《圆与圆的位置关系》练习题(含答案)
高中数学圆与圆的位置关系总结练习含答案解析S
2.2.3 圆与圆的位置关系圆与圆的位置关系及判定1.圆与圆的位置关系圆与圆的位置关系外离外切相交内切内含公共点个数0 ①② 1 02.设两圆半径分别为r1,r2,圆心距为d,则两圆相交时,r1,r2,d的关系为③.两圆外切时,r1,r2,d的关系为④.3.设两圆方程分别为x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,联立得{x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,方程组有两组不同实数解⇔两圆⑤,有⑥实数解⇔两圆相切,无实数解⇔两圆外离.圆系方程的应用1.(2014湖北黄冈期中,★☆☆)圆C1:x2+y2+4x-4y+4=0与圆C2:(x-2)2+(y-5)2=9的公切线有条.思路点拨求出圆心距,即可得出结论.2.(2013江苏白蒲模拟,★★☆)求圆心在直线x-y-4=0上,且经过两圆x2+y2-4x-6=0和x2+y2-4y-6=0交点的圆的方程.思路点拨本题解法较多,可考虑利用公共弦求解,也可以利用圆系方程求解.3.(2014江苏建湖中学训练,★★☆)已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A,B两点,且这两点平分圆N的圆周,求圆心M的轨迹方程,并求圆M的半径最小时的方程.思路点拨从几何性质入手分析,抓住圆心和半径分析圆的方程.4.(2013苏南四校月考,★★★)已知☉O:x2+y2=1和点M(4,2).(1)过点M向☉O引切线l,求直线l的方程;(2)求以点M为圆心,且被直线y=2x-1截得的弦长为4的☉M的方程;(3)设P为(2)中☉M上任一点,过点P向☉O引切线,切点为Q.试探究:平面内是否存在一定点R,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.一、填空题1.已知圆O1:x2+y2-2x-4y+4=0与圆O2:x2+y2-8x-12y+36=0,两圆的位置关系为.2.圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为.3.若a2+b2=4,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.4.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是.5.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是.6.点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y+1=0上,则|PQ|的最小值是.7.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2},且M∩N=N,则r的取值范围是.8.设A={(x,y)|y=√2a2-x2,a>0},B={(x,y)|(x-1)2+(y-√3)2=a2,a>0},若A∩B≠⌀,则a的最大值为.9.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为.10.圆C1:x2+y2=1与圆C2:x2+y2-2x-2y+1=0的公共弦所在直线被圆C3:(x-1)2+(y-1)2=254截得的弦长是.二、解答题11.试分别确定圆C1:x2+y2+4x-6y+12=0与C2:x2+y2-2x-14y+k=0(k<50)外切、内切、相交、内含、外离时,k的取值范围.12.已知圆x2+y2-4ax+2ay+20(a-1)=0(a≠2).(1)求证:对于任意实数a(a≠2),该圆过定点;(2)若该圆与圆x2+y2=4相切,求实数a的值.知识清单①1 ②2 ③|r 1-r 2|<d<r 1+r 2 ④d=r 1+r 2 ⑤相交 ⑥两组相同链接高考1.答案 3解析 C 1(-2,2),r 1=2,C 2(2,5),r 2=3,|C 1C 2|=√(-2-2)2+(2-5)2=5,∵|C 1C 2|=r 1+r 2,∴圆C 1与圆C 2外切.所以圆C 1与圆C 2有3条公切线.2.解析 解法一:由{x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得到两圆公共弦所在直线方程为y=x, 由{y =x ,x 2+y 2-4y -6=0, 解得{x 1=-1,y 1=-1或{x 2=3,y 2=3.∴圆x 2+y 2-4x-6=0和x 2+y 2-4y-6=0的交点分别为A(-1,-1)、B(3,3), 线段AB 的垂直平分线方程为y-1=-(x-1). 由{y -1=-(x -1),x -y -4=0,得{x =3,y =-1. ∴所求圆的圆心为(3,-1), 半径为√(3-3)2+[3-(-1)]2=4. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法二:由解法一,求得A(-1,-1)、B(3,3). 设所求圆的方程为(x-a)2+(y-b)2=r 2,由{a -b -4=0,(-1-a )2+(-1-b )2=r 2,(3-a )2+(3-b )2=r 2,得{a =3,b =-1,r 2=16. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法三:设经过两圆交点的圆系方程为 x 2+y 2-4x-6+λ(x 2+y 2-4y-6)=0(λ≠-1), 即x 2+y 2-41+λx-4λ1+λy-6=0. ∴圆心坐标为(21+λ,2λ1+λ),又∵圆心在直线x-y-4=0上, ∴21+λ-2λ1+λ-4=0,即λ=-13,∴所求圆的方程为x 2+y 2-6x+2y-6=0.3.解析 两圆方程相减,得公共弦AB 所在的直线方程为2(m+1)x+2(n+1)y-m 2-1=0, 由于A,B 两点平分圆N 的圆周,所以A,B 为圆N 直径的两个端点, 即直线AB 过圆N 的圆心N,而N(-1,-1),所以-2(m+1)-2(n+1)-m 2-1=0, 即m 2+2m+2n+5=0,即(m+1)2=-2(n+2)(n≤-2), 又圆M 的圆心M(m,n),所以圆心M 的轨迹方程为(x+1)2=-2·(y+2)(y≤-2), 又圆M 的半径r=2+1≥√5(n≤-2), 当且仅当n=-2,m=-1时半径取得最小值,∴当圆M 的半径最小时,圆M 的方程为x 2+y 2+2x+4y=0.4.解析 (1)显然,直线l 的斜率存在.设切线l 的方程为y-2=k(x-4),易得√k 2+1=1,解得k=8±√1915. ∴切线l 的方程为y-2=8±√1915(x-4). (2)圆心到直线y=2x-1的距离为√5,设圆M 的半径为r,则r 2=22+(√5)2=9,∴☉M 的方程为(x-4)2+(y-2)2=9.(3)假设存在这样的点R(a,b),设点P 的坐标为(x,y),相应的定值为λ(λ>0), 根据题意及勾股定理可得PQ=√x 2+y 2-1, ∴√x 2+y 2√(x -a )+(y -b )=λ,即x 2+y 2-1=λ2(x 2+y 2-2ax-2by+a 2+b 2),(*) 又点P 在☉M 上, ∴(x -4)2+(y-2)2=9,即x 2+y 2=8x+4y-11,代入(*)式得,8x+4y-12=λ2[(8-2a)x+(4-2b)y+(a 2+b 2-11)].若系数对应相等,则等式恒成立,∴{λ2(8-2a )=8,λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,解得a=2,b=1,λ=√2或a=25,b=15,λ=√103, ∴可以找到这样的定点R,使得PQPR 为定值.当点R 的坐标为(2,1)时,比值为√2; 当点R 的坐标为(25,15)时,比值为√103.基础过关一、填空题 1.答案 外切解析 由题意得圆的半径分别为1,4,圆心距为√(4-1)2+(6-2)2=5=4+1,故两圆外切. 2.答案 2或-5解析 圆C 1:(x+2)2+(y-m)2=9的圆心为(-2,m),半径为3;圆C 2:(x-m)2+(y+1)2=4的圆心为(m,-1),半径为2.依题意有√(-2-m )2+(m +1)2=3+2, 即m 2+3m-10=0, 解得m=2或m=-5. 3.答案 外切解析 ∵两圆的圆心分别为O 1(a,0),O 2(0,b),半径r 1=r 2=1,∴O 1O 2=√a 2+b 2=2=r 1+r 2,则两圆外切. 4.答案 (x±4)2+(y-6)2=36解析 设所求圆的圆心为(a,6),由两圆内切,得√a 2+(6-3)2=6-1,解得a=±4,则此圆的方程是(x±4)2+(y-6)2=36.5.答案 (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析 动圆圆心的轨迹是以已知圆的圆心(5,-7)为圆心,以3或5为半径的圆. 6.答案 3√5-5解析 (x-4)2+(y-2)2=9的圆心为C 1(4,2),半径为r 1=3;(x+2)2+(y+1)2=4的圆心为C 2(-2,-1),半径为r 2=2.又|C 1C 2|=3√5,显然两圆外离,所以|PQ|的最小值是3√5-5. 7.答案 (0,2-√2]解析 由于M∩N=N,故圆(x-1)2+(y-1)2=r 2在圆x 2+y 2=4内部,当两圆内切时,√2=2-r,则r=2-√2,因此r 的取值范围是(0,2-√2].8.答案2(√2+1)解析A表示以O(0,0)为圆心,√2a为半径的半圆,B表示以O'(1,√3)为圆心,a为半径的圆.∵A∩B≠⌀,即半圆O与圆O'有公共点,则当两圆内切时,a最大,即√2a-a=OO'=2,∴a的最大值为2(√2+1).9.答案√7解析记直线y=x+1上任意一点与圆心的距离为h,记切线长为l,则始终有等量关系h2=l2+1.故当h取得最小值时,切线长取最小值,易知h的最小值即为圆心到直线y=x+1的距离,故hmin=2√2,此时l=√7.10.答案√23解析圆C1与圆C2的公共弦所在直线的方程为x2+y2-1-(x2+y2-2x-2y+1)=0,即x+y-1=0.圆心C3到直线x+y-1=0的距离d=√2=√22,所以所求弦长为2√r2-d2=2√254-12=√23.二、解答题11.解析将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C 1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=√50-k(k<50).从而圆心距d=√(-2-1)2+(3-7)2=5.当两圆外切时,d=r1+r2,即1+√50-k=5,解得k=34;当两圆内切时,d=|r1-r2|,即|1-√50-k|=5,解得k=14;当两圆相交时,|r1-r2|<d<r1+r2,即|1-√50-k|<5<1+√50-k,解得14<k<34;当两圆内含时,d<|r1-r2|,即|1-√50-k|>5,解得k<14;当两圆外离时,d>r1+r2,即1+√50-k<5,解得34<k<50.12.解析(1)证明:将圆的方程整理得(x2+y2-20)+a(-4x+2y+20)=0,此方程表示过圆x2+y2=20与直线-4x+2y+20=0的交点的圆系.解方程组{x2+y2=20,-4x+2y+20=0得{x=4,y=-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x-2a)2+(y+a)2=5(a-2)2(a≠2).若两圆外切,则2+√5(a -2)2=√(2a -0)2+(-a -0)2,解得a=1+√55. 若两圆内切,则|2-√5(a -2)2|=√(2a -0)2+(-a -0)2,解得a=1-√55或a=1+√55(舍去). 综上所述,a=1±√55.。
人教A版(2019)选择性必修第一册《直线与圆、圆与圆的位置关系》提升训练(含解析)
人教A版(2019)选择性必修第一册《2.5 直线与圆、圆与圆的位置关系》提升训练一、单选题(本大题共8小题,共40分)1.(5分)若a2+b2=43c2,则直线ax+by+c=0被圆x2+y2=1所截得的弦长为()A. 2B. 1C. 34D. 122.(5分)方程(a−1)x−y+2a+1=0(a∈R)所表示的直线与圆(x+1)2+y2=25的位置关系是()A. 相离B. 相切C. 相交D. 不能确定3.(5分)两内切圆的半径长是方程x2+px+q=0的两根,已知两圆的圆心距为1,其中一圆的半径为3,则p+q=()A. 2或4B. 4C. 1或5D. 54.(5分)若圆P的半径为1,且经过坐标原点,过圆心P作圆(x−4)2+(y−3)2=4的切线,切点为Q,则|PQ|的最小值为()A. √3B. 2√3C. 2D. 45.(5分)直线4x−3y=0被圆(x−1)2+(y−3)2=10所截得的弦长为()A. 3B. 3√2C. 6D. 6√26.(5分)以直线ax−y−3−a=0(a∈R)经过的定点为圆心,2为半径的圆的方程是()A. x2+y2−2x+6y+6=0B. x2+y2+2x−6y+6=0C. x2+y2+6x−2y+6=0D. x2+y2−6x+2y+6=07.(5分)圆x2+y2−2x−8y+13=0截直线ax+y−1=0所得的弦长为2√3,则a=()A. −43B. −34C. √3D. 28.(5分)已知A(−4,0),B(0,4),点C是圆x2+y2=2上任意一点,则ΔABC面积的最大值为()A. 8B. 4√2C. 12D. 6√2二、多选题(本大题共5小题,共25分)9.(5分)已知圆C1:(x+1)2+y2=1和圆C2:(x−4)2+y2=4,过圆C2上任意一点P作圆C1的两条切线,设两切点分别为A,B,则()A. 线段AB的长度大于√2B. 线段AB的长度小于√3C. 当直线AP与圆C2相切时,原点O到直线AP的距离为65D. 当直线AP平分圆C2的周长时,原点O到直线AB的距离为4510.(5分)已知圆O与直线l1:y=2x−4和l2:y=2x+6共有两个公共点,则圆O的方程可以是()A. (x−1)2+(y−3)2=5B. (x−1)2+(y−2)2=5C. (x−1)2+(y+3)2=25D. (x−1)2+(y−10)2=2511.(5分)已知圆C:x2+y2−4x=0和一点M(3,0)()A. 点M在圆C外面B. 过点M的圆C的最短弦所在直线方程是x=3C. 过点M作倾斜角为150∘的直线l被圆C所截得的弦长为√15D. 过点N(−2,0)作斜率为k的直线与圆C有公共点,则k∈[−√33,√3 3]12.(5分)在平面直角坐标系xOy中,已知圆C的方程为x2+(y−1)2=4,过点P(x0,y0)存在直线l被圆C截得的弦长为2√3,则下列点P的坐标满足条件的是()A. (0,0)B. (0,1)C. (12,1) D. (2,0)13.(5分)已知圆C:(x−2)2+(y−2)2=25,直线l:3x−4y+m=0.圆C上恰有3个点到直线l的距离为3.则m的值为()A. −13B. −8C. 12D. 17三、填空题(本大题共5小题,共25分)14.(5分)(1)已知圆O:x2+y2=1,圆M:(x−a)2+(y−a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°.则实数a的取值范围为________.(2)在平面直角坐标系xOy中,圆C的方程为x2+y2−8x+15=0,若直线y=kx−2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________15.(5分)已知M(3,0)是圆x2+y2−8x−2y+10=0内一点,则过点M最长的弦所在的直线方程是______.16.(5分)过点(1,0)且与直线x-√2y+3=0平行的直线l被圆(x-6)2+(y-√2)2=12所截得的弦长为________.17.(5分)若直线l:ax+by−5=0(ab>0)恒过圆C:(x−3)2+(y−2)2=25的圆心,则3a +2b的最小值为__________.18.(5分)在面直角坐系Oy中,圆C程为(x−22+(−3)2=9,若过点M03)的线与交于PQ点(其中点P第二象)且∠PM=2∠PQO,则点Q的横坐标为 ______ .四、解答题(本大题共5小题,共60分)19.(12分)已知直线l1:x−y−2=0与圆C:x2+y2−2x+6y=0交于A,B两点,直线l2过点(1,−3)且l2//l1,l2与圆C交于M,N两点.求由点A,B,M,N构成四边形的面积.20.(12分)在平面直角坐标系xOy中,已知圆O1:x2+y2−mx−14y+60=0,三个点A(2,4)、B、C均在圆O1上,(1)求该圆的圆心O1的坐标;(2)若OA →=BC →,求直线BC 的方程;(3)设点T(0,t)满足四边形TABC 是平行四边形,求实数t 的取值范围. 21.(12分)已知圆C :x 2+8x +y 2=0,直线l :mx +y +2m =0.(1)当直线l 与圆C 相交于A ,B 两点,且|AB |=2√14,求直线l 的方程. (2)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得|PM ||PN |=12若存在,求出点M ,N 的坐标;若不存在,说明理由.22.(12分)已知圆C :x 2+y 2−4x +ay +1=0(a ∈R ),过定点P(0,1)作斜率为−1的直线交圆C 于A 、B 两点,P 为AB 的中点. (1)求实数a 的值;(2)从圆外一点M 向圆C 引一条切线,切点为N ,且有MN =√2MP ,求MN 的最小值. 23.(12分)在位于城市A 南偏西60°相距100海里的B 处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为r(r >50)海里: (1)若r =70,求台风影响城市A 持续的时间(精确到1分钟)? (2)若台风影响城市A 持续的时间不超过1小时,求r 的取值范围.答案和解析1.【答案】B;【解析】解:因为a 2+b 2=43c 2,圆x 2+y 2=1, 所以圆心O(0,0)到直线ax +by +c =0的距离d =√a 2+b2=√32, 所以直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为l =2√r 2−d 2=2×12=1. 故选:B.利用圆的性质及弦长公式即求.此题主要考查直线与圆的位置关系,考查学生的运算能力,属于中档题.2.【答案】C; 【解析】该题考查直线过定点问题,考查直线与圆位置关系的判定,是基础题. 求出直线所过定点,再由定点在圆内得答案.解:由(a −1)x −y +2a +1=0,得a(x +2)−x −y +1=0, 联立{x +2=0−x −y +1=0,解得{x =−2y =3.∴直线(a −1)x −y +2a +1=0过定点(−2,3), ∵(−2+1)2+32=10<25,∴点(−2,3)在圆(x +1)2+y 2=25的内部,则直线(a −1)x −y +2a +1=0与圆(x +1)2+y 2=25的位置关系是相交. 故选:C .3.【答案】C;【解析】解:根据题意,设两个圆的半径为R ,r ,且R =3, 则有|R −r|=1,解可得r =2或4,又由R 、r 是方程x 2+px +q =0的两根,则{R +r =−p Rr =q ,当r =2时,p =−5,q =6,此时p +q =1, 当r =4时,p =−7,q =12,此时p +q =5, 故p +q =1或5, 故选:C .根据题意,设两个圆的半径为R ,r ,且R =3,由圆心距求出r 的值,结合一元二次方程根与系数的关系分析可得答案.此题主要考查圆与圆的位置关系,涉及一元二次方程根与系数的关系,属于基础题.4.【答案】B;【解析】解:由圆P的半径为1,且经过坐标原点,可得圆心P的轨迹为x2+y2=1,又圆C:(x−4)2+(y−3)2=4,其圆心C(4,3),半径r=2,过点P作圆C:(x−4)2+(y−3)2=4的切线,切点为Q,则|PQ|=√|PC|2−4,当|PC|最小时,|PQ|最小,又由点P在单位圆上,则|PC|的最小值为|OC|−1=√9+16−1=4,则|PQ|的最小值为√16−4=2√3.故选:B.由已知可得P的轨迹,画出图形,求得|PC|的最小值,则答案可求.该题考查直线与圆位置关系的应用,考查数学转化思想方法与数形结合的解题思想方法,是中档题.5.【答案】C;【解析】此题主要考查直线与圆相交的弦长.先根据圆的方程求得圆的圆心坐标和半径,进而利用点到直线的距离求得圆心到直线的距离,进而利用勾股定理求得被截的弦的一半,则弦长可求.=1,解:因为圆心到直线的距离为d=|4×1−3×3|5所以l=2√r2−d2=2√10−1=6,故选C.6.【答案】A;【解析】解:由题可知,直线过定点(1,−3),所以圆方程为(x−1)2+(y+3)2=4,即x2+y2−2x+6y+6=0.故选:A.求出圆的圆心,然后写出圆的方程即可.此题主要考查直线系方程的应用,圆的方程的求法,是基础题.7.【答案】A;【解析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.此题主要考查直线和圆的位置关系,点到直线的距离公式的应用,正确运用勾股定理是解答该题的关键.解:圆的方程可化为(x−1)2+(y−4)2=4,则由垂径定理可得点到直线距离为√22−(√3)2=1,圆心坐标为(1,4),由点到直线的距离公式得:d=√a2+1=1,化简可得(a+3)2=a2+1,解得a=−43.故选A.8.【答案】C;【解析】解:根据题意,A(−4,0),B(0,4),则直线AB的方程为x−y−4=0,且|AB|=√16+16=4√2,圆x2+y2=2的圆心为O,其坐标为(0,0),半径r=√2,则O到直线AB的距离d=√1+1=2√2,要求ΔABC面积的最大值,则点C到直线AB的距离最大,又由点C是圆x2+y2=2上任意一点,则C到直线AB距离的最大值为d+r=2√2+√2=3√2,故ΔABC面积的最大值为12×3√2×4√2=12;故选:C.根据题意,由A、B的坐标求出直线AB的方程以及|AB|的值,由圆的方程分析圆心的坐标以及圆的半径,分析可得要求ΔABC面积的最大值,则点C到直线AB的距离最大,由点与圆的位置关系分析可得C到直线AB距离的最大值,计算即可得答案.该题考查点到直线的距离公式的应用,涉及三角形面积的计算,属于基础题.9.【答案】AD;【解析】解:如图示:C 1(−1,0),C 2(4,0),根据直角三角形的等面积方法可得,|AB|=2⋅|PA|⋅|AC 1||PC 1|=2⋅√|PC 1|2−1|PC 1|=2√1−1|PC 12,由于|PC 1|∈[3,7], 故2√1−1|PC 1|2∈[4√23,8√37], 由于4√23>√2,8√37>√3,故A 正确,B 错误;当直线AP 与圆C 2相切时,由题意可知AP 斜率存在, 故设AP 方程为y =kx +m , 则有|−k+m|√1+k 2=1,|4k+m|√1+k 2=2,即|4k +m|=2|k −m|,即2k =−3m 或6k =m ,设原点O 到直线AP 的距离为d ,则d =|m|√1+k2=|m||k−m|, 当2k =−3m 时,d =25;当6k =m 时,d =65,故C 错误; 当直线AP 平分圆C 2的周长时,即直线AP 过点C 2(4,0),AP 斜率存在,设直线AP 方程为y =t(x −4),即tx −y −4t =0, 则|−t−4t|√1+t 2=1,即|5t|√1+t 2=1,|t|√1+t 2=15,故原点O 到直线AP 的距离为d ′,则d ′=|4t|√1+t2=45,故D 正确; 故选:AD.根据圆的切线的几何性质可求得|AB|=2√1−1|PC 1|2,确定|PC 1|∈[3,7],可求得√1−1|PC1|2∈[4√23,8√37],即可判断A ,B ;当直线AP 与圆C 2相切时,设直线AP 的方程,利用和圆相切可得|4k +m|=2|k −m|,继而求得原点O 到直线AP 的距离,判断C ;当直线AP 平分圆C 2的周长时,直线AP 过点C 2(4,0),设直线AP 方程,可得|t|√1+t2=15,由此求得原点O 到直线AP 的距离,判断D.此题主要考查直线与圆的位置关系,考查学生的运算能力,属于中档题.10.【答案】ABD; 【解析】此题主要考查的是直线与圆的位置关系,关键是找出圆心到直线的距离与圆的半径的大小关系,属于中档题.根据各个选项给出的圆的方程,分别计算出圆心到直线的距离,再与圆的半径进行比较,即可找出符合条件的圆的方程.解:直线l1:y=2x−4和l2:y=2x+6化为一般式为:l1:2x−y−4=0和l2:2x−y+6=0,两直线平行,A:(x−1)2+(y−3)2=5,圆心为(1,3),半径为√5,圆心到直线l1:2x−y−4=0的距离为√5=√5,直线l1:2x−y−4=0与圆相切,圆心到直线l2:2x−y+6=0的距离为√5=√5,直线l2:2x−y+6=0与圆相切,共有两个公共点,故A正确;B:(x−1)2+(y−2)2=5,圆心为(1,2),半径为√5,圆心到直线l1:2x−y−4=0的距离为√5=4√55<√5,直线l1:2x−y−4=0与圆相交,有两个交点,圆心到直线l2:2x−y+6=0的距离为√5=6√55>√5,直线l2:2x−y+6=0与圆相离,无公共点,故B正确;C:(x−1)2+(y+3)2=25,圆心为(1,−3),半径为5,圆心到直线l1:2x−y−4=0的距离为√5=√55<5,直线l1:2x−y−4=0与圆相交,有两个交点,圆心到直线l2:2x−y+6=0的距离为√5=11√55<5,直线l2:2x−y+6=0与圆相交,有两个交点,故C错误;D:(x−1)2+(y−10)2=25,圆心为(1,10),半径为5,圆心到直线l1:2x−y−4=0的距离为√5=12√55>5,直线l1:2x−y−4=0与圆相离,无交点,圆心到直线l2:2x−y+6=0的距离为√5=2√55<5,直线l2:2x−y+6=0与圆相交,有两个交点,故D正确.故选ABD.11.【答案】BCD;【解析】此题主要考查点与圆、直线与圆的位置关系,属于一般题.将点M坐标代入圆的方程即可判断A;利用过点M的圆C的最短弦与CM垂直即可判断B;利用弦长公式即可判断C;利用圆心到直线的距离小于等于半径即可判断D.解:对于A、因为32+02−4×3<0,所以点M在圆C内部,故A错误;对于B 、因为圆C 方程可化为(x −2)2+y 2=4,圆心为C(2,0),半径为r =2, 由于过点M 的圆C 的最短弦与CM 垂直,又k CM =0,则该弦所在直线的斜率不存在, 故对应的方程为x =3,故B 正确; 对于C 、l 的方程为y =−√33x +√3,即√3x +3y −3√3=0, 圆心C 到l 的距离为d =√3−3√3|√(√3)2+32=12,故弦长为2√r 2−d 2=2√22−(12)2=√15,故C 正确;对于D 、因为过点N(−2,0)作斜率为k 的直线方程为y =kx +2k ,即kx −y +2k =0, 因为直线与圆C 有公共点,则√k 2+(−1)2⩽2,解得k ∈[−√33,√33],故D 正确, 故选BCD .12.【答案】AD; 【解析】此题主要考查直线与圆相交,属基础题目, 利用弦心距、半弦长、半径满足勾股关系得解.解:圆C 的方程为x 2+(y −1)2 = 4, ∴圆心C(0,1),半径为2,由题意过点P 存在直线l 被圆C 截得的弦长为2√3, 设圆心C 到直线l 的距离为d , 则d 2=r 2−(2√32)2,d 2=4−3=1,则点P 到点C 的距离不小于1,∴满足条件的点P 的坐标 (0,0)或 (2,0), 故选AD .13.【答案】BC;【解析】解:圆C :(x −2)2+(y −2)2=25的圆心为C(2,2),半径r =5, 因为圆C 上恰有3个点到直线l 的距离为3. 所以圆心C 到直线l 的距离为r −3=2, 所以√32+42=2,整理得|m −2|=10,解得m =12或m =−8. 故选:BC.根据圆的性质,得到圆心到直线l 的距离等于2,由点到直线的距离公式求解即可. 此题主要考查直线与圆的位置关系,考查点到直线的距离公式的应用,考查方程思想与运算求解能力,属于基础题.14.【答案】(1)[2−√22,2+√22] (2)43; 【解析】(1)此题主要考查了轨迹思想以及圆与圆的位置关系的应用.其中条件“∠APB =60°”就是用来确定点P 的轨迹的,一方面,根据点满足∠APB =60°,从而得到点P 在动圆x 2+y 2=4上,,另一方面,P 也在圆M 上,从而将所求解的问题转化为研究圆与圆的位置关系的问题,通过它们的位置关系,就可以求出变量a 的取值范围.解:(1)因为圆M 上存在点P ,使经过点P 作圆O 的两条切线, 切点为A ,B ,使∠APB =60°,则∠APO =30°, 所以OP =2,即点P 在圆x 2+y 2=4上,又点P 在圆M 上,圆M 圆心为(a,a −4),半径为1, 于是2−1⩽√a 2+(a −4)2⩽2+1, 即1⩽√a 2+(a −4)2⩽3, 解得实数a ∈[2−√22,2+√22]. 故答案为[2−√22,2+√22]. (2)此题主要考查根据圆和圆的位置关系求解参数的取值范围的问题.本题关键在于利用圆和圆有公共点建立关于k 的不等式,再利用直线上至少存在一点,从而将问题转化为不等式有解的问题.解:由题意知圆C 的方程可化为(x −4)2+y 2=1,则圆心C(4,0). 设直线上一点的坐标为(x,kx −2), 则由题意得√(x −4)2+(kx −2)2⩽2, 整理得(k 2+1)x 2−(8+4k )x +16⩽0,此不等式有解的条件是Δ=(8+4k )2−64(k 2+1)⩾0, 解得0⩽k ⩽43,故最大值为43. 故答案为43.15.【答案】x-y-3=0;【解析】解:把圆的方程x 2+y 2−8x −2y +10=0化为标准方程得: (x −4)2+(y −1)2=7, 所以圆心坐标为(4,1),又M(3,0),根据题意可知:过点M 最长的弦为圆的直径, 则所求直线为过圆心和M 的直线,设为y =kx +b , 把两点坐标代入得:{4k +b =13k +b =0,解得:{k =1b =−3,则过点M 最长的弦所在的直线方程是y =x −3,即x −y −3=0. 故答案为:x −y −3=0由M 为已知圆内一点,可知过M 最长的弦为过M 点的直径,故过点M 最长的弦所在的直线方程为点M 和圆心确定的直线方程,所以把圆的方程化为标准,找出圆心坐标,设出所求直线的方程,把M 和求出的圆心坐标代入即可确定出直线的方程.该题考查了直线与圆的位置关系,要求学生会将圆的方程化为标准方程,会利用待定系数法求一次函数的解析式,根据题意得出所求直线为过圆心和M 的直线是本题的突破点.16.【答案】6; 【解析】此题主要考查直线的点斜式方程,直线与圆的位置关系,点到直线的距离公式. 【解析】解:设与直线x −√2y +3=0平行的直线方程为x −√2y +c =0, 将点(1,0)代入直线x −√2y +c =0得c =−1, 所以该直线方程为x −√2y −1=0,圆(x −6)2+(y −√2)2=12的圆心C 为(6,√2),半径r =2√3, 所以点C 到直线x −√2y −1=0的距离为d =√2×√2−1√1+2=√3=√3,所以被截得的弦长为2√r 2−d 2=2×√12−3=6, 故答案为6.17.【答案】5 ; 【解析】此题主要考查直线和圆的位置关系,注意运用直线过圆心,考查乘1法和均值不等式的运用,考查运算能力,属于中档题.求得圆的圆心,代入直线方程,可得3a +2b =5(a 、b >0),即有3a +2b =15(3a +2b)(3a +2b ),计算、运用基本不等式,即可得到最小值.解:圆C :(x −3)2+(y −2)2=25的圆心为(3,2),由题意可得3a+2b=5(a、b>0),则3a +2b=15(3a+2b)(3a+2b)=15(13+6ab+6ba)⩾15(13+2√6ab)=15(13+12)=5.当且仅当a=b=1时,取得最小值5.故答案为5.18.【答案】1;【解析】解:图所示,以MO=MQ=,解x=1,与圆的方(x−2)2+(y3)29联立,以点Q的横标为1.则点M(3)为圆,r=3为半径的圆方程为消y得:−4x+=0,x2+(−3)2=,据题意画出形,结图得出点Q在以点为心,3为半上,写出圆的方程,与圆C的方联立去y求得x的值即可.本题查了直线与圆的程应用问题,也考了化法与数形结合的应问题,是基题目.19.【答案】解:由题知,设直线l2:x−y+m=0,代入点(1,−3)得m=−4,即直线l2:x−y−4=0,∵圆C:x2+y2−2x+6y=0,化为(x−1)2+(y+3)2=10,∴圆心坐标为(1,−3),半径为√10,则直线l2过圆心(1,−3),所以|MN|=2√10,又圆心C(1,−3)到直线l1:x−y−2=0的距离为d=√2,∴|AB|=2√(√10)2−(√2)2=4√2,∵l 2//l 1 ∴l 1到l 2的距离√12+(−1)2=√2,∴由A,B,M,N 构成四边形为梯形,且面积S =12×(4√2+2√10)×√2=4+2√5.;【解析】此题主要考查两条直线平行的判定,点到直线的距离公式,两平行直线间的距离,直线与圆的位置关系及判定,属于中档题.先由直线l 2过点(1,−3)且l 2//l 1,求出l 2的方程,再分别求出弦长|AB |,|MN |,及两平行线间的距离,即可求由A,B,M,N 构成梯形的面积.20.【答案】解:(1)将A(2,4)代入圆O 1:x 2+y 2−mx −14y +60=0得4+16−2m −56+60=0,解得m =12, ∴O 1(6,7),半径r =5.(2)∵OA →=BC →,∴k BC =k OA =2,且|BC |=|OA |=2√5, 设直线BC :y =2x +b ,即2x −y +b =0, 圆心O 1到直线2x −y +b =0的距离d =√22+1=√5,由勾股定理得2√5=2√25−d 2,∴d 2=20,∴(5+b)25=20,∴5+b =±10,∴b =5或b =−15,所以直线BC 的方程为y =2x +5或y =2x −15. (3)设B(x 1,y 1),C(x 2,y 2), 所以{x 2=x 1−2y 2=y 1+t −4…①,因为点C 在圆O 1上,所以(x 2−6)2+(y 2−7)2=25…② 将①代入②,得(x 1−8)2+(y 1+t −11)2=25,于是点B 既在圆O 1上,又在圆(x −8)2+(y +t −11)2=25上,从而圆(x −6)2+(y −7)2=25与圆(x −8)2+(y +t −11)2=25有公共点, 所以5−5⩽√(8−6)2+(11−t −7)2⩽5+5, 解得4−4√6⩽t ⩽4+4√6.因此,实数t 的取值范围是[4−4√6,4+4√6].;【解析】该题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,属于中档题.(1)将A 点代入圆的方程可得m 的值,继而求出半径和圆心;(2)可设直线BC 方程为:y =2x +b ,可得圆心O 1(6,7)到直线BC 的距离,结合弦心距定理可得b 的值,求出直线方程;(3)设B(x 1,y 1),C(x 2,y 2),得{x 2=x 1−2y 2=y 1+t −4,(x 1−8)2+(y 1+t −11)2=25,于是点B 既在圆O 1上,又在圆(x −8)2+(y +t −11)2=25上,从而圆(x −6)2+(y −7)2=25与圆(x −8)2+(y +t −11)2=25上有公共点,即可求解.21.【答案】解:(1)由x 2+8x +y 2=0得(x +4)2+y 2=16, 因此圆C 的圆心C(−4,0),半径r =4. 因为圆心C 到直线l 的距离d =√m 2+1=√m 2+1,而直线l 与圆C 相交于A ,B 两点, 所以|AB |=2√r 2−d 2=2√16−4m 2m 2+1.又因为|AB |=2√14,所以2√16−4m 2m 2+1=2√14,即4m 2m 2+1=2,解得m =±1,因此直线l 的方程为y =x +2或y =−x −2. (2)设P(x,y),M(x 1,0),N(x 2,0).因为点P 是圆C 上任意一点,而点P 的轨迹方程为x 2+y 2=−8x , 所以x ∈[−8,0].若在x 轴上存在两个定点M ,N ,使得|PM ||PN |=12成立, 即√(x−x 1)2+y 2√(x−x 2)2+y 2=12对x ∈[−8,0]恒成立, 即x 2+y 2+x 12−2x 1x x 2+y 2+x 22−2x 2x =14对x ∈[−8,0]恒成立,化简得−8x +x 12−2x 1x −8x +x 22−2x 2x =14对x ∈[−8,0]恒成立,即2(4x 1−x 2+12)x +(x 22−4x 12)=0对x ∈[−8,0]恒成立,因此޴x 1−x 2+12=0x 22−4x 12=0,解得{ x 1=−6x 2=−12或{ x 1=−2x 2=4, 所以满足题意的定点M ,N 存在,其坐标为M(−6,0),N(−12,0)或M(−2,0),N(4,0).; 【解析】此题主要考查了两点间的距离公式,点到直线的距离公式,圆的标准方程,直线与圆的位置关系及判定和圆方程的综合应用,属于较难题.(1)利用圆的标准方程得圆C 的圆心和半径,再利用点到直线的距离得直线l 与圆C 的相交弦长,再结合题目条件,计算得结论;(2)设P(x,y),M(x 1,0),N(x 2,0),由点P 是圆C 上任意一点得x ∈[−8,0],再利用若在x 轴上存在两个定点M ,N ,使得|PM ||PN |=12成立,结合两点间的距离公式得2(4x 1−x 2+12)x +(x 22−4x 12)=0对x ∈[−8,0]恒成立,从而得޴x 1−x 2+12=0x 22−4x 12=0,从方程{ 4x 1−x 2+12=0x 22−4x 12=0有解得满足题意的定点M ,N 存在,再求出点M ,N 的坐标.22.【答案】解:(1)由x2+y2−4x+ay+1=0(a∈R)得C(2,−a2)因为P为AB的中点,所以P在圆内且CP⊥AB.所以{ 12+a×1+1<0−a2−12=1,解得a=−6.(2)由(1)得圆C:x2+y2−4x−6y+1=0,即(x−2)2+(y−3)2=12,所以圆心C(2,3),半径r=2√3.设M点坐标为(x,y),因为MN为圆C的切线,所以MN⊥CN,所以MN2= MC2−r2=MC2−12,又MN=√2MP,所以2M P2=MC2−12,则2x2+2(y−1)2=(x−2)2+(y−3)2−12,整理,得(x+2)2+(y+1)2=4.由于MN=√2MP,故MN取最小值,即MP取最小值,点P(0,1)到圆(x+2)2+(y+1)2=4的圆心距离d=√(0+2)2+(1+1)2=2√2,所以,MP的最小值为2√2−2,所以,MN的最小值为4−2√2.;【解析】此题主要考查了直线与圆相切,圆中的最值问题,属于中档题.(1)由圆的方程可得C(2,−a2),由题意得P在圆内且CP⊥AB,即可求得实数a的值;(2)由(1)得圆C (x−2)2+(y−3)2=12,设M点坐标为(x,y),结合题意得MN2=MC2−r2=MC2−12,从而有2M P2=MC2−12,可得MN取最小值,即MP取最小值,计算可得结果.23.【答案】解:(1)由题意,AB=70,AC=50,则BC=√4900−2500=20√6,∵风速为120海里/小时,∴台风影响城市A持续的时间为2×20√6120×60≈49分钟;(2)由题意,|BC|≤60,∴√r2−2500≤60,∵r>5,∴5<r≤10√61;【解析】(1)由题意,AB=70,AC=50,则BC=√4900−2500=20√6,根据风速为120海里/小时,即可得出结论;(2)若台风影响城市A持续的时间不超过1小时,|BC|⩽60,求r的取值范围.此题主要考查直线与圆的位置关系,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.。
圆与圆的位置关系综合练习
圆与圆的位置综合练习一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣32.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或73.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>56.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是_________.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为_________s.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是_________米.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于_________.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为_________cm2.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是_________.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有_________个.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是_________.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为_________;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.圆与圆的位置综合练习参考答案与试题解析一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣3考点:圆与圆的位置关系.专题:压轴题.分析:本题直接告诉了两圆的半径及位置关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:设数轴上点B所表示的实数是b,则AB=||b﹣(﹣2)|=|b+2|,⊙B与⊙A外切时,AB=2+1,即|b+2|=3,解得b=1或﹣5,故选C.点评:本题考查了由数量关系及两圆位置关系求圆心坐标的方法.2.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或7考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切,包括了内切或外切,即d=R+r,d=R﹣r,分别求解.解答:解:∵这两圆相切∴⊙O1与⊙O2的位置关系是内切或外切,O1O2=5,⊙O1的半径r1=2,所以r1+r2=5或r2﹣r1=5,解得r2=3或7.故选D.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.3.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm考点:圆与圆的位置关系.专题:压轴题.分析:半径不相等的两圆相切有两种情况:内切和外切,不要只考虑其中一种情况.由⊙O1与⊙O2的直径分别为9cm和4cm得两圆的半径分别为4.5cm、2cm;当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm),所以O1O2的值为6.5cm或2.5cm.注意,相同半径的两圆只有外切与外离,而没有内切与内含的位置关系.解答:解:∵⊙O1和⊙O2相切,∴两圆可能内切和外切,∴当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm);∴O1O2的长是2.5cm或6.5cm.∴故选D.点评:本题考查两圆的位置关系.特别注意:两圆相切,则可能有两种情况,内切或外切.4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈考点:圆与圆的位置关系.专题:压轴题;转化思想.分析:根据自身的周长和滚动的周长求解.解答:解:设圆的半径是r,则另一枚沿着其边缘滚动一周所走的路程是以2r为半径的圆周长,即是4πr,它自身的周长是2πr.即一共滚了2圈.故选C.点评:此题要特别注意正确分析另一枚则沿着其边缘滚动一周所走的路程.5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>5考点:圆与圆的位置关系.专题:压轴题.分析:若两圆没有公共点,则可能外离或内含,据此考虑圆心距的取值范围.解答:解:若两圆没有公共点,则可能外离或内含,外离时的数量关系应满足d>5;内含时的数量关系应满足0≤d<1.故选D.点评:考查了两圆的位置关系和数量关系之间的等价关系.6.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切考点:圆与圆的位置关系.专题:压轴题.分析:由两圆的半径分别2和3,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别为2和3,圆心距为5,又∵2+3=5,∴两圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm考点:圆与圆的位置关系.专题:压轴题;分类讨论.分析:根据两圆的位置关系与圆心距和两圆半径之间的数量关系之间的联系即可解决问题.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:两圆相切时,有两种情况:内切和外切.当外切时,另一圆的半径=9+4=13cm;当内切时,另一圆的半径=9﹣4=5cm.故选D.点评:本题考查了两圆相切时,两圆的半径与圆心距的关系,注意有两种情况.8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含考点:圆与圆的位置关系.分析:此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).解答:解:外离或内含时,两圆没有公共点.故选D.点评:此题考查的是两个圆之间的位置关系,解此类题目时可根据两个圆的交点个数来判断两个圆的位置关系.9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切考点:圆与圆的位置关系;等边三角形的性质.专题:压轴题.分析:要判断两圆的位置关系,需要明确两圆的半径和两圆的圆心距,再根据数量关系进一步判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:根据题意,得:圆O的直径是10,点B到点O的距离是5,则5>5+2,所以⊙B与⊙O的位置关系为外离.故选B.点评:本题考查了由数量关系来判断两圆位置关系的方法.10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14考点:相交两圆的性质.分析:利用了连心线垂直平分公共弦,勾股定理求解,注意两圆相交的情况有两种情况.解答:解:如图,圆A与圆B相交于点C,D,CD与AB交于点E,AC=15,BC=13,由于连心线AB垂直平分CD,有CE=12,△ACE,△BCE是直角三角形,由勾股定理得,AE=9,BE=5,而两圆相交的情况有两种,当为左图时,AB=AE﹣BE=9﹣5=4,当为右图时,AB=AE+BE=14.故选D.点评:本题利用了连心线垂直平分公共弦,勾股定理.二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是12.考点:相切两圆的性质;含30度角的直角三角形;勾股定理;矩形的判定与性质;切线长定理.专题:计算题;压轴题.分析:设⊙O1的半径是R,求出⊙O2的半径是1,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,推出D、O2、O1三点共线,∠CDO1=30°,求出四边形CFO2E是矩形,推出O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,推出R+1=2(R﹣1),求出R=3,求出DO1,在Rt△CDO1中,由勾股定理求出CD,求出AH==AB,根据梯形面积公式得出×(AB+CD)×BC,代入求出即可.解答:解:∵⊙O2的面积为π,设⊙O2的半径是r,则π×r2=π∴⊙O2的半径是1,∵AB和AH是⊙O1的切线,∴AB=AH,设⊙O1的半径是R,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°,∴D、O2、O1三点共线,∠CDO1=30°,∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,∴四边形CFO2E是矩形,∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,∴DO2=2O2E=2,∠HAO1=60°,∵O1O2=2O1F(在直角三角形中,30度角所对的直角边等于斜边的一半),又∵O1F=R﹣1,O1O2=R+1,∴R+1=2(R﹣1),解得:R=3,即DO1=2+1+3=6,在Rt△CDO1中,由勾股定理得:CD=3,∵∠HO1A=90°﹣60°=30°,HO1=3,∴AH==AB,∴四边形ABCD的面积是:×(AB+CD)×BC=×(+3)×(3+3)=12.故答案为:12.点评:本题考查的知识点是勾股定理、相切两圆的性质、含30度角的直角三角形、矩形的性质和判定,本题主要考查了学生能否运用性质进行推理和计算,题目综合性比较强,有一定的难度.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为或3s.考点:圆与圆的位置关系.专题:压轴题;数形结合;分类讨论.分析:首先设点A平移到点A1,所用的时间为ts,根据题意求得AB=2cm,AA1=2tcm,BB1=tcm,再分别从内切与外切四种情况分析求解,即可求得答案.解答:解:设点A平移到点A1,所用的时间为ts,根据题意得:AB=2cm,AA1=2tcm,A1B=(2﹣2t)cm,BB1=tcm,如图,此时外切:2﹣2t=1+t,∴t=;如图,此时内切:2﹣2t=1﹣t,∴t=1,此时两圆心重合,舍去;或2﹣2t=t﹣1,解得:t=1,此时两圆心重合,舍去;如图,此时内切:2t﹣t+1=2,∴t=1,此时两圆心重合,舍去;如图:此时外切:2t﹣t﹣1=2,∴t=3.∴点A平移到点A1,所用的时间为1或3s.故答案为:或3.点评:此题考查了圆与圆的位置关系.解题的关键是注意数形结合与方程思想,分类讨论思想的应用,注意别漏解.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是米.考点:相切两圆的性质.专题:压轴题.分析:连接三个圆的圆心,构造等边三角形.根据等边三角形的性质进行求解.解答:解:连接三个圆的圆心,构造等边三角形,则等边三角形的边长是1.根据等边三角形的三线合一和勾股定理,得等边三角形的高是.则其最高点与地面的距离是(1+)米.点评:此题主要是构造等边三角形,根据等边三角形的性质进行计算.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于19:7.考点:相切两圆的性质.专题:压轴题;规律型.分析:首先正确求得第一个图形的面积,然后结合图形发现面积增加的规律,从而进行分析求解.解答:解:设圆的半径是1,在第一个图形中,阴影部分的面积是3π﹣π=π;观察图形发现:阴影部分的面积依次增加1.5π.所以第四个图形的面积是2.5π+1.5π×3=7π,第12个图形的面积是2.5π+1.5π×11=19π.所以它们的比值是.点评:此类题的关键是找规律,根据规律进行计算.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为4πcm2.考点:圆与圆的位置关系.分析:根据圆的中心对称性,大圆与小圆之间的部分全等,故阴影部分的面积是两圆面积差的一半.解答:解:观察图形,发现:阴影部分的面积是两圆面积差的一半,即S阴影=(S大圆﹣S小圆)=(π×32﹣π×12)=4π.点评:这里要能够把阴影部分合到一起整体计算.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是内含.考点:圆与圆的位置关系.分析:先计算两圆半径的和与差,再与圆心距比较,得出结论.解答:解:因为5﹣3>1,根据圆心距与半径之间的数量关系可知,⊙O1与⊙O2的位置关系是内含.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有4个.考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切有内切和外切两种情况,本题只要画出图形加以判断即可.解答:解:如图:与两圆相切的有4个.点评:本题考查的是圆与圆的位置关系,解此类题目常常要结合图形再进行判断.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是9.考点:圆内接四边形的性质;解分式方程;圆与圆的位置关系;相交两圆的性质;相似三角形的判定与性质.专题:压轴题.分析:连接公共弦AB,构成圆内接四边形ABED,根据圆内接四边形的性质,可证明△ABC∽△EDC,从而得出与AD、BC、BE有关的比例线段,根据AD:BC:BE=1:1:5,设线段长度,代入比例式可求CD、CE的长,在Rt△EDC中,用勾股定理求ED.解答:解:连接AB,在圆内接四边形ABED中,∠BAC=∠E,∠ABC=∠EDC,因为AC为⊙O2直径,则∠ABC=90°,于是△ABC∽△EDC,因为AD:BC:BE=1:1:5,所以,设AD=x,BC=x,BE=5x;于是:=,即6x2=36+6x,x2﹣x﹣6=0,解得x=3,x=﹣2(负值设去),在Rt△EDC中,ED==9.点评:本题考查的是对圆心角和圆周角的关系,以及圆的内接四边形的外角和相应的内对角关系的应用.解答此类题关键是通过角的关系,在解题中应用中间角来寻找等量关系.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为16;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.考点:相切两圆的性质;勾股定理;菱形的性质.分析:(1)根据菱形性质求出AO长,OB=OD,AC⊥BD,根据勾股定理求出BO,即可求出BD;(2)设PB=x,则PD=BD﹣PB=16﹣x.在Rt△PFD中,求出DF=DP•cos∠ADB=(16﹣x),分为两种情况:①当⊙P与⊙D外切时:第一种情况,当P点在点O的左侧,PO=8﹣x,根据相切两圆性质得出PO+DF=PD,代入得出方程(8﹣x)+(16﹣x)=16﹣x,求出x即可;第二种情况,当P点在点O的右侧,PO=x﹣8,根据相切两圆的性质得出PO+DF=PD,代入得出方程(x﹣8)+(16﹣x)=16﹣x,求出方程的解即可;②当⊙P与⊙D内切时:第三种情况,PO=PB﹣OB=x﹣8,根据OP﹣DF═PD,得出方程(x﹣8)﹣(16﹣x)=16﹣x,求出即可;第四种情况,点P在点D右侧时,PF=OD=8,则DP=10,PB=26.解答:(1)解:∵四边形ABCD是菱形,∴AO=OC=AC=6,OB=OD,AC⊥BD,由勾股定理得:BO===8,∴BD=16,故答案为:16.(2)PB=x,则PD=BD﹣PB=16﹣x.∵PF⊥AD,∴在Rt△PFD中,DF=DP•cos∠ADB=(16﹣x);①当⊙P与⊙D外切时:情况一:当P点在点O的左侧,PO=OB﹣PB=8﹣x,此时PO+DF=PD,∴(8﹣x)+(16﹣x)=16﹣x,解得,x=6;情况二:当P点在点O的右侧,PO=PB﹣OB=x﹣8,此时PO+DF=PD,∴(x﹣8)+(16﹣x)=16﹣x,解得,x=;②当⊙P与⊙D内切时:情况三:点P在D的左侧时,PO=PB﹣OB=x﹣8,∵PD>DF,∴DF﹣OP═PD,∴(x﹣8)﹣(16﹣x)=16﹣x,解得,x=;情况四:点P在点D右侧时,DF=OD=8,则DP=10,PB=26,综上所述,PB的长为6或或或26.点评:本题考查了解直角三角形,菱形的性质,勾股定理,相切两圆的性质等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大,注意要进行分类讨论.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.考点:相似三角形的判定与性质;勾股定理;相切两圆的性质.专题:压轴题;探究型.分析:(1)先根据AD∥BC,∠B=90°求出∠EAG=∠B=90°,在Rt△AEG中根据勾股定理可用x表示出EG的值,再根据平行线分线段成比例可得出=,进而可得到关于x、y的关系式,由二次根式有意义的条件求出x的取值范围即可;(2)由△DFG∽△EAG可得到=,可用x表示出GD的值,再把AD=11代入即可求出x的值,进而得出AG的长;(3)①当⊙E与⊙F外切时,EF=EG+FD=EG+FG,再由△DFG∽△EAG即可求出AG=AE=2,进而可得出⊙E与⊙F的半径;②当⊙E与⊙F内切时,EF=FD﹣EG,再把EF、FD及ED的关系式代入即可求出x的值,由勾股定理即可求出两圆的半径.解答:解:(1)∵AD∥BC,∠B=90°,∴∠EAG=∠B=90°,∴EG==,∵=,∴FG===,∵∠DFG=∠EAG=90°,∠EGA=∠DGF,△DFG∽△EAG,∴=,∴=,∴y关于x的函数解析式为y=,定义域为0<x≤4.(2)∵△DFG∽△EAG,∴=,∴=,∴GD=.当AD=11时,x+=11,x1=1,x2=,经检验它们都是原方程的根,且符合题意,所以AG的长为1或.(3)当⊙E与⊙F外切时,EF=EG+FD=EG+FG,∴FD=FG,∵△DFG∽△EAG,∴∠E=∠AGE=∠FGD=∠GDF.∴AG=AE=2;∴⊙E的半径EG=,⊙F的半径FD=.当⊙E与⊙F内切时,EF=FD﹣EG,∴3=﹣,∵≠0,∴3=,∴x=1,∴⊙E的半径EG==,⊙F的半径FD=,∴⊙E的半径为2,⊙F的半径为4;或⊙E的半径为,⊙F的半径为4.点评:本题考查的是相似三角形的判定与性质、勾股定理及两圆相切的性质,涉及面较广,难度较大,在解(3)时要注意分两圆外切与内切两种情况进行讨论.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.考点:垂径定理;勾股定理;圆与圆的位置关系;坐标与图形变化-平移.专题:作图题.分析:(1)连接AB,根据垂径定理求出BO,根据勾股定理求出AB即可;(2)根据已知画出图形即可,根据平移规律求出D的坐标即可;(3)根据图形即可得出结论.解答:(1)解:∵x轴⊥y轴,A在x轴上,∴BO=CO=4,连接AB,由勾股定理得:AB==5,答:⊙A的半径是5.(2)解:如图:圆心D的坐标是(﹣5,6).(3)解:⊙D 与⊙A 的位置关系是外切.点评:本题考查了对勾股定理,垂径定理,圆与圆的位置关系,坐标与图形变化﹣平移等知识点的应用,解此题的关键是根据题意画出图形,培养了学生分析问题的能力,同时也培养了学生观察图形的能力,题型较好,难度适中.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.考点:相切两圆的性质;勾股定理;切线的性质.专题:计算题.分析:(1)设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得出AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,在△ABM中根据勾股定理得出D和x的方程,求出即可;(2)根据(1)结合图形仍能得出函数解析式,即可得出答案.解答:(1)解:如图设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得:AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,∵AC=AB,AM⊥BC,∴BM=CM=(x﹣100)=x﹣50,在Rt△ABM中,由勾股定理得:AB2=AM2+BM2,∴=+,即D=x2﹣x+25.(2)解:当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式能仍然适用,因为那样时,三圆同时与平台相切,有两大圆都与小圆相切时,得出的方程与(1)中的方程相同,所有上面所求得的D与x的函数关系式能仍然适用.点评:本题考查了相切两圆的性质,切线的性质,勾股定理等知识点的应用,能根据题意得出方程是解此题的关键,主要考查学生的观察能力和构造直角三角形的能力,题目比较典型,有一定的难度.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.考点:相切两圆的性质;勾股定理.专题:计算题.分析:分为两种情况:(1)并列摆放,根据烟的直径和烟盒的长、宽得出只能放14根;(2)若错位摆放,连接O1O2、O2O3、O3O1,解答:解:(1)若并列摆放,如图①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图②,连接O1O2、O2O3、O3O1,则O2O3=O3O1=8mm,△O1O2O3为等腰三角形,过O3作O3E⊥O1O2,则E是O1O2的中点.=7(mm).所以在Rt△O1O3E中,(mm).故排列后中排所需空间长度=(mm),三排所需宽度为AB=22mm,故此摆放符合要求.点评:本题考查了对相切两圆的性质,勾股定理,等腰三角形性质的运用,主要培养学生分析问题和解决问题的能力,注意:分类讨论啊.。
2015高考语文一轮配套特训:8-4直线与圆、圆与圆的位置关系(带解析)B
1.根据拼音写出相应的词语。
(1)他结出累累的果实,来呈现大地无尽的甜美与fāng xīn()(2)它chãn miǎn ()于高山、大川、平野对它的欢呼致意。
(3)从早到晚关在家里,难受得屁股下如坐针毡,身上像máng cì zài bâi()(4)不愧是法律界的zhōng liú dǐ zhù()2.“鞠躬尽瘁,死而后已”,这句话体现了我们作为生命个体为事业,为民众,为国家完全和彻底的献身精神。
我们今天常引用龚自珍《己亥杂诗》中的“□□□□□□□,□□□□□□□”来对这种精神进行诠释和褒扬。
3.根据上下文提示填空。
__________________,到乡翻似烂柯人。
东风不与周郎便,_____________________。
_____________________,身世浮沉雨打萍。
采菊东篱下,__________________。
夹岸高山,皆生寒树,_______________,_______________。
1.阅读下文,完成小题。
(16分)动物中的数学“天才”①许多动物的头脑并非像人们想象的那样愚钝,它们不仅聪明,懂得计算、计量或数数,有的甚至是数学“天才”。
②在动物的生活习性中也蕴含着相当程度的数学原理。
A比如,蛇在爬行时,走的是一个正弦函数图形。
它的脊椎像火车一样,是一节一节连接起来的,节与节之间有较大的活动余地。
如果把每一节的平面坐标固定下来,并以开始点为坐标原点,结果发现蛇是按着30度、60度和90度的正弦函数曲线有规律地运动的。
③小小蚂蚁的计数本领也不逊色。
英国昆虫学家光斯顿做过一项有趣的实验:他将一只死蚱蜢切成小、中、大三块,中块比小块大1倍,大块又比中块大1倍,把它们放在蚂蚁窝边。
B 约10分钟工夫,有20只蚂蚁聚集在小块蚱蜢周围,有51只蚂蚁聚集在中块蚱蜢周围,有89只蚂蚁聚集在大块蚱蜢周围。
2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系(附答案解析)
2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系【考点梳理】考点一:两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交外切或内切外离或内含【题型归纳】题型一:判断圆与圆的位置关系1.(2021·佛山市南海区狮山高级中学高二月考)已知圆221:23460C x y x y +--+=,222:60C x y y +-=,则两圆的位置关系为()A .相离B .外切C .相交D .内切2.(2021·南昌市豫章中学高二开学考试(文))已知圆221:(1)(2)9O x y -++=,圆222:(2)(1)16O x y +++=,则这两个圆的位置关系为()A .外离B .外切C .相交D .内含3.(2021·安徽(理))圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为()A .相交B .相离C .相切D .无法确定题型二:圆与圆的位置关系求参数范围4.(2021·南京市第十三中学高二开学考试)若圆22:5O x y +=与圆()221:()20O x m y m R -+=∈相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是()A .22B .92C .4D .325.(2020·黑龙江农垦佳木斯学校高二开学考试)若两圆2222450x y ax y a +-++-=和2222230x y x ay a ++-+-=有3条公切线,则a =()A .1-或2-B .1-或5-C .2-或2D .5-或26.(2021·四川凉山·高二期末(文))已知圆221:1C x y +=和圆()()2222:20C x y r r +-=>,若圆1C 和2C 有公共点,则r 的取值范围是()A .(]0,1B .(]0,3C .[]1,3D .[)1,+∞题型三:圆与圆的位置求圆的方程7.(2020·南昌县莲塘第一中学高二月考(理))圆()()22341x y -+-=关于直线0x y +=对称的圆的方程是()A .()()22341x y ++-=B .()()22341x y -+-=C .()()22431x y ++-=D .()()22431x y +++=8.(2020·全国高二课时练习)过点(2,2)M -以及圆2250x y x -=+与圆222x y +=交点的圆的方程是().A .22151042x y x +--=B .22151042x y x +-+=C .22151042x y x ++-=D .22151042x y x +++=9.(2019·江西赣州市·南康中学高二月考)已知半径为1的动圆与定圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是()A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=3或(x -5)2+(y +7)2=15C .(x -5)2+(y +7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9题型四:圆的公共弦长问题(参数、弦长问题)10.(2021·浙江温州市·)圆221:260O x y x y +-+=和圆222:60O x y x +-=的公共弦AB 的垂直平分线方程是()A .2330x y -+=B .2350x y --=C .3290x y --=D .3270x y -+=11.(2021·全国高二专题练习)垂直平分两圆222620x y x y +-++=,224240x y x y --++=的公共弦的直线方程为()A .3430x y --=B .4350x y ++=C .3490x y ++=D .4350x y -+=12.(2021·石泉县石泉中学高二开学考试(理))设圆1C :()()22119x y -+-=和圆2C :()()22124x y +++=交于A ,B 两点,则线段AB 的垂直平分线所在直线的方程为()A .3210x y --=B .3210x y -+=C .2330x y +-=D .2340x y ++=题型五:圆的共切线问题13.(2021·安徽池州市·高二期末(理))若圆221:2440C x y x y +---=,圆222:61020C x y x y +---=,则1C ,2C 的公切线条数为()A .1B .2C .3D .414.(2021·浙江绍兴市·高二期末)已知圆()221:2C x y m ++=与圆()222:8C x m y -+=恰有两条公切线,则实数m 的取值范围是()A .13m <<B .11m -<<C .3m >D .3<1m -<-或13m <<15.(2021·安徽滁州市·定远二中高二开学考试)两个圆221:240C x y x y +-+=与2222:245200C x y mx my m +-++-=的公切线恰好有2条,则m 的取值范围是().A .()2,0-B .()()2,02,4-C .()2,4D .()(),04,-∞+∞ 题型六:圆与圆位置关系的综合类问题16.(2021·江苏高二课时练习)已知圆C 满足:圆心在直线0x y +=上,且过圆221:210240C x y x y +-+-=与圆222:2280C x y x y +++-=的交点A ,B .(1)求弦AB 所在直线的方程;(2)求圆C 的方程.17.(2020·安庆市第二中学)已知圆C 的圆心C 在x 轴上,且圆C 与直线30x y n ++=切于点33(,)22.(1)求n 的值及圆C 的方程:(2)若圆222:(15)(0)M x y r r +-=>与圆C 相切,求直线320x y -=截圆M 弦长.【双基达标】一、单选题18.(2021·南昌市豫章中学高二开学考试(理))已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为()A .2B .22C .2D .119.(2021·河南商丘市·(文))已知圆221:4O x y +=与圆222:60O x x y ++=相交于点A ,B ,则四边形12AO BO 的面积是()A .423B .22C .42D .82320.(2021·全国)过点()0,4M -作直线l 与圆22:2660C x y x y ++-+=相切于A 、B 两点,则直线AB 的方程为()A .230x y -+=B .7180x y -+=C .2550x y -+=D .2550x y ++=21.(2021·安徽省岳西县店前中学高二期末(文))已知圆22:20M x y ay +-=(0a >)截直线0x y +=所得线段的长度为22,则圆M 与圆22:61240N x y x y +---=的位置关系是()A .内切B .外切C .相交D .相离22.(2021·江苏高二课时练习)已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是()A .1条B .2条C .3条D .4条23.(2020·浙江台州市·高二期中)已知圆C :222245200()x y mx my m m R +-++-=∈上存在两个点到点(1,2)A -的距离为5,则m 可能的值为()A .5B .1C .1-D .3-24.(2021·全国)已知圆221:20C x y kx y +-+=与圆222:20C x y ky ++-=的公共弦所在直线恒过点(),P a b ,且点P 在直线20mx ny --=上,则mn 的取值范围是()A .(],1-∞B .1,14⎛⎤ ⎥⎝⎦C .1,4⎡⎫+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦25.(2021·安徽池州·高二期末(文))若圆221:2440C x y x y +---=与圆222:8120()C x y x y m m R +--+=∈外切,则m =()A .36B .38C .48D .5026.(2021·内蒙古包头市·高二月考(理))已知()()1,0,1,0A B -,圆C :()()22234x y R -+-=(0R >),若圆C 上存在点M ,使90AMB ∠=︒,则圆C 的半径R 的范围是()A .46R ≤≤B .2542R ≤≤C .442R ≤≤D .256R ≤≤27.(2021·重庆)若221:(1)(2)4C x y -+-= 与222:()()4(,)C x a y b a b R -+-=∈ 有公共点,则2224a b a b +--的最大值为()A .9B .10C .11D .12【高分突破】一:单选题28.(2021·贵溪市实验中学高二月考)若圆C 与圆22(2)(1)1x y ++-=关于原点对称,则圆C 的方程是()A .22(2)(1)1x y -++=B .22(2)(1)1x y -+-=C .22(1)(2)1x y -++=D .22(1)(2)1x y ++-=29.(2020·安徽省蚌埠第三中学(理))已知圆()()228x a y a -+-=上总存在两个点到原点的距离为2,则a 的取值范围为()A .11a -<≤B .33a -≤<C .31a -≤≤-或13a ≤≤D .31a -<<-或13a <<30.(2021·江西吉安·白鹭洲中学)若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为()A .8B .9C .16D .2031.(2020·九龙坡区·重庆市育才中学高二月考)若圆C 的圆心在直线40x y --=上,且经过两圆22460x y x +--=和22460x y y +--=的交点,则圆C 的圆心到直线3450x y ++=的距离为()A .0B .85C .2D .18532.(2020·重庆万州区·万州外国语学校天子湖校区)圆()()221:114C x y +++=和圆()()2224:23C x y -+-=的公切线的条数为()A .1B .2C .3D .433.(2020·宁城县蒙古族中学高二月考(理))若圆()221:0O x y m m +=>与圆222:86240O x y x y +-+-=有公共点,则实数m 的取值范围为()A .()4,144B .[]4,144C .[]4,49D .(]4,14434.(2020·江西省吉水中学高二月考(理))已知圆221:0C x y kx y +--=和圆222:210C x y ky +--=的公共弦所在的直线恒过定点M ,且点M 在直线2mx ny +=上,则22m n +的最小值为()A .15B .55C .255D .4535.(2020·南昌市·江西师大附中(文))已知圆1O 的方程为()2216x y ++=,圆2O 的圆心坐标为()2,1.若两圆相交于,A B 两点,且AB 4=,则圆2O 的方程为()A .()()22216x y -+-=B .()()222122x y -+-=C .()()22216x y -+-=或()()222122x y -+-=D .()()222136x y -+-=或()()222132x y -+-=36.(2020·化州市第一中学高二月考)若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为()A .92B .9C .6D .3二、多选题37.(2021·全国高二专题练习)已知两圆221x y +=和22(4)()25x y a ++-=相切,则实数a =()A .213±B .25±C .0D .以上均有可能38.(2021·全国高二期中)点P 在圆221:1C x y +=上,点Q 在圆222:68240C x y x y +-++=上,则()A .||PQ 的最小值为0B .||PQ 的最大值为7C .两个圆心所在的直线斜率为43-D .两个圆相交弦所在直线的方程为68250x y --=39.(2021·全国高二专题练习)已知圆222:210C x ax y a -++-=与圆22:4D x y +=有且仅有两条公共切线,则实数a 的取值可以是()A .3-B .3C .2D .2-40.(2021·重庆北碚区·西南大学附中)设m R ∈,过定点A 的动直线1:0l x my +=,和过定点B 的动直线23:0l mx y m --+=交于点P ,圆()()22:243C x y -+-=,则下列说法正确的有()A .直线2l 过定点(1,3)B .直线2l 与圆C 相交最短弦长为2C .动点P 的曲线与圆C 相交D .|PA |+|PB |最大值为541.(2021·全国)已知圆221:1C x y +=,圆()()()2222:340C x y r r -++=>,则()A .若圆1C 与圆2C 无公共点,则04r <<B .当=5r 时,两圆公共弦长所在直线方程为6810x y --=C .当2r =时,P 、Q 分别是圆1C 与圆2C 上的点,则PQ 的取值范围为[]28,D .当04r <<时,过直线268260x y r -+-=上任意一点分别作圆1C 、圆2C 切线,则切线长相等三、填空题42.(2021·南昌市豫章中学高二开学考试(文))两圆224210x y x y +-++=与22(2)(2)9x y ++-=的公切线有___________条.43.(2020·浙江台州市·高二期中)已知点Q 是圆221x y +=上任意一点,点(2,2)A -,点(6,4)B -,点P 满足2218PA PB +=,则PQ 的最小值为___________.44.(2021·上海高二专题练习)已知圆221:(4)(4)4C x y -+-=,圆222:(3)(5)2C x y -++=.若圆心在x 轴上的圆C 同时平分圆1C 和2C 的圆周,则圆C 的方程为______.45.(2021·台州市书生中学高二期中)已知实数x 、y 满足方程22410x y x +-+=.求:yx的取值范围为_______;y x -的最小值为________;22xy +的取值范围为__________.四、解答题46.(2021·安徽滁州市·明光市二中高二期末(理))已知圆221:(1)1C x y -+=与圆222:80C x y x m +-+=.(1)若圆1C 与圆2C 恰有3条公切线,求实数m 的值;(2)在(1)的条件下,若直线20x y n ++=被圆2C 所截得的弦长为2,求实数n 的值.47.(2020·山西高二期中)已知圆M :22210240x y ax ay +-+-=,圆N :222280x y x y +++-=.且圆M 上任意一点关于直线40x y ++=的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .48.(2021·安徽省蚌埠第三中学(文))已知圆221:2280C x y x y +++-=与圆222:210240C x y x y +-+-=相交于A 、B 两点.(1)求公共弦AB 的长;(2)求圆心在直线y x =-上,且过A 、B 两点的圆的方程;(3)求经过A 、B 两点且面积最小的圆的方程.49.(2020·全国高二课时练习)如图,在平面直角坐标系xOy中,已知点()2,4P,圆22:4O x y+=与x轴的正半轴的交点是Q,过点P的直线l与圆O交于不同的两点,A B.(1)求AB的中点M的轨迹方程;(2)设点4,03N⎛⎫⎪⎝⎭,若133MN OM=,求QAB的面积.2022-2023学年高二上数学选择性必修第一册:圆与圆的位置关系【答案详解】1.D 【详解】由题设,221:(3)(2)1C x y -+-=,222:(3)9C x y +-=,∴1(3,2)C ,2(0,3)C ,则122C C =,又121,3r r ==,∴1221C C r r =-,故两圆内切.故选:D 2.C 【详解】解:根据题意,圆221:(1)(2)9O x y -++=,圆心1(1,2)O -,半径3R =,圆222:(2)(1)16O x y +++=,圆心2(2,1)O --,半径4r =,圆心距12||10O O =,有431043-<<+,则两圆相交;故选:C .3.A 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径222514r k =+,所以2222121292525411444C C k k k r r k =+=<+=++,因为2225251144k k +>+(0k ≠),所以2225251144k k >+-,所以1221C C r r >-所以两圆相交.故选:A 4.C 【详解】由题意作出图形分析得:由圆的几何性质知:当两圆在点A 处的切线互相垂直时,切线分别过对方圆心O 、1O ,则在1Rt OAO △中,5OA =,120O A =,所以15O O =,斜边上的高为半弦,且1OO AB ⊥,则11111222AO O AB S O O OA O A =⋅=⋅ ,即55202AB ⋅=⋅,所以AB 4=.故选:C.5.D 【详解】将两圆方程分别整理为:()()2229x a y -++=和()()2214x y a ++-=,则两圆圆心分别为(),2a -和()1,a -,半径分别3和2;两圆有3条公切线,∴两圆外切,∴两圆圆心距()()221232d a a =++--=+,解得:5a =-或2.故选:D.6.C 【详解】由题意可知,圆1C 的圆心为()10,0C ,半径为1,圆2C 的圆心为()20,2C ,半径为r ,所以,122C C =,由于两圆有公共点,则1211r C C r -≤≤+,即1210r r r ⎧-≤≤+⎨>⎩,解得13r ≤≤.故选:C.7.D 【详解】由圆()()22341x y -+-=的圆心坐标为()3,4A ,而()3,4A 关于直线y x =-的对称点为()4,3A '--,∴以()4,3A '--为圆心,以1为半径的圆的方程为()()22431x y +++=.故选:D .8.A 【详解】设所求的圆的方程为()2222520x y x x y λ+-++-=,把点(2,2)M -代入可得,()44524420λ+-⨯++-=,解得13λ=,所以所求圆的方程为22151042x y x +--=,故选:A 9.D 【详解】由圆A :(x-5)2+(y+7)2=16,得到A 的坐标为(5,-7),半径R=4,且圆B 的半径r=1,根据图象可知:当圆B 与圆A 内切时,圆心B 的轨迹是以A 为圆心,半径等于R-r=4-1=3的圆,则圆B 的方程为:(x-5)2+(y+7)2=9;当圆B 与圆A 外切时,圆心B 的轨迹是以A 为圆心,半径等于R+r=4+1=5的圆,则圆B 的方程为:(x-5)2+(y+7)2=25.综上,动圆圆心的轨迹方程为:(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9.故选:D .10.C 【详解】解:圆221:260O x y x y +-+=的圆心1(1,3)O -,圆222:60O x y x +-=的圆心2()3,0O ,所以12O O 的中点坐标为31(2+,30)2-+,即3(2,)2-,120(3)3312O O k --==-所以两圆的公共弦AB 的垂直平分线即是圆心12O O 所在的直线:33(2)22y x +=-,即3290x y --=,故选:C .11.B 【详解】根据题意,圆222620x y x y +-++=,其圆心为M ,则(1,3)M -,圆224240x y x y --++=,其圆心为N ,则(2,1)N -,垂直平分两圆的公共弦的直线为两圆的连心线,则直线MN 的方程为313(1)12y x --+=-+,变形可得4350x y ++=;故选:B.12.A 【详解】由题意知:12(1,1),(1,2)C C --,且12C C 垂直平分AB ,∴线段AB 的垂直平分线所在直线必过12,C C ,故直线的方程为31(1)2y x -=-,整理得3210x y --=.故选:A 13.B 【详解】依题意,圆()()221:129C x y -+-=,圆心为()1,2,半径为3;圆()()222:3536C x y -+-=,圆心为()3,5,半径为6;因为()1249133,9C C =+=∈,故圆1C ,2C 相交,有2条公切线,故选:B.14.D 【详解】由题可得圆1C 的圆心为()0,m -,半径为2,圆2C 的圆心为()0m ,,半径为22, 两圆恰有两条公切线,∴两圆相交,12232C C ∴<<,()()2212002C C m m m =-+--= ,2232m ∴<<,解得3<1m -<-或13m <<.故选:D.15.B 【详解】两个圆化为标准方程可得()()22125x y -++=,()()22220x m y m -++=,圆1C 的圆心为()11,2C -,半径15r =,圆2C 的圆心为()1,2C m m -,半径225r =,圆心距22212(1)(22)5105C C m m m m =-+-+=-+,因为两圆的公切线恰好有2条,所以两圆相交,则22555105255m m -<+<+-,解得(2,0)(2,4)m ∈-⋃.故选:B16.(1)240x y -+=;(2)圆22:6680C x y x y ++-+=.【详解】(1)因为圆221:210240C x y x y +-+-=,圆222:2280C x y x y +++-=,且它们的交点为,A B ,故AB 的直线方程为:()2222210242280x y x y x y x y +-+--+++-=,整理得到AB 的直线方程为:240x y -+=.(2)设圆C 的方程的方程为:()22228240x y x y x y λ+++-+-+=,整理得到圆()()22:222840C x y x y λλλ++++--+=,故2,12C λλ+⎛⎫-- ⎪⎝⎭,因为C 在直线0x y +=上,故2102λλ+-+-=,故4λ=,故圆22:6680C x y x y ++-+=.17.(1)3n =-;()2211x y -+=.(2)外切,23;内切,219.【详解】(1)圆C 与直线30x y n ++=切于点33(,)22,点33(,)22在直线30x y n ++=上,则333022n +⨯+=,解得3n =-.圆C 的圆心C 在x 轴上,设圆心为()0m ,,半径为r ,则圆C 的方程为()222x m y r -+=,所以302332m -=-,解得1m =,13113r -==+,则圆C 的方程为()2211x y -+=.(2)根据题意,()1,0C ,()0,15M ,当两圆外切时,41CM r ==+,3r =当两圆内切时,41CM r ==-,=5r ,点M 到直线320x y -=的距离215632d -⨯==+,当两圆外切时,3r =,此时弦长22229623l r d =-=-=,当两圆内切时,=5r ,此时弦长2222256219l r d =-=-=.18.C 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离213222d -+-==.所以这两圆的公共弦的弦长为()2222223222r d -=-=.故选:C.19.C 【详解】由圆2O -圆1O 可得,直线:AB 64x =-,即23x =-,所以22822433AB ⎛⎫=-= ⎪⎝⎭,而123O O =,所以四边形12AO BO 的面积是121182342223S AB O O =⋅=⨯⨯=.故选:C .20.B 【详解】圆C 的标准方程为()()22134x y ++-=,圆心为()1,3C -,半径为2,由圆的切线的性质可得MA AC ⊥,则()()22222=21034246MA MC -=--++-=,所以,以点M 为圆心、以MA 为半径的圆M 的方程为()22446x y ++=,将圆M 的方程与圆C 的方程作差并化简可得7180x y -+=.因此,直线AB 的方程为7180x y -+=.故选:B.21.A 【详解】圆M 的圆心为()0,M a ,半径为1,0r a a =>,圆心()0,M a 到直线0x y +=的距离为2a,所以22222222a a a ⎛⎫⎛⎫+=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()10,2,2M r =.圆N 的圆心为()3,6N ,半径27r =,215MN r r ==-,所以两个圆的位置关系是内切.故选:A 22.B 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=,可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=,可得圆心坐标为(1,1)B --,半径为2r =,则圆心距为22(11)(21)13d AB ==+++=,又由5,1R r R r +=-=,所以R r AB R r -<<+,可得圆A 与圆B 相交,所以两圆公共切线的条数为2条.故选:B.23.C 【详解】以(1,2)A -为圆心,以15r =为半径的圆A :()()22125x y -++=,圆C :222245200()x y mx my m m R +-++-=∈圆心为(),2C m m -,半径225r =,圆心距()()2221225105AC m m m m =-+-+=-+,由题意可得两圆相交,即22555105255m m -<+<+-,解得()()2,02,4m ∈- .故选:C 24.A 【详解】解:由圆221 : 20C x y kx y +-+=,圆222:20C x y ky ++-=,得圆1C 与圆2C 的公共弦所在直线方程为()220k x y y +--=,求得定点()1,1P -,又()1,1P -在直线20mx ny --=上,2m n +=,即2n m =-.∴()()2211mn m m m =-=--+,∴mn 的取值范围是(],1-∞.故选:A.25.C 【详解】依题意,圆221:(1)(2)9C x y -+-=,圆222:(4)(6)52C x y m -+-=-,故22(41)(62)523m -+-=-+,解得48m =,故选C .26.A 【详解】由题意,点()()1,0,1,0A B -,因为90AMB ∠=︒,所以点M 在以AB 为直径的圆上,设AB 的中点为P 的坐标为(0,0),2AB =,所以圆P 的方程为221x y +=,又由圆()()222:34C x y R -+-=的圆心为(3,4),半径为R ,则5PC =,要使得圆C 上存在点M ,满足90AMB ∠=︒,则圆P 与圆C 由公共点,可得151R R -≤≤+,解得46R ≤≤,即圆C 的半径R 的范围是46R ≤≤.故选:A.27.C 【详解】根据题意,221:(1)(2)4C x y -+-= ,其圆心为(1,2),半径2R =,222:()()4C x a y b -+-= ,其圆心为(,)a b ,半径2r =,两圆的圆心距222212(1)(2)245C C a b a b a b =-+-=+--+,若两圆有公共点,则1204C C R r +=,即2224516a b a b +--+,则有222411a b a b +--,则2224a b a b +--的最大值为11,故选:C 28.A 【详解】由于圆22(2)(1)1x y ++-=的圆心(2,1)C '-,半径为1,圆C 与圆22(2)(1)1x y ++-=关于原点对称,故(2,1)C -、半径为1,故圆C 的方程为:22(2)(1)1x y -++=,故选:A .29.D 【详解】由圆的方程知:圆心为(),a a ,半径22r =,则圆心到原点的距离为2d a =,圆上总存在两个点到原点的距离为2,∴圆()()228x a y a -+-=与圆222x y +=相交,2222222a ∴-<<+,即2232a <<,解得:31a -<<-或13a <<.故选:D.30.A 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程,圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N ,∴2(4)2100a b ab +++--=,121a b+=,∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A .31.C 【详解】设两圆交点为,A B ,联立2222460460x y x x y y ⎧+--=⎨+--=⎩得1111x y =-⎧⎨=-⎩或2233x y =⎧⎨=⎩,1AB k =,则AB 中点为()1,1,过AB 两点的垂直平分线方程为()112y x x =--+=-+,联立240y x x y =-+⎧⎨--=⎩得31x y =⎧⎨=-⎩,故圆心为()3,1-,由点到直线距离公式得334525d ⨯-+==故选:C 32.D 【详解】圆1C 的圆心为()11,1C --,半径为12r =,圆2C 的圆心为()22,3C ,半径为22r =,()()221212213154C C r r =+++=>+= ,所以,两圆外离.因此,圆1C 与圆2C 的公切线条数为4.故选:D.33.B 【详解】圆()221:0O x y m m +=>,圆心()10,0O ,半径1r m =圆222:86240O x y x y +-+-=,圆心()24,3O -,27r =125O O =,两圆有公共点则:757m m -≤≤+,4144m ≤≤故选:B 34.C 【详解】由圆221:0C x y kx y +--=和圆222:210C x y ky +--=,可得圆1C 和2C 的公共弦所在的直线方程为()()210k x y y -+-=,联立2010x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,即点()2,1M 又因为点M 在直线2mx ny +=上,即22m n +=,又由原点到直线22x y +=的距离为22225521d ==+,即22m n +的最小值为255.故选:C.35.C 【详解】设圆()()()2222:210O x y r r -+-=>∴直线AB 的方程为:()()()222222116x y x y r -+---+=-,即244100x y r ++-=1O ∴到直线AB 距离22410144242r r d -+--==2264d ∴-=,解得:22d =()2214232r -∴=,解得:26r =或22∴圆2O 的方程为()()22216x y -+-=或()()222122x y -+-=故选:C 36.D 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=.()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭.当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n∴+的最小值为3.故选:D .37.BC 【详解】圆221x y +=的圆心为(0,0),半径为1,圆22(4)()25x y a ++-=的圆心为(4,)a -,半径为5,若两圆相切,分两种情况讨论:当两圆外切时,有222(4)(15)a -+=+,解得25a =±;当两圆内切时,有222(4)(15)a -+=-,解得0a =,综合可得:实数a 的值为0或25±.故选:BC .38.BC 【详解】解:根据题意,圆221:1C x y +=,其圆心1(0,0)C ,半径1R =,圆222:68240C x y x y +-++=,即22(3)(4)1x y -++=,其圆心2(3,4)C -,半径1r =,圆心距12||1695C C =+=,则||PO 的最小值为123C C R r --=,最大值为127C C R r ++=,故A 错误,B 正确;对于C ,圆心1(0,0)C ,圆心2(3,4)C -,则两个圆心所在的直线斜率404303k --==--,C 正确,对于D ,两圆圆心距125C C =,有122C C R r >+=,两圆外离,不存在公共弦,D 错误.故选:BC .39.CD 【详解】圆C 方程可化为:()221x a y -+=,则圆心(),0C a ,半径11r =;由圆D 方程知:圆心()0,0D ,半径22r =;圆C 与圆D 有且仅有两条公切线,∴两圆相交,又两圆圆心距d a =,2121a ∴-<<+,即13a <<,解得:31a -<<-或13a <<,可知CD 中的a 的取值满足题意.故选:CD.40.ABC 【详解】A :由230(1)(3)0l mx y m m x y --+=⇒-+-=:,有101330x x y y -=⎧⇒==⎨-=⎩,,所以直线过的定点为(1)3,,故A 正确;B :由圆的标准方程可得圆心为4(2)C ,,半径3r =,直线2l 过的定点为3(1)B ,,当2l CB ⊥时所得弦长最短,则21CM l l k k ⋅=-,又2l k m =,1CM l k =,所以1m =-,得240l x y +-=:,则圆心到直线2l 的距离为2=22d =,所以弦长为:2222r d -=,故B 正确;C :当0m =时,1203l x l y ==:,:,则点(03)P ,,此时点P 在圆C 外;当0m ≠时,由直线1l 得xm y=-,代入直线2l 中得点P 的方程为圆22135()()222N x y -+-=:,得13()22N ,,半径为10=2R ,所以圆心距3410=322NC r R <+=+,所以两圆相交.故C 正确;D :由10(00)l x my A +=⇒:,,当0m =时,1203l x l y ==:,:,有12l l ⊥,当0m ≠时,11l k m=-,2l k m =,则1l k 21l k =-,所以12l l ⊥,又点P 是两直线的交点,所以PA PB ⊥,所以222=10PA PB AB +=,设ABP θ∠=,则10sin 10cos PA PB θθ==,,因为0PA PB ≥≥0,,所以[0]2πθ∈,,所以10(sin cos )25sin()254PA PB πθθθ+=+=+≤,故D 错误.故选:AB 41.BCD由题意,圆221:1C x y +=的圆心为()10,0C ,半径为11r =;圆()()()2222:340C x y r r -++=>的圆心为()23,4C -,半径为r ;则圆心距为()()221203045C C =-++=;A 选项,若圆1C 与圆2C 无公共点,则只需121C C r <-或121C C r >+,解得6r >或04r <<,故A 错;B 选项,若=5r ,则圆()()222:3425C x y -++=,由221x y +=与()()223425x y -++=两式作差,可得两圆公共弦所在直线方程为6810x y --=,故B 正确;C 选项,若2r =,则()()222:344C x y -++=,此时125213C C =>+=,所以圆1C 与圆2C 相离;又P 、Q 分别是圆1C 与圆2C 上的点,所以()12121212C C PQ C C -+≤≤++,即28PQ ≤≤,故C 选项正确;D 选项,当04r <<时,由A 选项可知,两圆外离;记直线268260x y r -+-=上任意一点为()00,M x y ,则20068260x y r -+-=,所以22100MC x y =+,()()222222200000000003468256825MC x y x y x y x y x y =-++=+-++=+-++222001x y r =++-,因此切线长分别为2222110011d MC x y =-=+-,222222001d MC r x y =-=+-,即12d d =,故D 正确;故选:BCD.42.3解:圆224210x y x y +-++=整理可得:22(2)(1)4x y -++=,可得圆心1C 的坐标为:(2,1)-,半径12r =;22(2)(2)9x y ++-=的圆心2C 坐标(2,2)-,半径23r =;所以圆心距221212||(22)(21)5C C r r =+++==+,所以可得两个圆外切,所以公切线有3条,故答案为:3.43.2【详解】设(),P x y ,由2218PA PB +=可得,()()()()2222226418x y x y ++-+++-=,化简得,()()22434x y ++-=,所以点P 的轨迹为圆,圆心坐标为()4,3-,点Q 在圆221x y +=上,两圆的圆心距为()2243521-+=>+,所以两圆相离,故PQ 的最小值为5212--=.故答案为:2.44.2236x y +=【详解】由题意,圆C 与圆1C 和圆2C 的公共弦分别为圆1C 和圆2C 的直径设圆C 的圆心为(,0)x ,半径为r ,则2222(4)(04)(3)(05)24x x -+-=-++++,解得:0x =,半径22(04)(04)46r =-+-+=,故圆C 的方程为2236x y +=,故答案为:2236x y +=.45.3,3⎡⎤-⎣⎦26--743,743⎡⎤-+⎣⎦圆22410x y x +-+=的标准方程为()2223x y -+=,圆心为()2,0,半径为3.设y k x =,可得0kx y -=,则直线0kx y -=与圆()2223x y -+=有公共点,则2231k k ≤+,解得33k -≤≤,则yx的取值范围为3,3⎡⎤-⎣⎦;设y x b -=,可得0x y b -+=,则直线0x y b -+=与圆()2223x y -+=有公共点,则232b +≤,解得2626b --≤≤-+,则y x -的最小值为26--;设()2220x y r r +=>,由于()220203-+>,则原点在圆()2223x y -+=外,因为圆222x y r +=与圆()2223x y -+=有公共点,圆心距为2d =,故323r r +≤≤-,解得2323r -≤≤+,故22743743x y -≤+≤+.即22xy +的取值范围为743,743⎡⎤-+⎣⎦.故答案为:3,3⎡⎤-⎣⎦;26--;743,743⎡⎤-+⎣⎦.46.(1)12m =;(2)1n =-或7n =-.【详解】解:(1)圆221:(1)1C x y -+=,圆心1(1,0)C ,半径11r =;圆222:(4)16C x y m -+=-,圆心2(4,0)C ,半径216r m =-.因为圆1C 与圆2C 有3条公切线,所以圆1C 与圆2C 相外切,所以1212C C r r =+,即3116m =+-,解得12m =.(2)由(1)可知,圆222:(4)4C x y -+=,圆心2(4,0)C ,半径22r =.因为直线20x y n ++=与圆2C 相交,弦长是2,所以圆心2C 到直线20x y n ++=的距离222232d r ⎛⎫=-= ⎪⎝⎭,即|4|33n +=,解得1n =-或7n =-.47.解:(1)圆M :22210240x y ax ay +-+-=的圆心为(),5M a a -,由已知可得直线40x y ++=经过圆心M ,所以540a a -+=,解得1a =,则有圆M 的方程为22210240x y x y +-+-=;(2)因为圆M 的圆心为()1,5M -,半径152r =,圆N 的圆心()1,1N --,半径210r =,所以()()22115125MN =++-+=,因为5210255210-<<+,所以圆M 和圆N 相交,又由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,得两圆的公共弦所在直线方程为240x y -+=,所以M 到直线240x y -+=的距离1104355d ++==,所以22211504552r d ⎛⎫=-=-= ⎪⎝⎭,解得25l =,则圆M 和圆N 的公共弦的长度25l =.48.(1)由两圆方程相减即得240x y -+=,此为公共弦AB 所在的直线方程.圆心1(1,1)C --,半径110r =.1C 到直线AB 的距离为|124|55d -++==,故公共弦长221||225AB r d =-=.(2)圆心25(1,)C -,过1C ,2C 的直线方程为115111y x ++=-++,即230x y ++=.由230x y y x ++=⎧⎨=-⎩得所求圆的圆心为()3,3-.它到AB 的距离为|364|55d --+==,∴所求圆的半径为5510+=,∴所求圆的方程为22(3)(3)10x y ++-=.(3)过A 、B 且面积最小的圆就是以AB 为直径的圆,由240230x y x y -+=⎧⎨++=⎩,得圆心(2,1)-,半径5r =.∴所求圆的方程为22(2)(1)5++-=x y .49.解:(1)连接,OM OP ,取OP 中点E ,由圆的性质知,OM AB ⊥,所以在Rt OPM △中,25OP =,且为斜边,所以M 在以OP 为直径的圆上,圆心为()1,2,半径为5r =,所以点M 的轨迹为圆,圆心为()1,2E ,半径为5r =,方程为:()()22125x y -+-=;又因为M 在已知圆内部,故与圆O 联立方程组()()22224125x y x y ⎧+=⎪⎨-+-=⎪⎩,解得两圆交点坐标为68,55⎛⎫- ⎪⎝⎭,()2,0所以点M 的轨迹方程为()()22125x y -+-=,6,25x ⎛⎫∈- ⎪⎝⎭,85y <.(2)设(),M x y ,由133MN OM =得:222241333x y x y ⎛⎫-+=+ ⎪⎝⎭,整理得:22640x y x +++=,所以M 在圆22640x y x +++=上,结合(1),M 又在圆()()22125x y -+-=,6,25x ⎛⎫∈- ⎪⎝⎭,85y <,故两圆联立方程组()()2222640125x y x x y ⎧+++=⎪⎨-+-=⎪⎩,解得:()1,1M -,所以2OM =,22AB =,OM 的斜率为1OM k =-,1AB k =直线AB 方程为:2y x =+,所以Q 点到直线AB 的距离为:4222d ==,所以QAB 的面积为142S AB d =⋅⋅=。
鲁教版中考数学一轮复习 圆 专题2 与圆有关的位置关系(含答案)
第六单元圆专题2 与圆有关的位置关系考点1 点和圆、直线和圆的位置关系1.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切2.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9 cm,则⊙O 的半径是___________.3.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点.若以1cm为半径的⊙O与直线a相切,则OP的长为___________.考点2 切线的性质与判定1.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为( )A.35°B.45°C.55°D.65°2.如图,PA,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )A.1B.2C.√2C.√34.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD 的周长为____________.5.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为_____________.6.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=___________.7.如图,PA是以AC为直径的⊙O的切线,切点为A,过点A作AB⊥OP,交⊙O于点B. (1)求证:PB是⊙O的切线;,求PO的长.(2)若CC=6,cos∠CCC=358.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.̂上一点,连接AE并延长至点C,使9.已知:如图,AB是⊙O的直径,E为⊙O上一点,D是AE∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD²=DF· DB.考点3 三角形的外接圆与内切圆1.如图,已知点O是△ABC的外心,∠A=40°,连接BO,CO,则∠BOC的度数是( )A.60°B.70°C.80°D.90°2.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则CC=( )C.2√3C.3√3 C.3D.43.设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h,r,R,则下列结论不正确的是( )A.h=R+rB.R=2rC.C=√34C C.C=√33C4.如图,△ABC内接于⊙O,∠A=50°,点D是BC的中点,连接OD,OB,OC,则∠BOD=_______.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A,B,C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC内心的坐标为_____________.6.已知△ABC的三边a,b,c满足b+|c-3|+C2−8C=4√C−1−19,则△ABC的内切圆半径=____________.专题检测一、选择题(每小题4分,共40分)1.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断2.已知⊙O的半径为5,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )A.1个B.2个C.3个D.4个3.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于( )A.75°B.70°C.65°D.60°̂上一点,则∠EPF的4.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF度数是( )A.65°B.60°C.58°D.50°5.如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )A.30°B.35°C.45°D.55°6.如图,长方形ABCD中,AB=4,AD=3,圆B 半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外7.如图,在等腰△ABC中, AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分EF的长为半径作弧相交于点H,作射线AH;别以点E,F为圆心,大于12AB的长为半径作弧相交于点M,N,作直线②分别以点A,B为圆心,大于12MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为( )A.2√5B.10C.4D.58.如图,直线AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,若OB=6 cm,OC=8cm,则BE+CG的长等于( )A.13 cmB.12 cmC.11 cmD. 10 cm9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )A.35B.23C.34D.4510.如图,点A的坐标为(-3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为( )A.( 0,2)B.( 0,3)C.( -2,0)D.( -3,0)二、填空题(每小题4分,共24分)11.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆 (填“内”“上”或“外”).12.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为___________.13.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 .14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为 .15.如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB= .16.如图,两个圆都是以点O为圆心,大圆的弦AB是小圆的切线,点P为切点,AB=10,则图中圆环的面积为 .三、解答题(共36分)17.(12分)阅读下列材料:平面上两点P₁(x₁,y₁),P₂(x₂,y₂)之间的距离表示为|P1P2|=√(x1−x2)2+(y1−y2)2,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为√(x−a)2+(y−b)2=r,变形可得 (x-a)²+(y-b)²=r², 我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x-1)²+(y-2)²=25 可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为 ;(2)若已知⊙O的标准方程为(x-2)²+y²=2²,圆心为C,请判断点A(3,-1)与⊙O的位置关系.18.(12分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(1)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(2)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.19.(12分)如图,在△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;,AD=2,求BO的长.(2)若tanA=34参考答案考点1 点和圆、直线和圆的位置关系1.D ⊙O的半径为2 cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B 到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB 与⊙O的位置关系为相交或相切.2.6.5cm或2.5cm 分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5 cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4 cm,最大距离PA=9 cm,∴直径AB=9-4=5(cm),∴半径r=2.5cm.3.3cm或5cm ∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1 cm. 当点O在点H的左侧,⊙O与直线a相切时,OP=PH-OH=4-1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm.考点2 切线的性质与判定1.C ∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°-∠BAC=90°-35°=55°.2.B 由切线长定理,得PA=PB,∴△BPA 是等腰三角形,故A正确;由圆的对称性可知AB⊥PD,但不一定平分,故B不一定正确;如图,连接OB,OA,由切线的性质,得∠OBP=∠OAP=90°,∴点A,B,P在以OP为直径的圆上,故C正确;∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.3.D 如图,连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB,∴OA=AB=OB,∴∠AOB=60°.∵BD是⊙O的切线,∴∠DBO=90°.∵OB=1,∴BD=√3OB=√3.4.24+6√5如图,连接OE,过点C作CF⊥AD交AD于点F,∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠EOD+∠OEC =180°,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OEC=90°,∴∠EOD=90°,∵CF⊥AD,∴∠CFO=90°,∴四边形OECF为矩形,∴FC=OE,OD=3,∵AD为直径,AD=12,∴FC=OE=OD= 12在Rt△OFC中,由勾股定理得OC²=OF²+FC²=3²+6²=45.∴AB=OC=3√5,∴平行四边形ABCD的周长为12+12+3√5+3√5=24+6√5.5.2√3或2√2连接OB,∵BC是⊙O的切线,∴∠OBC=90°.∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°.当△OAC是直角三角形时,①若∠AOC=90°,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②若∠OAC=90°,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°.∵BC=OA=OB,∴△OBC是等腰直角三角形,∴OC= 2√2.6.27°∵ PA切⊙O于点A,∴∠OAP=90°.∵∠P=36°, ∴∠AOP=54°. ∴∠B=12∠AOP=27 ∘.7.(1)证明连接OB,如图,∵PA是以AC为直径的⊙O的切线,切点为A,∴∠PAO=90°, ∵OA=OB,AB⊥OP,∴∠POA=∠POB,在△PAO和△PBO中, {AO=BO,∠POA=∠POB,OP=OP,∴△PAO≌△PBO(SAS),∴∠PBO=∠PAO=90°,即OB⊥PB,又∵OB为⊙O的半径,∴PB是⊙O的切线;(2)解设OP与AB交于点D.∵AB⊥OP,AB=6,∴DA=DB=3,∠PDA =∠PDB=90°,∵cos∠PAB=35=DAPA=3PA,∴PA=5,∴PD=√PA2−AD2=√52−32=4,在Rt△APD和Rt△APO中,cos∠APD= PDPA ,cos∠APO=PAPO,8.(1)证明∵∠CAD=∠ABD,∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)解∵AF是⊙O的切线,∴∠FAB=90°.∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°. ∴∠ABD=∠FAD.∵∠ABD=∠CAD,∠CAD=∠EAD,∴∠FAD=∠EAD.∵AD=AD,∴△ADF≌△ADE(ASA).∴AF=AE,DF=DE.∵AB=4,BF=5,∴AF =√BF 2−AB 2=3,∴AE=AF=3. ∵S △ABF =12AB ⋅AF =12BF ⋅AD, ∴AD =AB⋅AF BF=4×35=125,∴DE =√AE 2−AD 2=√32−(125)2=95, ∴BE =BF −2DE =75.∵∠AED=∠BEC,∠ADE=∠BCE=90°.∴△BEC ∽△AED. ∴BEAE =BCAD , ∴BC =BE⋅AD AE=2825, ∴sin ∠BAC =BC AB =725.∵∠BDC=∠BAC,∴sin ∠BDC =725.9.证明 (1)∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°. ∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=∠EBA+∠EAB=90°,即∠ABC=90°,∴CB ⊥AB. ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. (2)∵BD 平分∠ABE,∴∠ABD=∠DBE. ∵∠DAF=∠DBE,∴∠DAF=∠DBA.∵∠ADB=∠FDA,∴△ADF ∽△BDA, ∴ADBD =DFAD ,∴AD ²=DF ·DB. 考点3 三角形的外接圆与内切圆1.C ∵点O 为△ABC 的外心,∠A=40°, ∴∠A =12∠BOC,∴∠BOC =2∠A =80 ∘. 2.C 过点O 作OE ⊥BC 于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又 ∵AB̂对应的圆周角为∠ACB 和∠ADB,∴∠ACB=∠ADB=30°, 而BD 为直径,∴∠BAD=90°,在Rt △BAD 中,∠ADB=30°,AD=3, ∴cos30 ∘=ADBD =3BD =√32,∴BD =2√3,∴OB =√3,又∵∠ABD=90°-∠ADB=90°-30°=60°,∠ABC=30°,∴∠OBE=30°. 又∵OE ⊥BC,∴△OBE 为直角三角形. ∴cos ∠OBE =cos30 ∘−BEOB =√3=√32, ∴BE =32.由垂径定理可得BC=2BE= 2×32=3.3.C 如图,∵△ABC是等边三角形.∴△ABC的内切圆和外接圆是同心圆,圆心为O. 设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=12∠BAC=12×60°=30°.在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,AB=AC=BC=a,∴AE=12AC=12a,∴(12a)2+r2=(2r)2,(12a)2+(12R)2=R².∴r=√36a,R=√33a,故C错误,D正确.4.50°∵∠A=50° ,∴∠BOC=100°.∵OB=OC,∴△OBC为等腰三角形,又∵D为BC 中点,∴OD为BC上的中线,根据等腰三角形三线合一性质可得OD为∠BOC的平分线∴∠BOD=12∠BOC=50∘.5.(2,3) 根据A,B,C三点的坐标建立如图所示的坐标系.根据题意,得AB=√62+32=3√5,AC=√42+82=4√5,BC=√102+52=5√5.∵AB²+AC²=BC².∴∠BAC=90°.设BC的函数表达式为y=kx+b,代入B( -3,3),C(7,-2).得{3=−3k+b,−2=7k+b,解得{k=−12,b=32,∴BC的函数表达式为y=−12x+32.当y=0时,x=3,即G(3,0),∴点A与点G关于BD对称,射线BD是∠ABC的平分线.设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r.∵∠BAC=90°,∴四边形MEAF为正方形, S ABC=12AB×AC=12AB×r+12AC×r+12BC×r,解得r=√5,即AE=EM=√5,∴BE=3√5−√5=2√5,∴BM=√BE2+EM2=5,∵B( -3,3),∴M(2,3).∴△ABC内心M的坐标为(2,3).6.1 ∵b+|c−3|+a2−8a=4√b−1−19,∴|c−3|+(a−4)2+(√b−1−2)2= 0,∴c=3,a=4,b=5.∵3²+4²=25=5²,∴c²+a²=b²,∴△ABC是直角三角形,∠ABC=90°.设内切圆的半径为r.根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1.(或者r=3+4−52=1)专题检测1.C2.C 如图,∵⊙O的半径为5,点O到直线l 的距离为3,∴CE=2,过点D作AB⊥ OC,垂足为D,交⊙O于A,B两点,且DE=2,∴⊙O上到直线l的距离为2的点为A,B,C,∴⊙O上到直线l的距离为2的点有3个.3.B4.B5.B 如图,连接OA.∵PA,PB是⊙O的切线,A,B是切点,∴∠PBO=∠PAO=90°,∵∠P=70°,∴∠BOA=360°—∠PBO—∠PAO-∠P=110°,∵OA=OB,∴∠ABO=∠BAO=12(180∘−∠BOA)=12(180 ∘−110 ∘)=35 ∘.6.C 两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则AB=R-1,∵AB =4,圆B半径为1,∴R=5,即圆A的半径等于5,∵AB=4,BC=AD=3,由勾股定理可知AC=5,∴AC=5=R,AD=3C在圆上,点D在圆内.7.D 如图,连接OC,设OA交BC于点T.∵AB=AC=2√5,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT=√AC2−CT2=√(2√5)2−42=2.在Rt△OCT中.有r²=(r-2)²+4²,解得r=5.8.D9.D 连接OC、OD、CD,CD交PA于点E,如图,∵PC,PD与⊙O相切,切点分别为C,D,∴OC⊥CP,PC=PD,OP平分∠CPD.∴OP⊥CD,∴CB̂=DB̂,∴∠COB=∠DOB,∵∠CAD=12∠COD,∴∠COB=∠CAD,在Rt△OCP中, OP=√OC2+PC2=√32+42=5,∴sin∠COP=PCOP =45,∴sin∠CAD=45.10.D 连接AQ、PA,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ=√AP2−AQ2=√AP2−1,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(-3,2),∴此时P点坐标为(-3,0).11.上 12.55°13.55°或125°分两种情况:(1)点A 与点O 在BC 边同侧时,如图1:∵∠BOC=110°,∴∠BAC =110 ∘×12=55 ∘. (2)点A 与点O 在BC 边两侧时,如图2:∵∠BOC=110°,即BĈ所对的圆心角为110°,∴BDC ̂所对的圆心角为:360°—110°=250°. ∴∠BAC =12×250 ∘=125 ∘. 14.4415.130° ∵PA,PB 是⊙O 的切线,A,B 是切点,∴OA ⊥PA,OB ⊥PB,∴∠OAP=∠OBP=90°,∵∠OAP+∠AOB+∠OBP +∠P=360°,∴∠AOB=360°—90°—90°-50°=130°. 16.25π 如图,连接OP 、OA,∵大圆的弦AB 是小圆的切线,∴OP ⊥AB, ∴AP=BP= 12AB =5, 由勾股定理得OA ²-OP ²=AP ²=25, ∴圆环的面积=π×OA ²-π×OP ²=π×(OA ²-OP ²)=25π.17.解 (1)圆心为C(3,4),半径为2的圆的标准方程为(x-3)²+( y-4)²=4.故答案为:(x-3)²+(y-4)²=4. (2)由题意得圆心为C(2.0),∵A (3,−1),∴AC =√(3−2)2+12= √2<2,∴点A 在⊙C 内部.18.解 (1)∵AB=AC,∴∠ABC=∠ACB= 12(180 ∘−∠BAC)=12×(180 ∘−42 ∘)=69 ∘,∵BD 为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°-∠D=90°-42°=48°; ∴∠ACD=∠ABD=∠ABC-∠DBC=69°-48°=21°; (2)如图,连接OD,∵CD ∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD 为⊙O 的内接四边形,∴∠B+∠ADC=180°, ∴∠ADC=180°-∠B=180°-69°=111°,∴∠CAD=180°-∠ACD-∠ADC=180°-42°-111°=27°,∴∠COD=2∠CAD=54°, ∵DE 为切线,∴OD ⊥DE,∴∠ODE=90°,∴∠E=90°-∠DOE=90°-54°=36°. 19.(1)证明如图,过点O 作OH ⊥AB 于点H.∵∠ACB=90°,∴OC ⊥BC.∵BO 为△ABC 的角平分线,OH ⊥AB,∴OH=OC,即OH 为⊙O 的半径. ∵OH ⊥AB,∴AB 为⊙O 的切线.(2)解设⊙O 的半径为3x,则OH=OD=OC=3x.在Rt △AOH 中,∵tanA =34, ∴OHAH =34,∴3xAH =34,∴AH=4x, ∴AO =√OH 2+AH 2=√(3x )2+(4x )2=5x,∵AD=2,∴AO=OD+AD=3x+2,∴3x+2=5x,∴x=1,∴OA=3x+2=5,OH=OD=OC=3x=3 . ∴AC=OA+OC=5+3=8.在Rt △ABC 中, ∵tanA =BCAC ,∴BC =AC ⋅tanA =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.。
由圆的一般方程判断点与圆的位置关系专项训练(含每步提示及答案——原创材料)
由圆的一般方程判断点与圆的位置关系习题:点()1,2-a a 在圆03222=--+y y x 的内部,则a 的取值范围是( )A 、11<<-aB 、10<<aC 、540<<a D 、054<<-a 提示点:提示点1:设圆的半径是r ,点P 到圆心O 的距离为d ,则有:r d < ⇔ 点P 在圆内;r d = ⇔ 点P 在圆上;r d > ⇔ 点P 在圆外;提示点2:圆的一般方程022=++++F Ey Dx y x 的圆心为(2,2ED --),半径为2422FE D -+提示点3:两点间距离公式为()()221221y y x x d -+-=;结合提示2,3可知,圆心为()1,0,半径为2,点到圆心的距离为()()221102--+-=a a d则根据提示1知,r d <,则有540<<a ,故选C 。
习题:点()1,2-a a 在圆04222=--+y y x 的外部,则a 的取值范围为 。
提示点:点()00,y x P 与圆的一般方程022=++++F Ey Dx y x 的位置关系:0002020>++++F Ey Dx y x ⇔ 点P 在圆外;0002020=++++F Ey Dx y x ⇔ 点P 在圆上;0002020<++++F Ey Dx y x ⇔ 点P 在圆内;故将点()1,2-a a 代入圆的一般方程有()()()04121222>----+a a a ,故1>a 或51-<a 。
习题:若1>a ,则点()1,2-a a 与圆03222=--+y y x 的位置关系 。
提示点:点()00,y x P 与圆的一般方程022=++++F Ey Dx y x 的位置关系:0002020>++++F Ey Dx y x ⇔ 点P 在圆外;0002020=++++F Ey Dx y x ⇔ 点P 在圆上;0002020<++++F Ey Dx y x ⇔ 点P 在圆内;将点()1,2-a a 代入圆的一般方程有()()()a a a a a 4531212222-=----+()45-=a a ,因1>a ,故()045>-a a ,故应填在圆外。
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
高中数学必修二直线与圆、圆与圆的位置关系练习题
1.已知直线和圆有两个交点,则的取值范围是() A. B.C. D.2.圆x2+y2-2acos x-2bsin y-a2sin=0在x轴上截得的弦长是()A.2a B.2|a| C.|a| D.4|a|3.过圆x2+y2-2x+4y- 4=0内一点M(3,0)作圆的割线,使它被该圆截得的线段最短,则直线的方程是()A.x+y-3=0 B.x-y-3=0C.x+4y-3=0 D.x-4y-3=04.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1或-1 B.2或-2 C.1 D.-1 5.若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为()A.17或-23 B.23或-17 C.7或-13 D.-7或13 6.若P(x,y)在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于()A.-3+2 B.-3+ C.-3-2 D.3-2 7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是()A.相切 B.相交 C.相离 D.内含8.若圆x2+y2=4和圆x2+y2+4x-4y+4=0关于直线对称,则直线的方程是()A.x+y=0 B.x+y-2=0 C.x-y-2=0 D.x-y+2=01.9.圆的方程x2+y2+2kx+k2-1=0与x2+y2+2(k+1)y+k2+2k=0的圆心之间的最短距离是()A. B.2 C.1 D.10.已知圆x2+y2+x+2y=和圆(x-sin)2+(y-1)2=, 其中0900, 则两圆的位置关系是()A.相交B.外切 C.内切 D.相交或外切11.与圆(x-2)2+(y+1)2=1关于直线x-y+3=0成轴对称的曲线的方程是()A.(x-4)2+(y+5)2=1 B.(x-4)2+(y-5)2=1C.(x+4)2+(y+5)2=1 D.(x+4)2+(y-5)2=112.圆x2+y2-ax+2y+1=0关于直线x-y=1对称的圆的方程为x2+y2=1, 则实数a 的值为()A.0 B.1 C. 2 D.213.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程:f(x,y)- f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是()A.与圆C1重合 B.与圆C1同心圆C.过P1且与圆C1同心相同的圆 D.过P2且与圆C1同心相同的圆14.自直线y=x上一点向圆x2+y2-6x+7=0作切线,则切线的最小值为___________.15.如果把直线x-2y+=0向左平移1个单位,再向下平移2个单位,便与圆x2+y2+2x-4y=0相切,则实数的值等于__________.16.若a2+b2=4, 则两圆(x-a)2+y2=1和x2+(y-b)2=1的位置关系是____________.17.过点(0,6)且与圆C: x2+y2+10x+10y=0切于原点的圆的方程是____________.18.已知圆C:(x-1)2+(y-2)2=25, 直线:(2m+1)x+(m+1)y-7m-4=0(m R),证明直线与圆相交;(2) 求直线被圆C截得的弦长最小时,求直线的方程.19.求过直线x+3y-7=0与已知圆x2+y2+2x-2y-3=0的交点,且在两坐标轴上的四个截距之和为-8的圆的方程.20.已知圆满足:(1)截y轴所得弦长为2,(2)被x轴分成两段弧,其弧长的比为3:1,(3)圆心到直线:x-2y=0的距离为,求这个圆方程.21.求与已知圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0且过点(-2,3),(1,4)的圆的方程.参考答案:经典例题:解:设圆C圆心为C(x, y), 半径为r,由条件圆C1圆心为C1(0, 0);圆C2圆心为C2(1, 0);两圆半径分别为r1=1, r2=4,∵圆心与圆C1外切∴|CC1|=r+r1,又∵圆C与圆C2内切,∴|CC2|=r2-r (由题意r2>r),∴|CC1|+|CC2|=r1+r2,即 , 化简得24x2+25y2-24x-144=0, 即为动圆圆心轨迹方程.当堂练习:1.D;2.B;3.A;4.D;5.D;6.A;7.B;8.D;9.A; 10.D; 11.D; 12.D; 13.D; 14.; 15. 13或3; 16. 外切; 17. (x-3)2+(y-3)3=18;18. 证明:(1)将直线的方程整理为(x+y-4)+m(2x+y-7)=0,由,直线过定点A(3,1),(3-1)2+(1-2)2=5<25,点A在圆C的内部,故直线恒与圆相交.(2)圆心O(1,2),当截得的弦长最小时,AO,由kAO= -, 得直线的方程为y-1=2(x-3),即2x-y-5=0.19. 解:过直线与圆的交点的圆方程可设为x2+y2+2x-2y-3+(x+3y-7)=0,整理得x2+y2+(2+)x+(3-2)y-3-7=0,令y=0,得x2+y2+(2+)x -3-7 =0圆在x轴上的两截距之和为x1+x2= -2-,同理,圆在y轴上的两截距之和为2-3,故有-2-+2-3=-8,=2,所求圆的方程为x2+y2+4x+4y-17=0.20. 解:设所求圆圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|,由题设知圆P截x轴所对劣弧对的圆心角为900,知圆P截x轴所得弦长为r,故r2=2b2, 又圆P被 y轴所截提的弦长为2,所以有r2=a2+1,从而2b2-a2=1. 又因为P(a,b)到直线x-2y=0的距离为,所以d==,即|a-2b|=1, 解得a-2b=1,由此得,于是r2=2b2=2, 所求圆的方程是(x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2.21. 解:公共弦所在直线斜率为,已知圆的圆心坐标为(0,),故两圆连心线所在直线方程为y-=-x, 即3x+2y-7=0,设所求圆的方程为x2+y2+Dx+Ey+F=0,由, 所求圆的方程为x2+y2+2x-10y+21=0.。
点、直线、圆与圆的位置关系_知识点+例题+练习()
点、直线、圆与圆的位置关系_知识点+例题+练习()点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外d>r ②点P 在圆上d=r ①点P在圆内d<r点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.符号读作“等价于”,它表示从符号的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③矛盾判定假设不正确,从而肯定原命题的结论正确. 5.直线和圆的位置关系直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.1①直线l和⊙O相交d<r ②直线l和⊙O相切d=r ③直线l和⊙O相离d>r.6.切线的性质切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.切线性质的运用定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理2圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离d>R+r;②两圆外切d=R+r;③两圆相交R-r<d<R+r;④两圆内切d=R-r;⑤两圆内含d<R-r.12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便. 13.相交两圆的性质相交两圆的性质:相交两圆的连心线,垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条公切线,则它们的交点一定在连心线上.34. 判断圆的切线的方法及应用判断圆的切线的方法有三种:与圆有惟一公共点的直线是圆的切线;若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=43,D是线段BC的中点.试判断点D与⊙O的位置关系,并说明理. 过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.4【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:相交r1r2dr1r2;外切dr1r2;内切dr1r2;外离dr1r2;内含0dr1r2 【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为A.相离B.相切 C.相交D.内含例2. 如图1,⊙O内切于△ABC,切点分别为D,E,F.B50°,C60°,连结OE,OF,DE,DF,则EDF等于 A.40°B.55° C.65°D.70°例3. 如图,已知直线L和直线L外两定点A、B,且A、B到直线L的距离相等,则经过A、B两点且圆心在L上的圆有A.0个B.1个C.无数个D.0个或1个或无数个例4.已知⊙O1半径为3cm,⊙O2半径为4cm,并且⊙O1与⊙O2相切,则这两个圆的圆心距为 D. 1cm或7cm 例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为例6.两圆半径R=5,r=3,则当两圆的圆心距d满足___ ___时,两圆相交;当d满足___ ___时,两圆不外离.例7.⊙O半径为,点P为直线L上一点,且OP=,则直线与⊙O的位置关系是____例8.如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,若PA 长为2,则△PEF的周长是_.例9. 如图,⊙M与x轴相交于点A(2,0),B(8,0),与y轴切于点C,则圆心M的坐标是5例10. 如图,四边形ABCD内接于⊙A,AC为⊙O的直径,弦DB⊥AC,垂足为M,过点D作⊙O的切线交BA的延长线于点E,若AC=10,tan∠DAE=43,求DB的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是 A.相离B.外切C.内切D.相交2.⊙A和⊙B相切,半径分别为8cm和2cm,则圆心距AB为 A.10cm B.6cm C.10cm或6cm D.以上答案均不对3.如图,P是⊙O的直径CB延长线上一点,PA切⊙O于点A,如果PA=3,PB=1,那么∠APC等于A. 15B. 30C. 45D. 604. 如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于 AA)6 25 210 214 O BDC5.如图,在第3题图10× 6的网格图中第4题图(每个小正方形的边长均为第5题图1 个单位长).⊙第6A题图半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A图示的位置向左平移个单位长.6. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于A.54 B. 45 C. 354 D. 6 7.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在△ABC中,ABAC,A120°,BC23,⊙A与BC 相切于点D,且交AB、AC于M、N两点,则图中阴影部分的面积是.9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.O1O2O6第8题图第9题图第10题图第11题图 10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30o,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm。
中考总复习:圆的有关概念、性质与圆有关的位置关系--巩固练习(基础)
中考总复习:圆的有关概念、性质与圆有关的位置关系—巩固练习(基础)【巩固练习】一、选择题1. 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是( )A .相交B .相离C .内切D .外切2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°,AC∥OD,则∠AOC 的度数 ( )A. 70°B. 60°C. 50°D. 40°3.如图所示,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED .»»BDBC第2题 第3题 第5题 第6题4.(2015•黑龙江)如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150°5.如图所示,△ABC 内接于圆O ,∠A =50°;∠ABC =60°,BD 是圆O 的直径,BD 交AC 于点E ,连接DC ,则∠AEB 等于( )A .70°B .110°C .90°D .120°6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配成与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A .第①块B .第②块C .第③块D .第④块二、填空题7.(2015•雁江区模拟)如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为 .8.如图所示,⊙O的直径AC=8 cm,C为⊙O上一点,∠BAC=30°,则BC=________cm.第8题第9题9.两圆有多种位置关系,图中(如图所示)不存在的位置关系是__________.10.如图所示,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=______.11.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为 .第10题第11题第12题12.如图所示.B是线段AC上的一点,且AB:AC=2:5.分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为________.三、解答题13.已知AB与⊙O相切于点C,OA=OB.OA、OB与⊙O分别交于点D、E.(1) 如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(2)如图②,连接CD、CE,若四边形ODCE为菱形.求ODOA的值.14. 如图所示,在Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心、OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.15.(2015•上城区二模)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40°,求∠CBF的度数;(2)求证:CD⊥DF.l16. 如图,已知∠ABC=90°,AB=BC.直线与以BC为直径的圆O相切于点C.点F是圆O上异于B、Cl的动点,直线BF与相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使CD,请说明你的理由.【答案与解析】一、选择题1.【答案】D;O O=7,根据圆与圆位置关系的判定可知两圆外切.【解析】两圆半径之和3+4=7,等于两圆圆心距122.【答案】D;【解析】由AB是⊙O的直径,点C、D在⊙O上,知OA=OC,根据等腰三角形等边对等角的性质和三角形内角和定理,得∠AOC=180°-2∠OAC.由AC∥OD,根据两直线平行,内错角相等的性质,得∠OAC=∠AOD.由AB是⊙O的直径,∠BOD=110°,根据平角的定义,得∠AOD=180°-∠BOD=70°.∴∠AOC=180°-2×70°=40°.故选D.3.【答案】C;【解析】由垂径定理知A、B、D都正确.4.【答案】C;【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.5.【答案】B;【解析】∵∠A=50°,∴∠D=50°,又∵BD是直径,∴∠BCD=90°,∴∠DBC=90°-50°=40°,∠ABD=60°-40°=20°,∴∠BEC=50°+20°=70°,∴∠AEB=180°-70°=110°.6.【答案】B;【解析】因为第②块含有圆周的一部分,可以找到圆心,量出半径.其他块都不行.二、填空题7.【答案】2;【解析】如图,作点B关于MN的对称点B′,连接OA、OB′、AB′,由轴对称确定最短路线问题可知,AB′与M的交点即为所求的使PA+PB的值最小的点,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵B为弧AN的中点,∴∠NOB′=×60°=30°,∴∠AOB′=90°,∴△AOB′是等腰直角三角形,∵⊙O的半径为2,∴AB′=2,即PA+PB的最小值为为2.8.【答案】4;【解析】因为AC为直径,根据直径所对的圆周角为直角,得∠ABC=90°,则BC=AC·sin∠BAC=4(am).9.【答案】相交;【解析】认真观察、判断可发现每两圆间不存在的位置关系是:相交.10.【答案】27°;【解析】如图,连结OB,由AB与⊙O相切于点B,得∠ABO=90°,因为∠A=36°,所以∠AOB=54°,所以∠C=27°.11.【答案】4;【解析】连接OC,则由直线PC是圆的切线,得OC⊥PC.设圆的半径为x,则在Rt△OPC中,PC=3,OC= x,OP=1+x,根据地勾股定理,得OP2=OC2+PC2,即(1+x)2= x2+32,解得x=4.即该半圆的半径为4.12.【答案】4:25;三、解答题13.【答案与解析】(1) 如图①,连接OC ,则OC=4.∵AB 与⊙O 相切于点C ,∴OC⊥AB. ∴在△OAB 中,由OA=OB ,AB=10得1AC AB 52==.∴ 在△RtOAB 中,OA ===.(2)如图②,连接OC ,则OC=OD.∵四边形ODCE 为菱形,∴OD=DC.∴△ODC 为等边三角形.∴∠AOC=60°.∴∠A=30°.∴1OC 1OD 1OC OA 2OA 2OA 2===,,即.14.【答案与解析】解:(1)∵ AB 切⊙O 于D ,∴OD ⊥AB .在Rt △AOC 和Rt △AOD 中,,.OC OD AO AO =⎧⎨=⎩ ∴Rt △AOC ≌Rt △AOD(HL).(2)设半径为r ,在Rt △ODB 中,,解得r =4.2223(1)r r +=+ 由(1)有AC =AD ,∴,2229(3)AC AC +=+ 解得AC =12,∴.22111112945482222S AC BC r πππ=-=⨯⨯-⨯=-g 15.【答案与解析】解:(1)∵∠ADB=∠ACB ,∠BAD=∠BFC ,∴∠ABD=∠FBC ,又∵AB=AD ,∴∠ABD=∠ADB ,∴∠CBF=∠BCF ,∵∠BFC=2∠DFC=80°,∴∠CBF==50°;(2)令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD 是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180°﹣2α,又∵AB=AD ,∴∠ACD=∠ACB ,∴∠ACD=∠ACB=90°﹣α,∴∠CFD+∠FCD=α+(90°﹣α)=90°,∴∠CDF=90°,即CD ⊥DF .16.【答案与解析】解:(1)∵直线与以BC 为直径的圆O 相切于点C ,l ∴∠BCE=90°,又∵BC 为直径,∴∠BFC=∠CFE=90°.∴∠CFE=∠BCE.∵∠FEC=∠CEB,∴△CEF∽△BEC.∴CE EF BE EC =.∵BE=15,CE=9,即:9EF 159=,解得:EF=275.(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD.同理:∠AFB=∠CFD.∴△CDF∽△BAF.②∵△CDF∽△BAF,∴CF CD BF BA =.又∵△CEF∽△BCF,∴CF CE BF BC =.∴CD CE BA BC=.又∵AB=BC,∴CE=CD.(3)当F 在⊙O 的下半圆上,且»»2BF BC 3=时,相应的点D 位于线段BC 的延长线上,且使CD.理由如下:CE.在Rt△BCE 中,tan∠CBE=CEBC =,∴∠CBE=30°,∴»CF所对圆心角为60°.∴F 在⊙O 的下半圆上,且»»2BF BC 3=.。
北师版九年级数学下册《圆》直线和圆,圆和圆的位置关系习题
《圆》确定圆的条件,直线和圆的位置关系,圆和圆的位置关系练习题一.选择题1.下列说法正确的是( )A .三点确定一个圆B .三角形有且只有一个外接圆C .四边形都有一个外接圆D .圆有且只有一个内接三角形2.已知a 、b 、c 是△ABC 三边长,外接圆的圆心在△ABC 一条边上的是( )A .a=15,b=12,c=1B .a=5,b=12,c=12C .a=5,b=12,c=13D .a=5,b=12,c=143.在Rt △ABC 中,∠C=90°,AC=6cm ,BC=8cm ,则它的外心与顶点C 的距离为( )A .5cmB .6cmC .7cmD .8cm4.等边三角形的外接圆的半径等于边长的( )倍.A .23B .33C .3D .215.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是( ) A .菱形 B .等腰梯形 C .矩形 D .正方形6.如图,⊙O 的外切梯形ABCD 中,若AD ∥BC ,那么 ∠DOC 的度数为( )A 、700B 、900C 、600D 、4507.如图,PA 为⊙O 的切线,A 为切点,割线PBC 过圆心O ,∠ACP=300,OC=1cm ,则PA的长为( )(A )2cm (B )3cm (C )2cm (D )3cm 8.如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线,如果PB=2,PC =8,那么PA 的长为( )(A )2 (B )4 (C )6 (D )329.如图,已知A 、B 、C 三点在⊙O 上,且∠AOB =1000,则∠ACB 的度数为( ) (A ) 2000 (B ) 1000 (C )600 (D ) 500 10.已知:如图,AB 、AC 分别切⊙O 于B 、C ,D 是⊙O 上一点,∠D=400,则∠A 的度数等于 ( ) (A )1400 (B )1200 (C ) 1000 (D ) 80011.如图,直线MN 切⊙O 于A ,AB 是⊙O 的弦,∠MAB 的平分线交⊙O 于C ,连结CB 并延长交MN 于N ,如果AN=6,NB=4,那么弦AB 的长是 ( ) (A )215 (B )3 (C ) 5 (D )31012.⊙O 是△ABC 的内切圆,∠ACB=900,∠BOC=1050,BC=20cm ,则AC=( ) (A ) 20cm (B) 203 (C)40cm (D) 15cm13.若∠OAB=30°,OA=10cm ,则以O 为圆心,6cm 为半径的圆与射线AB 的位置关系是( )A .相交B .相切C .相离D .不能确定14.Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为( )A .8B .4C .9.6D .4.815.⊙O 内最长弦长为m ,直线ι与⊙O 相离,设点O 到ι的距离为d ,则d 与m 的关系是( )A .d=mB .d >mC .d >2mD .d <2m16.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形17.菱形对角线的交点为O ,以O 为圆心,以O 到菱形一边的距离为半径的圆与其他几边的关系为( )A .相交B .相切C .相离D .不能确定18.⊙O 的半径为6,⊙O 的一条弦AB 为63,以3为半径的同心圆与直线AB 的位置关系是( )A .相离B .相交C .相切D .不能确定19.下列四边形中一定有内切圆的是( )A .直角梯形B .等腰梯形C .矩形D .菱形20已知⊙O 1和⊙O 2的半径分别为1和5,圆心距为3,则两圆的位置关系是( ) A .相交B .内含C .内切D .外切21一个等腰梯形的高恰好等于这个梯形的中位线.若分别以这个梯形的上底和下底为直径作圆,这两个圆的位置关系是( )A .相离B .相交C .外切D .内切22两圆的圆心坐标分别是(3,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是( )A .相离B .相交C .外切D .内切23.以平面直角坐标系中的两点O 1(0,3)和O 2(4,0)为圆心,以8和3为半径的两圆的位置关系是( )A .内切B .外切C .相离D .相交24.两圆半径之比为3:2,当此两圆外切时,圆心距是10cm ,那么,当此两圆内切时,其圆心距为( )A .大于2cm 且小于6cmB .小于2cmC .等于2cmD .非以上取值范围25.已知⊙O 1、⊙O 2的半径分别为6和3,O 1、O 2的坐标分别是(5,0)和(0,6),则两圆的位置关系是( )A .相交B .外切C .内切D .外离26.R 、r 是两圆的半径(R >r ),d 是两圆的圆心距,若方程x 2-2Rx +r 2=d (2r -d )有等根,则以R 、r 为半径的两圆的位置关系是( )A .外切B .内切C .外离D .相交27.已知半径分别为r 和2r 的两圆相交,则这两圆的圆心距d 的取值范围是( )A .0<d <3rB .r <d <3rC .r <d <2rD .r ≤d ≤3r28.已知两个等圆⊙O 1和⊙O 2相交于A 、B 两点,且⊙O 1经过O 2,则四边形O 1AO 2B 是( )A .平行四边形B .菱形C .矩形D .正方形29.半径分别为1、2、3的三圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为( )A .钝角三角形B .等腰三角形C .等边三角形D .直角三角形30.半径分别为1cm 和2cm 的两圆外切,那么与这两个圆都相切且半径为3cm 的圆的个数是( )A .5个B .4个C .3个D .2个二.填空题1.直角三角形三个顶点都在以 为圆心,以 为半径的圆上,直角三角形的外心是 . 2.若Rt △ABC 的斜边是AB ,它的外接圆面积是121πcm 2,则AB= . 3.△ABC 的三边3,2,13,设其三条高的交点为H ,外心为O ,则OH= . 4.在△ABC 中,∠C=90°,AB=6,则其外心与垂心的距离为 . 5.△ABC 的外心是它的两条中线交点,则△ABC 的形状为 . 6.如图是一块破碎的圆形木盖,试确定它的圆心.7.圆的一条弦与直径相交成300角,且分直径长1cm 和5cm 两段,则这条弦的弦心距为_______ ,弦长_______ 。
高中数学 2.3.4圆与圆的位置关系课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题
【成才之路】2015-2016学年高中数学圆与圆的位置关系课时作业新人教B版必修2一、选择题1.(2015·某某某某市高一期末测试)圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( )A.外切B.内切C.外离D.内含[答案] A[解析]圆x2+y2=1的圆心C1(0,0),半径r1=1,圆x2+y2-6y+5=0的圆心C2(0,3),半径r2=2,∴两圆心的距离|C1C2|=0-02+3-02=3,∴|C1C2|=r1+r2=3,故两圆外切.故选A.2.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为( )A.1 B.2C.3 D.4[答案] C[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.3.(2015·某某某某一中高一期末测试)圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是( )A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[答案] C[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有( ) A.1条B.2条C.3条D.4条[答案] B[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是( ) A .(1,-2) B .(3,-2) C .(2,-1) D .(2+2,2-3)[答案] B[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B.6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .x 2+y 2=1(x ≠0) D .y =1-x 2[答案] B[解析] 直接法,设P (x ,y ),由k PA =y x +1,k PB =y x -1及题设条件yx +1·yx -1=-1(x ≠±1)知选B.二、填空题7.(2015·某某某某市一中高一期末测试)圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是________.[答案] 相交[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=-3-02+0+32=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是____________. [答案]x =23[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23. 三、解答题9.判断下列两圆的位置关系.(1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C 1:x 2+y 2-4x -6y +9=0,C 2:x 2+y 2+12x +6y -19=0; (4)C 1:x 2+y 2+2x -2y -2=0,C 2:x 2+y 2-4x -6y -3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=2-12+-12= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=2+62+3+32=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=2+12+3-12=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:mx+y-7=0与C2相切.求:(1)圆C2的标准方程;(2)m的值.[解析](1)由题知C1:(x-1)2+(y-2)2=18,C2:(x-a)2+(y-3)2=8.因为C1与C2相外切,所以圆心距d=r1+r2,即a-12+3-22=32+22,所以a=8或-6(舍去).所以圆C2的标准方程为(x-8)2+(y-3)2=8.(2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22,所以m =1或17.一、选择题1.半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程是( ) A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6或(x -4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36 [答案] D[解析] 由题意可设圆的方程为(x -a )2+(y -6)2=36, 由题意,得a 2+9=5,∴a 2=16,∴a =±4.2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[答案] A[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0.二、填空题3.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为______________________.[答案] 60x 2-4y 2-240x +225=0[解析]⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=x -42+y 2=R +2,∴x -42+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.4.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值X 围是________________.[答案] -7≤m ≤7 2[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2. 三、解答题5.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程.[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝ ⎛⎭⎪⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.6.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. [解析]⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3,圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0. ②∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0. ③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝ ⎛⎭⎪⎫t +352+215≥215,所以t =-35时,r min=215. 此时,圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B .则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4. 欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝ ⎛⎭⎪⎫-35,-65,r min =215, 故圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.。
中考数学专题特训第二十四讲:与圆有关的位置关系(含详细参考答案)
中考数学专题复习第二十四讲与圆有关的位置关系【基础知识回顾】一、点与圆的位置关系:1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d则:点P在圆内<=> 点P在圆上<=>点P在圆外<=>2、过三点的圆:⑴过同一直线上三点作用,过三点,有且只有一个圆⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的⑶三角形外心的形成:三角形的交点,外心的性质:到相等【赵老师提醒:1、锐角三角形外心在三角形直角三角形的外心是锐角三角形的外心在三角形】一、直线与圆的位置关系:1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆直线叫圆的线,这的直线叫做圆的直线和圆没有公共点时,叫做直线和圆2、设Qo的半径为r,圆心o到直线l的距离为d,则:直线l与Qo相交<=>d r,直线l与Qo相切<=>d r直线l与Qo相离<=>d r3、切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【赵老师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【赵老师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】4、切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点到圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角5、三角形的内切圆:⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的⑵三角形内心的形成:是三角形的交点内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分【赵老师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】二、圆和圆的位置关系:圆和圆的位置关系有种,若Qo1半径为R,Qo2半径为r,圆心距外,则Qo1 与Qo2 外距<=> Qo1 与Qo2 外切<=>两圆相交<=> 两圆内切<=>两圆内含<=>【赵老师提醒:两圆相离无公共点包含和两种情况,两圆相切有唯一公共点包含和两种情况,注意题目中两种情况的考虑圆心同是两圆此时d= 】三、反证法:假设命题的结论,由此经过推理得出由矛盾判定所作的假设从而得到原命题成立,这种证明命题的方法叫反证法【赵老师提醒:反证法正题的关键是提出即假设所证结论的反面成立,择推理论证得出的矛盾可以与相矛盾,也可以与相矛盾,从而肯定原命题成立】【典型例题解析】考点一:切线的性质线,证明:AB=4PD.考点:切线的性质;等边三角形的判定与性质;含30度角的直角三角形;圆心角、弧、弦的关系;圆周角定理.专题:几何综合题.分析:(1)PO与BC的位置关系是平行;(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠COP=∠ACB,利用内错角相等两直线平行,可得出PO与BC平行;(3)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP 平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证.解答:解:(1)PO与BC的位置关系是PO∥BC;(2)(1)中的结论PO∥BC成立,理由为:由折叠可知:△APO≌△CPO,∴∠APO=∠CPO,又∵OA=OP,∴∠A=∠APO,∴∠A=∠CPO,又∵∠A与∠PCB都为PB所对的圆周角,∴∠A=∠PCB,∴∠CPO=∠PCB,对应训练1.(2012•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.(1)求证:AE平分∠CAB;(2)探求图中∠1与∠C的数量关系,并求当AE=EC时,tanC的值.考点:切线的性质;特殊角的三角函数值.专题:探究型.分析:(1)连接OE,则OE⊥BC,由于AB⊥BC,故可得出AB∥OE,进而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,进而可得出∠1=∠2;(2)由三角形外角的性质可知∠1+∠AEO=∠EOC,,因为∠1=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;当AE=CE时,∠1=∠C,再根据2∠1+∠C=90°即可得出∠C的度数,由特殊角的三角函数值得出tanC即可.解答:(1)证明:连接OE,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,∵设圆半径为r,则OP=OB=r,PA=5-r,∴AB2=OA2-OB2=52-r2,AC2=PC2-PA2=(25)2-(5-r)2,∴52-r2=(25)2-(5-r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,∵∠DPB=∠CPA,∴△DPB∽△CPA,∴CP AP PD BP=,∴2553 33BP-=+,解得:PB=655.考点二:切线的判定(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=35,又∵sin∠DAB=BD AB,∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BDsin45°=6×22=32,∵∠DAB=∠DCB∴tan∠DCB=BGCG=34,∴CG=42,∴CD=CG+DG=42+32=72,∴S△CBD=12CD•BG=7232212⨯=.点评:本题考查的是切线的判定定理,涉及到圆周角定理、解直角三角形及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.对应训练考点三:三角形的外接圆和内切圆例4 (2012•阜新)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.考点:三角形的外接圆与外心;圆周角定理;锐角三角函数的定义.专题:计算题.分析:作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出sin∠D= BCCD,代入求出CD即可.解答:解:作圆O的直径CD,连接BD,∵弧BC对的圆周角有∠A、∠D,∴∠D=∠A=60°,∵直径CD,A.r B.2r C.2r D.2r考点:三角形的内切圆与内心;矩形的判定;正方形的判定;切线长定理.专题:计算题.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=r,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.解答:解:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=r,∵⊙O切AB于D,切BC于E,切MN于P,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,故选C.点评:本题考查的知识点是矩形的判定、正方形的判定、三角形的内切圆和内心、切线长定理等,主要考查运用这些性质进行推理和计算的能力,题目比较好,难度也适中.对应训练4.(2012•台州)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;∴sin∠D=BCCD=45,∴CD=25 4,答:三角形ABC外接圆的直径是254.(2)解:连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=5,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A=45=BFAB,∴BF=4,在Rt△ABF中,由勾股定理得:AF=CF=3,AC=2AF=6,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴12AB×R+12BC×R+12AC×R=12AC×BF,即5×R+5×R+6×R=6×4,∴R=32,在△AIF中,AF=3,IF=32,由勾股定理得:AI=352.答:AI的长是352.点评:本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.考点三:圆与圆的位置关系例6(2012•毕节地区)第三十奥运会将于2012年7月27日在英国伦敦开幕,奥运会旗图案有五个圆环组成,如图也是一幅五环图案,在这个五个圆中,不存在的位置关系是()A.外离B.内切C.外切D.相交考点:圆与圆的位置关系.分析:根据两圆的位置关系易得到它们的位置关系有外切、外离、相交.解答:解:观察图形,五个等圆不可能内切,也不可能内含,并且有的两个圆只有一个公共点,即外切;有的两个圆没有公共点,即外离;有的两个圆有两个公共点,即相交.故选B.点评:本题考查了圆与圆的位置关系:若两圆的半径分别为R,r,圆心距为d,若d>R+r,两圆外离;若d=R+r,两圆外切;若R-r<d<R+r(R≥r),两圆相交;若d=R-r(R>r),两圆内切;若0≤d<R-r(R>r),两圆内含.对应训练6.(2012•德阳)在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有个.6.4考点:圆与圆的位置关系;坐标与图形性质;直线与圆的位置关系.分析:分两圆内切和两圆外切两种情况讨论即可得到⊙P的个数.解答:解:如图,满足条件的⊙P有4个,故答案为4.点评:本题考查了圆与圆的位置关系、坐标与图形的性质及直线与圆的知识,能充分考虑到分内切和外切是解决本题的关键.【聚焦山东中考】1.(2012•济南)已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.解答:解:∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O1O2=5,∴两圆外切.故选B.点评:此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).2.(2012•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别是4和6,O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别是4和6,O1O2=2,∴O1O2=6-4=2,∴⊙O1与⊙O2的位置关系是内切.故选A.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.3.(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.π B.2πC.3π D.5π考点:切线的性质;弧长的计算.分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,在利用弧长公式即可求出BC的长.解答:解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=120°,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴ BC 的长为nπr 180 =120×π×3 180 =2π,故选B.点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.4.(2012•潍坊)已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先解方程x2-7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵x2-7x+10=0,∴(x-2)(x-5)=0,∴x1=2,x2=5,即两圆半径r1、r2分别是2,5,∵2+5=7,两圆的圆心距为7,∴两圆的位置关系是外切.故选C.点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.5.(2012•济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.5.4848考点:切线的性质;勾股定理;矩形的性质.分析:首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.解答:解:取AC的中点O,过点O作MN∥EF,PQ∥EH,∵四边形EFGH是矩形,∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,∵AB∥EF,BC∥FG,∴AB∥MN∥GH,BC∥PQ∥FG,∴AL=BL,BK=CK,∴OL=12BC=12×8=4,OK=12AB=12×6=3,∵矩形EFGH的各边分别与半圆相切,∴PL=12AB=12×6=3,KN=12BC=12×8=4,在Rt△ABC中,AC= ,∴OM=OQ=12AC=5,∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,∴矩形EFGH的周长是:EF+FG+GH+EH=12+12+12+12=48.故答案为:48.点评:此题考查了切线的性质、矩形的性质,三角形中位线的性质以及勾股定理等知识.此题难度较大,解题的关键是掌握辅助线的作法,注意数形结合思想的应用.6.(2012•菏泽)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.6.23考点:切线的性质.专题:计算题.分析:由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC 的度数.解答:解:∵PA,PB是⊙O是切线,∴PA=PB,又∠P=46°,∴∠PAB=∠PBA=180-462=67°,又PA是⊙O是切线,AO为半径,∴OA⊥AP,∴∠OAP=90°,∴∠BAC=∠OAP-∠PAB=90°-67°=23°.故答案为:23。
圆与圆的位置关系【要点导学】
要点导学各个击破两圆位置关系的判定已知圆C1:x2+y2-2kx+k2-1=0和圆C2:x2+y2-2(k+1)y+k2+2k=0,当它们的圆心距最小时,判断两圆的位置关系.[思维引导]计算出两圆圆心距关于参数k的表达式,求出最小值,判断与两圆半径和及差与圆心距的大小关系.[解答]将两圆方程化为标准方程,圆C1:(x-k)2+y2=1,圆C2:x2+(y-k-1)2=1.圆心距d=C1C2.显然当k=-12时,两圆圆心距最短且dmin,两圆半径之和为2,半径之差为0.因为<2,所以两圆相交.[精要点评]圆与圆的位置关系有五种,判断依据是圆心距与两圆半径和及差的大小关系.(2014·江苏模拟)已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,求m为何值时:(1) 圆C1与圆C2外切;(2) 圆C1与圆C2内含.[解答]将两圆方程化为标准方程, 圆C1:(x-m)2+(y+2)2=9,圆C 2:(x+1)2+(y-m)2=4. (1) 因为圆C 1与圆C 2外切,所以m 2+3m-10=0,解得m=2或-5. 所以当m=-5或m=2时,圆C 1与圆C 2外切. (2) 因为圆C 1与圆C 2内含,所以m 2+3m+2<0,解得-2<m<-1. 所以当-2<m<-1时,圆C 1与圆C 2内含.两相交圆的公共弦问题已知圆C:x 2+y 2-10x-10y=0与圆M:x 2+y 2+6x+2y-40=0相交于点A,B. (1) 求圆C 与圆M 的公共弦所在直线的方程; (2) 求AB 的长.[解答](1) 直线AB 的方程为x 2+y 2-10x-10y-(x 2+y 2+6x+2y-40)=0,即4x+3y-10=0.(2) 因为C(5,5),所以圆心C 到直线AB 的距离为d=|4535-10|5⨯+⨯=5,圆C 的半径为所以=10.已知圆C 1:x 2+y 2-6x-6=0,圆C 2:x 2+y 2-4y-6=0. (1) 试判断两圆的位置关系; (2) 求公共弦所在直线的方程.[解答](1) 因为圆C 1的圆心为(3,0),半径为r 1圆C 2的圆心为(0,2),半径为r 2,又因为C 1C 2所以|r 1-r 2|<C 1C 2<r 1+r 2,所以圆C1与圆C2相交.(2) 圆C1与圆C2的方程相减可得公共弦所在的直线方程为3x-2y=0.利用圆与圆的位置关系求参数若圆C1:x2+y2-2mx+m2-4=0和圆C2:x2+y2+2x-4my+4m2-8=0相交,求实数m的取值范围.[思维引导]将两个圆的方程化成标准方程,计算它们的圆心距,由相交的条件:|r1-r2|<d<r1+r2解不等式即可.[解答]圆C1:(x-m)2+y2=4,圆心C1为(m,0),半径r=2,圆C2:(x+1)2+(y-2m)2=9,圆心C2为(-1,2m),半径r=3.所以圆心距因为两圆相交,所以3-2<d<2+3,解得-125<m<-25或0<m<2.所以m的取值范围为122-,-55⎛⎫⎪⎝⎭∪(0,2).[精要点评]对于两圆的五种位置关系必须满足的条件一定要熟悉,对于这些结论不需死记硬背,应在解题时根据已知的位置关系画出图形来,在理解的基础上进行分析,注重培养数形结合的解题习惯.(2014·江阴模拟改编)已知圆C1:x2+y2+4ax+4a2-4=0和圆C2:x2+y2-2by+b2-1=0内切.若a,b∈R,且ab≠0,求实数a,b之间满足的关系式.[解答]圆C1的标准方程为(x+2a)2+y2=4,圆心C1(-2a,0),半径为2,圆C2的标准方程为x2+(y-b)2=1,圆心C2(0,b),半径为1.因为两圆内切,则有C1C2=1,即4a2+b2=1.两圆的综合问题(2014·玉溪一中模拟)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1) 若直线l过点A(4,0),且被圆C1截得的弦长为求直线l的方程;(2) 设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.[解答](1) 当直线l的斜率不存在时,不满足题意,故可设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理得圆心C1到直线l的距离⇒k=0或k=-724.故直线l的方程为y=0或y=-724(x-4),即y=0或7x+24y-28=0.(2) 设点P(m,n),直线l1,l2的方程分别为y-n=k(x-m),y-n=-1k(x-m),即l1:kx-y+n-km=0,l2:-1k x-y+n+mk=0.由题意可知C1到直线l1的距离等于C2到直线l2的距离,化简,得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5, 由题意知关于k的方程有无穷多个解,则有2--0,--30m nm n=⎧⎨=⎩或-80,-50,m nm n+=⎧⎨+=⎩解得5,21-2mn⎧=⎪⎪⎨⎪=⎪⎩或3-,213.2mn⎧=⎪⎪⎨⎪=⎪⎩故P51,-22⎛⎫⎪⎝⎭或P313-,22⎛⎫⎪⎝⎭.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.[解答]设所求圆的方程为x2+y2+6y-28+λ(x2+y2+6x-4)=0,即(1+λ)x2+(1+λ)y2+6λx+6y-28-4λ=0,则所求圆的圆心为33-,-11λλλ⎛⎫⎪++⎝⎭.因为圆心在直线x-y-4=0上,所以-31λλ++31λ+-4=0,解得λ=-17.所以所求圆的方程为x2+y2-x+7y-32=0.1. 圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为.[答案]相交2. 圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为.[答案][解析]两圆的方程相减得y=x+2,即为公共弦所在直线的方程.圆x2+y2-4=0的圆心到直线x-y+2=0的距离为d==.所以两圆的公共弦长为.3. (2014·江苏模拟)若圆x 2+y 2=1与圆(x+4)2+(y-a)2=25相切,则常数a 的值是 .[答案]0或[解析]由题意得16+a 2=16或16+a 2=36,解得a=0或a=±.4. 圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0的公切线的条数是 . [答案]4[解析]易知圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0外离,所以两圆的公切线有4条.5. 已知动圆x 2+y 2-2mx-4my+6m-2=0恒过定点,那么定点的坐标是 .[答案](1,1),17,55⎛⎫ ⎪⎝⎭[解析]动圆方程转化为(x 2+y 2-2)+(-2x-4y+6)m=0,令x 2+y 2-2=0,且-2x-4y+6=0,解得1,1x y =⎧⎨=⎩或1,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩[温馨提醒]趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习(第115-116页).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10题B A O'
O O 3O 218题
O 1A 20题B A 19题
16题P O 《圆与圆的位置关系》练习题
1.⊙O 1与⊙O 2的半径分别为3cm 和8cm,①若两圆相切,则圆心距O 1O 2= ;②若O 1O 2=4㎝,则两圆 ;③若两圆相交,则圆心距O 1O 2的取值范围为 ;④若两圆有公共点,则圆心距O 1O 2的取值范围为 。
2.相切两圆的半径分别为8㎝和x ㎝,圆心距为10㎝,则x 的值为 。
3.⊙O 1与⊙O 2相切,⊙O 1的半径为6cm ,①若O 1O 2=4㎝,则⊙O 2的半径为 ;②若O 1O 2=8㎝,则⊙O 2的半径为 。
4.两圆半径之比为3︰5,若两圆相外切,且圆心距为8㎝,则两圆相内切时,圆心距为 .
5.在平面直角坐标系中,A 、B 两点的坐标分别是(0,5)、(12,0),分别以A 、B 为圆心作⊙A 、⊙B ,①若两圆的半径分别是8、3,则两圆的位置关系为 ;②若两圆的半径分别是15、2,则两圆的位置关系为 ;③若两圆的半径分别是7、6,则两圆的位置关系为 ;④若⊙A 的半径为8㎝,则当⊙B 的半径为 时,两圆相切。
6.半径分别为2、4、6的三个圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为 .
7.△ABC 的三边分别为AB=5㎝、BC=6㎝、AC=7㎝,若分别以A 、B 、C 三点为圆心作⊙A 、⊙B 、⊙C ,它们两两外切,则⊙A 、⊙B 、⊙C 的半径分别为 。
8.若两圆半径分别为r 1、r 2,圆心距为d,关于x 的一元二次方程x 2-2r 1x+(r 2-d)2=0有两个相等的
实数根,则这两圆的位置关系为 。
9. ⊙O 1与⊙O 2是等圆,且两圆交于A 、B 两点,⊙O 1经过⊙O 2的圆心O 2,连接O 1A 、O 1B 、O 2A 、O 2B ,
则四边形O 1AO 2B 的形状为 。
10.如图所示,两个等圆⊙O 与⊙O ’相外切,则∠AOB 的度数为 。
11.半径为2㎝和3㎝的两圆外切,与这两圆都相切且半径为5㎝的圆 有 个。
12.圆心在x 轴的两圆交于A 、B 两点,若A 点坐标为(-3,4),则B 点
坐标为 。
13.已知⊙O 1、⊙O 2交于A 、B 两点,两圆半径分别为6 2 、4 3 ,AB=12,则O 1O 2= ,∠O 1AO 2度数为 。
14.若⊙O 1、⊙O 2的半径分别为方程x 2-9x+14=0的两根,且O 1O 2=5,则两圆的位置关系为 。
15.直角梯形ABCD 中,AB ⊥BC ,AB ∥CD ,AB 、CD 为方程x 2-20x+75=0的两根,且BC=10√3,分别
以A 、D 为圆心,AB 、CD 长为半径作⊙A 、⊙D ,则两圆的位置关系为 .
16.在一个长为18cm,宽为16cm 的矩形上剪去如图所示的两个圆⊙O 与⊙P ,则⊙O 的半径为 ,⊙P 的半径为 。
17.如图,各圆两两相切,⊙O 的半径为6,则⊙O 1、⊙O 2的半径为 ,⊙O 3的半径为 。
18.矩形长为12cm,宽为9cm,在这个矩形内截取两个等圆⊙O 1、⊙O 2后,在余角料中还能截下一个最大的⊙O 3,则⊙O 1、⊙O 2的半径为 ,⊙O 3的半径为 。
23题D C(P)B A(O)
25题l M y x O C B A 19.如图,两圆轮椅叠靠在墙边,已知两圆半径分别为1和4,则它们与墙的切点A 、B 间的距离为 。
20.如图,某人要用如下方法测一钢管的内径,将一小段钢管竖直放在平台上,向内放入两个半径为5cm 的钢球,测得钢球顶部高CD=16cm,则钢管的内径AD 为 。
21.已知⊙A 、⊙B 是等圆,两圆相外切,且都与⊙C 内切,△ABC 的周长为20cm,则⊙C 的半径为 。
22.如图,⊙O 2与半圆O 1内切于点C ,与半圆的直径切于点D ,若AB=6,
⊙O 2的半径为1,则∠ABC 的度数为 。
23.如图,矩形ABCD 中,AB=12,BC=4,⊙O 与⊙P 的半径分别为2、3,
⊙O 的圆心O 从A 点出发,以每秒2个单位的速度向点B 运动,
⊙P 的圆心P 从C 点出发,以每秒1个单位的速度向点D 运动, 当运动时间t= 时,⊙O 与⊙P 相切。
24.已知,抛物线y=x 2+bx+c 过点A(0,5),B(3,2)
⑴求抛物线解析式;
⑵现有一半径为1,圆心P 在抛物线上运动的动圆,当 ⊙P 在运动过 程中是否存在⊙P 与坐标轴相切的情况?若存在,求出圆心P 的坐标;
若不存在,请说明理由;
⑶若⊙Q 的半径为r,点Q 在抛物线上,当⊙Q 与两坐标轴都相切时,求半径r 的值。
25.如图,在平面直角坐标系中,以坐标原点O 为圆心的⊙O 半径为√2-1,直线l:y=-x-√2与坐标轴分别交于A 、C 两点,点B 的坐标为(4,1),⊙B 与x 轴切于点M 。
⑴求出点A 、C 的坐标及∠CAO 的度数;
⑵⊙B 以每秒1个单位的速度沿x 轴向负半轴方向平移,
同时直线l 绕点A 顺时针匀速旋转,当⊙B 第一次与⊙O 相切时,直线l 也恰好与⊙B 第一次相切,问:直线AC 绕点A 每秒旋转多少度?
答案:
1.①5cm或11cm ②内含③5cm<O1O2<11cm ④5cm≤O1O2≤11cm
2.2cm或18cm
3.①2cm或10cm ②2cm或14cm
4. 2cm
5.①外离②内切③外切④5cm或21cm
6.直角三角形
7.3cm、2cm、4cm
8.相切
9.菱形 10.60° 11.5 12.(-3,-4)13.75°或45° 14.内切 15.外切 16.8cm 2cm 17.3,3 2 18.3cm,3cm 2cm 19.4 20.18cm 21.10cm 22.75° 23.3或5
24.⑴y=x2-4x+5 ⑵P1(2,1),P2(1,2),P3(-1,10) ⑶r=
25.⑴A(- 2 ,0)C(0, - 2 ) ⑵t=3s v=30°/s。