永磁调速器介绍(简要)
永磁调速器工作原理与特点
>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国现在应用案例主要有电厂,海化自备热电厂, 华电东华电厂, 华能电厂, 中石化燕山石化, 枣庄煤业集团庄煤矿等大型企业集团。
永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。
该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。
它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。
该技术现已在各行各业获得了广泛的应用。
该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。
该产品已经通过美国海军最严格的9-G抗震试验。
同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。
目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。
由于该技术创新,使人们对节能概念有了全新的认识。
在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。
(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。
该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械。
其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。
由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。
导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。
这样电动机和负载由原来的硬(机械)转变为软(磁),通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。
永磁调速器工作原理及特点
>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。
永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。
该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献就是将永磁驱动技术的应用大大拓宽。
它不解决密封的问题,但就是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98、5%。
该技术现已在各行各业获得了广泛的应用。
该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。
该产品已经通过美国海军最严格的9-G抗震试验。
同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。
目前,由MagnaDrive公司与美国西北能效协会组成专门小组对该技术设备进行商业化推广。
由于该技术创新,使人们对节能概念有了全新的认识。
在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。
(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)就是通过铜导体与永磁体之间的气隙实现由电动机到负载的转矩传输。
该技术实现了在驱动(电动机)与被驱动(负载)侧没有机械链接。
其工作原理就是一端稀有金属氧化物硼铁钕永磁体与另一端感应磁场相互作用产生转矩,通过调节永磁体与导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。
由下图所示,PMD主要由导体转子、永磁转子与控制器三部分组成。
导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子与永磁转子之间有间隙(称为气隙)。
这样电动机与负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体与导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。
永磁调速器产品结构和技术原理
永磁调速器产品结构和技术原理
永磁调速器系统由永磁调速器本体、电动执行器、控制信号源、控制中心、电缆等集成。
永磁调速器安装在电动机和负载之间,通过导体转子和永磁体转子之间的气隙实现电动机到负载端无接触式联接的扭矩传递。
其工作原理是:当导体转子和永磁体转子之间相对运动时,导体转子切割磁力线,在导体转子中产生感应电流,感应电流进而产生感应磁场,感应磁场与永磁体转子产生的磁场交互作用,从而实现两者之间的扭矩传递。
永磁调速器本体包括:1.永磁体转子(连接于负载侧);2.导体转子(连接于电机侧);3.调速机构。
调速机构可调节永磁体转子和导体转子的相对位置,改变两者之间磁场耦合的面积,从而改变传递的扭矩。
耦合面积增大,通过永磁调速器传递的扭矩就增大,负载转速提高;耦合面积变小,通过永磁调速器传递的扭矩就变小,负载转速降低。
电动执行器给调速机构提供动力,根据控制中心的指令进行动作,调节耦合面积,进而调节扭矩输出,并将结果反馈给控制中心。
控制中心可以是PLC控制、智能仪表控制、也可以是DCS控制。
控制信号源则为工艺需要的控制对象,对于水泵系统而言可能是管网压力、流量、或者液位。
对于风机系统而言则可能是压力、流量等工艺参数。
因此控制信号源可能为压力、流量、液位等参数,此参数通过变送器可转化为4~20mA 的电流信号,指示电动执行器动作。
永磁调速器实现了电动机和负载之间无接触式联接,有效的解决了旋转负载系统的对中、软启动、调速节能、减振等问题。
整个系统结构示意图如下:。
永磁调速器工作原理
永磁调速器工作原理永磁调速器是一种常见的电机调速器,通过利用永磁体产生的磁场和电流之间的相互作用,实现对电机的调速控制。
在现代工业中,永磁调速器被广泛应用于各种领域,如风力发电、电动汽车、电梯等。
下面将介绍永磁调速器的工作原理。
1. 磁场产生永磁调速器中通常采用永磁体来产生磁场。
永磁体是一种能够持续产生磁场的材料,常见的有钕铁硼、钴磁体等。
当永磁体被加热或外界磁场作用时,就会产生一个稳定的磁场。
2. 电流控制在永磁调速器中,通过控制电流的大小和方向,可以改变电机中的磁场分布,从而实现电机的调速。
通常采用功率半导体器件,如晶闸管、IGBT等来实现电流控制。
3. 磁场与电流的相互作用当电流通过电机绕组时,会产生一个磁场。
这个磁场与永磁体产生的磁场相互作用,产生磁力,驱动电机运转。
通过控制电流的大小和方向,可以调节电机的转速。
4. 调速控制永磁调速器通过控制电流的大小和方向,可以实现对电机的调速控制。
当需要提高电机转速时,增大电流;当需要降低电机转速时,减小电流。
通过精确控制电流,可以实现电机平稳、高效地运行。
5. 特点与应用永磁调速器具有响应速度快、效率高、体积小、结构简单等优点,适用于对转速要求高、精度要求高的场合。
在风力发电、电动汽车、电梯等领域都有广泛的应用。
总的来说,永磁调速器利用永磁体和电流之间的相互作用,实现对电机的调速控制。
通过精确控制电流的大小和方向,可以实现电机的平稳、高效运行,满足不同场合的需求。
在未来,随着技术的不断进步,永磁调速器将在更多领域展现出其巨大的应用潜力。
风冷型永磁调速器介绍及日常维护课件ppt
2021/3/10
27
2021/3/10谢谢 Nhomakorabea28放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/10
29
9
2.永磁调速器使用安全注意
➢ 在进行永磁调速器拆装时,由于永磁体可以使心脏起搏器、去纤颤器、或者其它 电子治疗仪误动或者使其参数复位到出厂值。因此凡带有任何电子治疗仪的工作人 员必须与永磁调速器保持安全距离,请上述人员保持距永磁调速器1m以上。 ➢ 在进行永磁调速器拆装时,由于永磁体对铁制品的吸力相当大,并且一旦吸引不
u周围环境相对湿度不大于95%(+25℃);
u无淋水、积水;
u大气压力80kPa~106kPa。
2021/3/10
13
4.永磁调速器的日常巡检
(1)观察现场永磁调速器的运行情况
看:气隙是否有变动,
地脚螺栓是否松动,
负载、电机接地是否可靠,
防护罩是否被意外落物砸伤,
能否对调节机构进行调节;
电动执行机构有无过电流、过扭矩等故障提示,
2021/3/10
11
2.永磁调速器使用安全注意
警告
l避免松散衣服、长头发、首饰等物卷入设备。
l在起动永磁调速器之前,请清理周围所有的松散 的物件,否则设备在旋转运动时将产生的强风将 使这些部件伤人。
2021/3/10
12
3.永磁调速器的运行环境
u环境温度:-20~+45℃;
u海拔高度不超过4000m;
2021/3/10
19
5.永磁调速器的小修期维护
润滑脂通过油枪注入润滑点, 每个型号设备的每个润滑点润 滑脂补充量和补充时间见下表 。
润滑点位置 设备类型 每次加入量 间隔时间 轴承型号
永磁调速器介绍
永磁调速器介绍
1.高效性能:永磁调速器采用了先进的调制技术,能够提供较高的效率,减少能源的浪费,并且降低了设备的散热和损耗。
2.宽范围的调速性能:永磁调速器可以实现广泛的转速范围调节,从低速到高速,甚至超高速都可以实现精确的控制。
3.高动态性能:永磁调速器响应速度快,能够实现快速加速和减速,非常适用于需要频繁改变转速的工况。
4.系统可靠性高:永磁调速器采用了先进的控制算法和保护机制,可以实现稳定的运行和保护电机免受过载、短路等故障的影响。
5.高精度的控制:永磁调速器通过电流和电压的调节,可以实现非常精确的转速控制,满足各种工艺要求。
在机械制造领域,永磁调速器被广泛应用于机床、印刷机、包装机等设备中,可以实现高效、精确的工作,提高产品质量和生产效率。
在能源行业,永磁调速器被用于发电设备,可以根据电网的需求调整发电机的转速,实现电能的稳定输出。
在冶金行业,永磁调速器被应用于轧钢机、连铸机等设备中,可以实现精确的轧制和冷却过程,降低产品的能耗和生产成本。
在石油化工行业,永磁调速器被用于泵、风机等设备中,可以根据实际需要调整流量和压力,提高设备的运行效率和系统的稳定性。
在交通运输领域,永磁调速器被广泛应用于电动车辆、电梯、飞机等设备中,可以实现高效的动力输出和精确的控制。
总之,永磁调速器作为一种先进的电动机控制设备,具有高效、精确、可靠和灵活的特点,在各个行业中得到广泛应用,并为工业生产和社会发
展带来了巨大的效益。
永磁调速器工作原理
永磁调速器工作原理
永磁调速器是一种电力电子器件,主要用于驱动直流电机,实现电机的调速。
其工作原理是利用永磁体产生的磁场与电流产生的磁场相互作用,从而控制电机的转速。
永磁调速器主要由三个部分组成:整流器、逆变器和控制器。
整流器将交流电源转换为直流电源,逆变器将直流电源转换为交流电源,控制器则控制整个系统的工作状态。
当永磁调速器开始工作时,交流电源经过整流器转换为直流电源,直流电源经过逆变器转换为交流电源,然后送入电机。
在这个过程中,控制器会根据电机的负载情况和用户的需求,调整逆变器的输出电压和频率,从而控制电机的转速。
在永磁调速器中,永磁体是关键部件之一。
永磁体是一种能够产生恒定磁场的材料,通常采用稀土永磁材料。
永磁体的磁场与电流产生的磁场相互作用,从而控制电机的转速。
永磁调速器具有调速范围广、响应速度快、效率高等优点,被广泛应用于工业生产和家庭生活中的各种电机驱动系统。
简述永磁同步电机调速
简述永磁同步电机调速永磁同步电机调速是指通过控制永磁同步电机的电流和电压来实现电机转速的调节。
永磁同步电机调速具有调速范围广、响应快、效率高等优点,因此广泛应用于工业生产和交通运输等领域。
永磁同步电机调速的基本原理是通过改变电机的磁场状况来调节电机的转速。
永磁同步电机的磁场由永磁体和定子产生,通过控制定子的电流和永磁体的磁通量,可以改变电机的磁场分布,从而实现转速的调节。
永磁同步电机调速通常采用矢量控制或直接转矩控制两种方式。
矢量控制是指通过测量电机的转速和电流,利用数学模型计算出电机的磁场分布,然后根据需要调节电机的磁场分布,从而控制电机的转速。
直接转矩控制是指通过测量电机的转矩和电流,直接控制电机的转矩,从而实现转速的调节。
在永磁同步电机调速中,控制器起着关键作用。
控制器通过测量电机的转速和电流,计算出电机的转矩和转速误差,然后根据控制算法产生控制信号,通过控制电机的电流和电压来调节电机的转速。
常见的控制算法有PID控制、模糊控制和神经网络控制等。
永磁同步电机调速还可以通过改变电机的供电电压来实现。
通过改变电机的供电电压,可以改变电机的磁场分布,从而影响电机的转速。
常见的供电电压调整方法有变压器调压、直流电压调节和PWM调制等。
永磁同步电机调速在工业生产中有广泛应用。
例如,在机床和风力发电机组中,永磁同步电机调速可以实现转速的精确控制,提高生产效率和能源利用率。
在电动汽车和轨道交通中,永磁同步电机调速可以实现车辆的平稳起步和高速行驶,提高车辆的性能和安全性。
永磁同步电机调速是一种通过控制电机的电流和电压来实现转速调节的技术。
它具有调速范围广、响应快、效率高等优点,并且在工业生产和交通运输等领域有重要应用。
随着科技的不断进步,永磁同步电机调速技术将进一步发展和完善,为各行各业带来更多的便利和效益。
永磁调速器汇总
永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。
是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。
主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。
永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。
通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。
调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。
导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。
永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。
能实现可重复的、可调整的、可控制的输出扭矩和转速。
永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。
当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。
永磁调速器电动执行机构工作原理
永磁调速器电动执行机构工作原理随着科技的发展,电动执行机构在工业自动化控制中扮演着越来越重要的角色。
而永磁调速器电动执行机构则是电动执行机构中的一种重要形式,具有高效、稳定、精准、响应速度快等特点,在工业自动化领域得到了广泛的应用。
永磁调速器电动执行机构的工作原理是指,在控制系统的控制下,通过永磁调速器对电动执行机构进行调速,从而实现对执行机构的精准操控。
下面,我们将详细介绍永磁调速器电动执行机构的工作原理。
1.永磁调速器的工作原理永磁调速器是利用永磁同步电机的特性进行调速的一种装置。
永磁同步电机是一种将永磁体作为励磁源的同步电机,其转子上的励磁磁场是由永磁体产生的,因此具有良好的稳态特性和较高的效率。
通过对永磁调速器中的永磁体磁场进行控制,可以实现对电机的转速调节,从而达到调速的目的。
2.电动执行机构的工作原理电动执行机构通常由电动机、减速机、传动机构和执行机构等部分组成。
其中,电动机负责驱动执行机构的运动,减速机负责将电动机的高速转动转换为执行机构所需的低速高扭矩输出,传动机构负责将减速机的输出传递给执行机构,执行机构则负责完成所需的动作。
在实际应用中,电动执行机构的工作原理是通过对电动机的控制,来实现对执行机构的精准操控。
3.永磁调速器电动执行机构的工作原理永磁调速器电动执行机构是将永磁调速器与电动执行机构相结合的一种机电一体化装置。
在工作时,永磁调速器首先对永磁同步电机的励磁磁场进行调节,实现对电机的转速调节。
然后,通过传动机构将电机的转动传递给执行机构,从而实现对执行机构的精准操控。
4.工作原理分析永磁调速器电动执行机构在工作时,通过控制永磁调速器来实现对电机的转速调节,从而精准地控制执行机构的运动。
这种机电一体化的设计,使得永磁调速器电动执行机构具有高效、稳定、精准、响应速度快等特点。
同时,由于永磁调速器具有高效、稳定的特性,能够提高整个系统的工作效率,降低能耗,从而在工业自动化领域得到了广泛的应用。
永磁传动装置
永磁传动装置(永磁调速器/永磁耦合器)节能解决方案一、永磁传动装置(永磁调速器/永磁耦合器)1)永磁调速器2)永磁耦合器永磁调速技术是利用磁力驱动负载工作,实现了电机与负载之间非接触的扭力传递。
电机驱动的主动转子高速旋转,在从动转子产生的磁场中切割磁力线,从而产生感应磁场,通过磁场之间相互作用力,驱动负载工作,实现扭力的传递。
主动转子与从动转子之间的气隙越小,永磁传动传递的扭力越大,负载转速越高;气隙越大,永磁传动传递的扭力越小,负载转速越低。
通过调整气隙的大小,可实现对负载的无级调速。
是在永磁耦合器的基础上加入调节机构,调节器调节筒形永磁转子与筒形导体转子在轴线方向的相对位置,以改变永磁转子和导体转子耦合的有效部分,即可改变两者之间传递的扭矩,能实现可重复的、可调整的、可控制的输出扭矩和转速,实现调速节能的目的。
3)永磁调速器空冷装置空冷永磁可调速器传动装置利用导体上方空气的旋转运动,驱散永磁转子与导体之间的“滑差”产生的热量。
这种滑差与永磁可调速传动装置(永磁调速器)装置的扭力传递量直接相关,可以通过改变转子与导体之间的气隙进行调节。
一般而言,空冷永磁可调速传动装置(永磁调速器)在电机功率范围介于10~500Hp之间的应用条件下使用。
当电机功率高于500Hp或者电机转速较低时,建议采用水冷传动装置。
4)永磁调速器水冷装置永磁可调速传动装置(永磁调速器)水冷装置利用永磁转子和导体的相对运动,以离心方式引导稳定的冷却水经过传动元件,发挥传导冷却功能,驱散热量。
一般而言,水冷永磁可调速传动装置(永磁调速器)空冷装置用于电机功率高于500马力、永磁转子和导体的转动速度低到不足以对这些元件进行空气冷却等应用情况。
公司已经将其水冷可调速传动装置成功的安装于供水泵站、引风机、冷却塔风机和其它设备上。
二、永磁调速器的工作原理永磁可调速传动装置(永磁调速器)的工作原理是通过气隙将扭力从电机端传向负载端,设备传动侧与负载侧之间无连接。
永磁调速器工作原理
永磁调速器工作原理
永磁调速器的工作原理是基于有限回路的磁力共振原理,将普通电路和磁力共振原理有机结合,从而实现调速功能。
永磁调速器由磁力共振变压器、磁力共振变频器和可调把手组成。
永磁调速器的核心部分是磁力共振变压器,这部分由磁芯、感受线圈和变压线圈组成。
磁芯上安装有变压线圈,它由一对磁铁片和一组绝缘绳或板材组成,这组绝缘绳或板材被交叉缠绕以形成一个直流电路。
变压线圈内聚集的磁场能够抵消变压器磁芯上另一组线圈产生的磁场,从而产生不同的频率。
感受线圈由绝缘绳缠绕而成,其主要功能是接收、调节和输出磁场电压。
当把手移动时,感受线圈内的磁场会产生一定的电压,这种电压会周期性地与变压线圈内的磁场相互作用,从而产生调节电压,把手的移动速度也会随着电压的变化而变化。
2、永磁调速器的优点
永磁调速器可以有效地控制和调整输出电压的频率,可以实现低频运行以及高频运行,满足用户在实际应用中的要求。
它具有结构简单、工作可靠、调速精度高、抗干扰性强等优点。
它的工作原理也简单,不仅可以实现无级调速,而且可以获得高质量的调速输出,可以有效地抑制噪声,缩短响应时间,减少系统占用空间。
3、永磁调速器的应用
永磁调速器广泛应用于工业设备、家用电器和医疗设备等领域,以满足用户对调速的需求。
它可以用于电动机的调速,可以实现电动
机的扩大和缩小,运行速度在一定范围内自由变化。
它还可以用于给房间提供恒温,用于控制风扇的转速,用于控制汽车的空调,用于处理压缩空气、水流等等。
永磁调速器工作原理及特点
永磁调速器工作原理及特点
1.高效率:永磁调速器具有较高的效率,能够将电能转换为机械能的
能力较高,可以节约能源。
2.易于控制:永磁调速器可以通过调节电流和磁场大小来控制电机的
转速和扭矩,控制精度较高。
3.宽速度范围:永磁调速器可以实现广泛的速度范围调节,从低速到
高速都可以得到平稳可靠的调速效果。
4.快速响应:永磁调速器具有快速的响应能力,可以在短时间内实现
从静止到运动的转换。
5.高可靠性:永磁调速器采用磁场调节方式,不需要摩擦部件,减少
了机械故障和磨损,提高了设备的可靠性和稳定性。
6.体积小巧:永磁调速器采用电子元器件和磁性材料,使其体积小巧,便于安装和维护。
1.磁场调节:永磁调速器通过调节磁场大小和方向来控制电机的转速。
通过改变电流和磁势能的差异来实现转矩的控制。
2.电流控制:永磁调速器通过控制电流的大小和方向来改变电机的磁场,以控制转速和扭矩。
3.电源供应:永磁调速器通常需要外部电源供电,以提供控制所需的
电能。
4.反馈调节:永磁调速器通常通过采集电机的转速、电流等参数进行
反馈调节,以保持电机的稳定工作状态。
5.控制系统:永磁调速器通常需要配备一个控制系统,用于监测和调节电机的工作状态,以实现精确的调速控制。
总结起来,永磁调速器具有高效率、易于控制、宽速度范围、快速响应、高可靠性和小巧的特点。
这些特点使得永磁调速器广泛应用于各种电机调速领域,如工业生产、交通运输等。
同时,永磁调速器还能够提高电机的动态响应能力,减少功率损耗,提高能源利用率。
永磁调速器概况
永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。
是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。
主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。
永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。
通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。
调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。
导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。
永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。
能实现可重复的、可调整的、可控制的输出扭矩和转速。
永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。
当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。
变频调速与永磁调速性能比较
变频调速与永磁调速性能比较永磁调速器(Adjustable Permanent Magnetic Coupler,APMC)相比传统的变频调速技术,具有维护方便、容忍对中误差、减小振动传递、避免产生电力谐波污染以及电磁干扰等诸多优点,已经成功应用于电力、石油化工等行业中。
本文对永磁调速器的工作原理、磁路结构以及磁力传递转矩的原理进行了深入系统地研究,这些研究工作对永磁调速器的产品化有着重要意义。
标签:永磁调速器;磁路设计;磁路结构一、变频调速的介绍目前,交流电机控制已成为一门集电机学、电力电子技术、自动控制技术、数字仿真和计算机控制为一体的新兴学科。
因此,作为电气控制相关专业技术人员,了解和掌握交流电机系统数字控制系统的工作原理的设计方法,不仅可以帮助我们根据需要选择。
设计合理的控制方案,以达到效益最大化,而且还可以引进、吸收、消化国外先进技术,同时可继续深入探讨研究和改进交流电机的控制理论和控制策略方法。
在交流电机调速系统中,调速性能最佳、最稳定的是变频调速系统,因此对变频调速技术的研究是当前电机调速领域中最有前景、最有实际应用价值的工作。
变频器就是一个完整的变频调速控制系统,变频器产业的市场潜力非常大,此处提到的“变频器产业”并不局限于变频器本身,而是包括所有与变频器技术相关的产业,如调速系统与系统控制技术、电力电子功率器件的驱动、保护及相关电路的生产、工业应用等。
二、永磁调速器的介绍随着高性能永磁材料的问世,以及磁力传动技术的不断完善,一种新兴的节能调速装置——永磁调速器随之诞生。
永磁调速器安装在电动机与负载之间,采用纯机械式结构,利用磁场间的作用力传递转矩,实现了非接触传递能量,可根据负载需求实时地控制输出转矩与转速。
此外,永磁调速器本身无需电源,消除了电力谐波污染,有助于实现节能减排、保护环境的目标。
在使用风机与泵的相关行业中,永磁调速系统完全可以替换变频调速系统,控制器通过处理各种过程信号如压力、流量、位移等,实时地调节永磁调速器的输出转速与转矩,實现对负载的调速。
永磁调速器与变频器的比较
永磁调速器与变频器的比较一、永磁调速器简介:永磁调速驱动器是在永磁耦合器的基础上加入调节机构,调节器调节筒形永磁转子与筒形导体转子在轴线方向的相对位置,以改变永磁转子和导体转子耦合的有效部分,即改变两者之间传递的扭矩,能实现可重复的、可调整的、可控制的输出扭矩和转速,实现调速节能的目的。
其具备以下特点:1、永磁调速器调速范围0-98%,应用电机功率范围为200kW~2500kW,电压范围3300kV以上。
2、永磁调速器使电机和负载分开,无机械连接,隔离振动。
3、永磁调速器安装简便,容忍较大的对中误差,占用空间小。
4、永磁调速器能适应各种恶劣环境,包括电网电压波动大、谐波严重、易燃易爆、潮湿、粉尘等场所。
5、永磁调速器能延长传动系统各主要部件(轴承、密封等)的使用寿命,降低维护成本。
6、永磁调速器绿色环保,无谐波,无污染物、无EMI(电磁波)干扰问题。
7、永磁调速器使用寿命长,可达30年。
8、对于电机功率小于315kW的永磁调速器永磁调速器结构简单、可靠,主体部分为机械结构,无需外接电源,且维护保养工作量极小,运行成本低。
9、当电机功率大于315kW或电机转速较低的,一般采用水冷型永磁调速器,水冷型永磁调速器要求水源为清洁水源,水质和水温都有很高的要求;水路设计复杂,需要有循环系统(水箱、和泵)、冷却系统(换热器)、外部水冷系统(泵)控制系统、反馈系统,系统复杂,故障点多。
另外水冷型永磁调速器水冷系统运行成本相对较高,维护成本高。
二、永磁调速器的节能原理1、永磁调速器的调速特性最适合风机、水泵等离心负载的工作特性;2、风机、水泵使用挡板、阀门调节流量会导致风阻或水阻增大,产生能量损耗;而通过调整风机、水泵转速改变流量不使风阻或水阻增大,避免了能量损耗;3、根据流体机械的相似定律,流量与负载转速成正比,功率与转速的立方成正比。
调速过程中,电机的输出速度保持不变,但永磁调速器的输出速度会发生变化。
电动机的输出转矩与负载转矩降低,所以电动机的输出功率(正比于力矩M和转速n的乘积)也变小,实现了节能。
PMD永磁t调速产品介绍
GB/T14549-93中规定,公用电网谐波电压 (相电压)限值为380V(220V)电网电压总THDv为 5%,各次谐波电压含有率奇次为4%,偶次为2%。
如图所示,永磁调速器没有被测试到它对其它与之相连 的设备会产生谐波。永磁调速器只是一个简单的机械装 置,当它对负载进行调速时,电机始终处于额定转速运 行,故不会降低电机的功率因数,因此它对周围系统的 功效均没有影响。
永磁调速器安装于电机和负载之间,在电机转 速不变的情况下,通过调节气隙或耦合面积,改变 负载转速,从而实现对流量或压力的连续控制。
永磁传动技术主要是传递扭矩
电机输出的扭矩=负载设备所需扭矩
离心式负载符合流体机械相似定律
Q1/Q2 = (n1/n2) (流量变化与转速变化成正比) H1/H2 = (n1/n2)2 (压力变化与转速变化的平方成正比) T1/T2 = (n1/n2)2 (负载扭矩变化与转速变化的平方成正比) 电机输出功率P1=T*n (功率=扭矩*转速)
2
永磁调速器显著优点
减少 振动
减缓负 载冲击
高效 节能
无级 调速
零负载 启动
容易 安装
高可 靠性
延长设 备寿命
堵转 保护
无谐波
恶劣环 境使用
1 高效节能
(可无级0~98.5%调整转速)
2 简单
(构造简单、容易安装、本身无需电源)
3 可靠
(不怕恶劣环境,MTBF长达30年)
4 软启动
(电机可在空载状态启动,降低启动电流, 减少启动时间)
KW
5.5 7.5 11 15 18.5 22 30 37 45 55 75 90 110 132 160 200 250 315 355 400 450 500 500~800 800~1300 1300~1800 1800~2500 2500~3200 3200~4000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——永磁调速器
昶禾科技
2013年5月
永磁调速发展史
1. 20世纪30年代,永磁传动就已经被人们提出,但是当时对这一技术缺乏 认识,同时受到永磁材料的限制,基本没有多大进展 2. 1946年,英国HMD无泄漏磁力泵公司将世界上第一台磁力传动泵推向市
场以来,该技术受到了普遍的重视
3. 20世纪80年代,随着新的稀土永磁材料的问世,开发磁力传动得到了前 所未有的辉煌阶段。磁力驱动传递扭矩能力提高了3-4倍,传递的最大功
率已达到400kw。使磁力驱动泵的使用寿命大幅提高。至此人们的研究主
要集中在同步式永磁耦合器 4. 1998年由美国马格纳福斯提出了一种全新的涡流式永磁耦合器,并可以
对离心式风机泵实现调速功能,人们称其为永磁调速器,其原理主要是
通过调节气隙实现负载调速,该产品一出来就受到了市场的广泛关注 5. 2009年10月,一种全新的永磁调速技术,通过调节啮合面积实现调速,
节电原理
关系图详解
转速 (%) 100 90 80 70 60 50 流量 (%) 100 90 80 70 60 50 压力 (%) 100 81 64 49 36 25 轴功率 (%) 100 72.9 51.2 34.4 21.6 12.5 节电率 (%) 0 27.1 48.8 65.7 78.4 87.5 备注 1. 流量与转速的一次 方成正比 2. 压力(扬程)与转 速的二次方成正比 3. 轴功率与转速的三 次方成正比 当降低水泵风机的转 速时,流量也同比 例下降,但功率却 以转速的立方迅速 下降
填补术特点
无机械连接、电机空载启动、启动电流小 机械产品、无易损件 适用于电网质量差、电磁干扰强的环境
非接触传递扭矩、有效隔离振动
安装要求低、允许轴向窜量10mm 对中误差1mm
节电率可达10%--60%
环境噪音增量小于5db 传递效率98%
三种常用调速技术比较
适用负载
离心泵
离心风机
压缩机
部分业绩
部分业绩
部分业绩
部分业绩
部分业绩
部分业绩
部分业绩