西
流向且河岸平行的一段河道,A,B分别
为两岸上一点,且点B在点A的正北方向,
由点A向正东方向走a米到达点C,此时测
第1题图
得点B在点C的北偏西55°方向上,则河道AB的宽为( D )
背靠背 、俯
实验楼
角
30°, 45°
结果保 留根号
教学楼 的高度
人教九下 P75例4( 改变角度
背景)
第六节 锐角三角函数及其实际应用
返回目录
命题趋势·新考法分析 新考法— 《关于加强初中学业水平考试命题工作的意见》和《课程标准(2022年版)》中均指出: —真实问 情境创设的真实性.近两年真实问题情境全国新增考查较多,如河南、陕西、武汉、威
第六节 锐角三角函数及其实际应用
考点 4 锐角三角函数的实际应用(6年2考)
在视线与水平线所成的锐角中,视线 仰角、
在水平线上方的角叫仰角,视线在水 俯角
平线下方的角叫俯角,如图
初三锐角三角函数知识点总结、典型例题、练习(精选)
三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如以下图,在Rt △ABC 中,∠C 为直角,那么∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要)当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:边和角〔两个,其中必有一边〕→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量防止使用中间数据和除法) A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边C8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°〔东北方向〕 , 南偏东45°〔东南方向〕, 南偏西45°〔西南方向〕, 北偏西45°〔西北方向〕。
南京中考数学专题训练---锐角三角函数的综合题分类
【答案】(1)3;(2) 【解析】
;(3)t=9s 或 t=(15﹣6 )s.
试题分析:(1)求出 ED 的距离即可求出相对应的时间 t.
(2)先求出 t 的取值范围,分为 H 在 AB 上时,此时 BM 的距离,进而求出相应的时
间.同样当 G 在 AC 上时,求出 MN 的长度,继而算出 EN 的长度即可求出时间,再通过正
示出 CD,即为 FG,在直角三角形 OPG 中,利用 OP 表示出 PG,用 PG+GF 表示出 PF,根
据 PF=PC,表示出 PC,过 C 作 CH 垂直于 y 轴,在直角三角形 PHC 中,利用勾股定理列出
关于 t 的方程,求出方程的解即可得到 t 的值,综上,得到所有满足题意的 t 的值.
一半,而 OE=OPcos30°,列出关于 t 的方程,求出方程的解即可得到 t 的值;③当圆 P 与
AB 所在的直线相切时,设切点为 F,PF 与 OC 交于点 G,由切线的性质得到 PF 垂直于
AB,则 PF 垂直于 OC,由 CD=FG,在直角三角形 OCD 中,利用锐角三角函数定义由 OC 表
9 2
1 2
3b 3 bc
,解得:
b c
1 3
2
,
故:抛物线的表达式为:y= 1 x2-x- 3 , 22
令 y=0,则 x=-1 或 3,令 x=0,则 y=- 3 , 2
故点 C 坐标为(3,0),点 P(1,-2); (2)过点 B 作 BH⊥AC 交于点 H,过点 P 作 PG⊥x 轴交于点 G,
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图,平台 AB 高为 12m,在 B 处测得楼房 CD 顶部点 D 的仰角为 45°,底部点 C 的俯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011南京中考数学总复习:锐角三角函数【例1——特殊的锐角三角函数值】填写表格:【反馈】①已知∠A是锐角,且32,那么90°—∠A 等于 . ②当锐角α>30°时,则α的值是( ) A .大于12B .小于12C .大于32D .小于32【例2——与三角形的有关计算】已知△中,∠90°,43,8,则等于( ) A .6B .323C .10D .12【反馈】①如图,在等腰△中,∠90o,6,D 是上一点,若∠51,则的长为 .②在△中,∠75°,∠60°,22,则 .【例3——锐角三角函数之间的关系】若28°α,则α= . 【反馈】①直角三角形两锐角的正切函数的积为 .②在△中,∠90°,若是方程52x -148=0的一个根,则 A , A . ③2°·4°·6°…88°【例4——锐角三角函数的计算】230°245°260°·45°30° 45°60° α α α【反馈】①()02cos602009π--°②先化简.再求代数式的值.22 ()2111a a a a a ++÷+-- 其中a =60°-230°.【例5——解直角三角形】在△中,∠C=90°,=24,=513,求这个三角形的周长.【反馈】已知:如图,在△ABC 中, 90=∠C,AC =D 为BC 边上一点,且2BD AD =,60ADC ∠=︒.求△ABC 周长.(结果保留根号) D CBA【例6——方位角】如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37°方向上,距B 处20海里;C 处在A 处的北偏东65°方向上.求B 、C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,【反馈】①为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰(如图所示),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该商船所在的位置C 处?(结果精确到个1.4 1.7)②某地有一居民楼,窗户朝南,窗户的高度为,此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大β.小明想为自己家的窗户设计一个直角三角形遮阳篷.要求它既能最大限度地遮挡夏天炎热的阳光,又能最大限制地使冬天温暖的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24 °36′,∠β=73°30′,小明又得窗户的高1.65m .若同时满足下面两个条件,(1)当太阳光与地面的夹角为α时,要想使太阳光刚好全部射入室内:(2)当太阳光与地面的夹角为β时,要想使太阳光刚好不射入室内,请你借助下面的图形,帮助小明算一算,遮阳篷中,和的长各是多少?(精确到0.01m) 以下数据供计算中选用24°36′=0.416 24°36′=0.909 24°36′=0.458CAB60° 45°北北73°30′=0.959 73°30′=0.28473°30′=3.376【例7——俯角、仰角】如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60, 看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高? (结果精确到0.1 m ,参考数据:73.13≈)【反馈】①如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ;(2)求甲.乙两建筑物之间的距离BC (结果精确到0.01米).(参考数据:2 1.4143 1.732≈,≈)CABαβD乙CB A 甲②坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:Ⅰ在你设计的测量方案中,选用的测量工具是: ; Ⅱ要计算出塔的高,你还需要测量哪些数据?【例8——坡度】庞亮和李强相约周六去登山,庞亮从北坡山脚C 处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路、看成线段,结果保留根号)【反馈】①我市某区为提高某段海堤的防海潮能力,计划将长96m 的一堤段(原海堤的横断面如图中的梯形)的堤面加宽1.6m ,背水坡度由原来的1:1改成1:2,已知原背水坡长8.0m ,求完成这一工程所需的土方,要求保留两个有效数字. (提供数据:2 1.41,3 1.73,5 2.24≈≈≈)ABCD M N αβ图1图2PMNi=1:2i=1:11.6mEDCBAF②云南2009年秋季以来遭遇百年一遇的全省特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形,∥,为水面,点E 在上,测得背水坡的长为18米,倾角∠30°,迎水坡上线段的长为8米,∠120°.(1)请你帮技术员算出水的深度(精确到0.01米,参考数据732..13≈);(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)图7120︒30︒FED CBA【例9——几何综合型】如图,是半圆O 的直径,C 为半圆上一点,N 是线段上一点(不与B ﹑C 重合),过N 作的垂线交于M , 交的延长线于E ,过C 点作半圆O 的切线交于F.(1)求证:△∽△; (2)若∶=3∶2,求 的值.【反馈】①已知:如图,在△中,=,是角平分线,平分∠交于点M ,经过B 、M 两点的⊙O 交于点G ,交于点F ,恰为⊙O 的直径. (1)求证:与⊙O 相切;EN O CB A F(2)当=4,31cos =C 时,求⊙O 的半径.②(请量力而行!)已知:在△中=,点D 为边的中点,点F 是边上一点,点E 在线段的延长线上,∠=∠,点M 在线段上,∠=∠. (1)如图1,当∠=45°时,求证:=2;(2)如图2,当∠=60°时,则线段、之间的数量关系为: . (3)在(2)的条件下延长到P ,使=,连接,若=7,=72, 求∠的值.【例10——大综合型】(请量力而行!)如图,在△中,∠=90°.半径为1的圆A 与边相交于点D ,与边相交于点E ,连结并延长,与线段的延长线交于点P. (1)当∠B =30°时,连结,若△与△相似,求的长; (2)若2,,求∠的正切值;(3)若1tan 3BPD ∠=,设,△的周长为y ,求y 关于x 的函数关系式.【反馈】(请量力而行!)如图10,以点M (—1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线33533--=x y 与⊙M 相切于点H ,交x 轴于点E ,求y 轴于点F 。
(1)请直接写出、⊙M 的半径r 、的长;(2)如图11,弦交x 轴于点P ,且:3:2,求∠的值; (3)如图12,点K 为线段上一动点(不与E 、C 重合),连接交⊙M 于点T ,弦交x 轴于点N 。
是否存在一个常数a ,始终满足·a =,如果存在,请求出a 的值;如果不存在,请说明理由。
答 案【例1】30° 45° 60°【反馈】①30°②D【例2】A 【反馈】①2②32【例3】62° 【反馈】①1②54,34 ③1(点拨:直角三角形两锐角的正切函数的积为1)【例4】34+62 【反馈】①3.②3.【例5】60【反馈】3572++【例6】B C ,之间的距离约为21.6海里.【反馈】①我护航舰约需28分钟就可到达该商船所在的位置C . ②的长约为0.26m ,的长约为0.57m .【例7】这栋楼高约为152.2 m . 【反馈】①(1)54m (2)31.18m②(1)太子灵踪塔()MN 的高度为45m .(2)Ⅰ测角仪.皮尺;Ⅱ站在P 点看塔顶的仰角.自身的高度.【例8】李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .α 21 22 23α 23 2221 α3313【反馈】①完成这工程约需土方2.4×103m 3.②(1)2.07m ;(2)0.10m【例9】(1)略;(2)3/4 【反馈】①(1)略;(2)3②(1)如图1 连接∵ ∴⊥ 又∵∠45°BDMBAE BD AB ABC AB BD ∠=∠=∠⋅=∴ 2cos 即∠∠ ∴△∽△MD AE DBABDM AE 22=∴==∴(2)2(3)如图2 连接、 ∵ ∠60°D ∴△为等边三角形 又∵D 为中点 ∴⊥ ∠3021 ∵∠∠ ∠∠ ∴△∽△ 2==∴DBABBM BE ∠∠ ∴ 又∵ ∴ 又∵∠∠60° ∴△为等边三角形∴⊥ ∴∠90° ∴∠90°23tan 21772,22=∠∴=-=∴==∆EAB AE AB BE AB AE AEB Rt 中在∵D 为中点 M 为中点 ∴ ∴∠∠ ∴∠∠23tan =∠∴PCB 347347tan 327sin =-=∴=∠⋅=∆=∠⋅=∆ND AD NA NCD DC ND NDC Rt ABD AB AD ABD Rt 中在中在过N 作⊥,垂足为H 在821cos 38721=∠⋅===∆NAH AN AH AH NH ANH Rt 中.53tan 835=∠∴=-=∴ACP AH AC CH 【例10】(1)12.(2)设x ,∠90°,∴222(1)3x x +=+,∴x =4 ,4, 过D 作⊥交于H,如图2,∴∥,∴BD DHBA AC=,∴453DH =, ∴125DH =, 同理可得45CH =,∵∥,∴CE PC DH PH =,212455CP CP =+,∴4, ∵∠90°, ∴tan BPD ∠=12.(3)如图3,当1tan 3BPD ∠=时,设x ,∴3x ,由(2)BD DHBA AC =,CE PC DH PH = ∴设m ,∴(1)1m x DH m +=+,3(1)1m x PH m +=+,331m xCH m -=+,33BC m x =-, ∴222(1)(33)(1)m m x x +=-++,∴1251(),4x m x m +==舍, ∴y +1+x +1+3m -33x +3.HHABCDEP图3图2PEDCBA图1PE DCB A【点拨】此题还有其它解法,过D 作一垂线交线段,此法也较为容易 【反馈】(1)如图①,5,2r =,2(2)如图②,连接、,则90CQD ∠=︒,QHC QDC ∠=∠ 易知CHPDQP ∆∆,故DP DQPH CH=, 322DQ =,3DQ =,由于4CD =, 3cos cos 4QD QHC QDC CD ∴∠=∠==;(3)如图③,连接,,延长,与圆交于点G ,连接,则90GTA ∠=︒ 2490∴∠+∠=︒34∠=∠,2390︒∴∠+∠=由于390BKO ∠+∠=︒,故,2BKO ∠=∠; 而1BKO ∠=∠,故12∠=∠在AMK ∆和NMA ∆中,12∠=∠;AMK NMA ∠=∠ 故AMK NMA ∆;MN AMAM MK=; 即:24MN MK AM ==故存在常数a ,始终满足MN MK a ==4【点拨】此题还有其它解法,连、、,易证B、M、H三点共线,且平行于x轴,证得△相似△。