电致发光高分子材料共89页
电致发光材料
电致发光材料电致发光材料,又称为电致冷光材料,指的是能够通过电场或电流激发而发出可见光的材料。
电致发光材料在现代电子技术和光电子技术中具有广泛的应用,例如LED、液晶显示器等。
最常见的电致发光材料是LED(Light Emitting Diode),也就是电致发光二极管。
LED是一种具有电致发光特性的二极管,通过施加正向电压,使得电子和空穴重新组合并释放能量,产生可见光。
LED具有体积小、节能、寿命长等优点,广泛应用于室内外照明、屏幕显示、汽车照明等领域。
另外一种常见的电致发光材料是有机电致发光材料(OLED)。
有机电致发光材料是一种由有机化合物构成的薄膜材料,通过电压激发有机分子的激发态,从而发出光线。
OLED具有发光均匀、色彩鲜艳、可弯曲等特点,因此被广泛应用于手机屏幕、电视屏幕、车载显示器等领域。
除了LED和OLED,还有一些其他的电致发光材料,如电致发光多晶硅材料、电致发光蓝宝石材料等。
这些电致发光材料都具有突出的发光特性,可以通过激励能源(如电场或电流)来产生发光效果。
电致发光材料的运作原理可以简单地描述为电子和空穴在材料中重新组合并释放能量,产生光线。
具体来说,当材料中施加电压时,电子会从高能级跃迁到低能级,而空穴则从低能级跃迁到高能级。
当电子和空穴重新组合时,释放出能量,这些能量以光的形式辐射出来。
电致发光材料的应用广泛,不仅可以用于照明和显示领域,还可以用于传感、通信、医疗等领域。
电致发光材料具有发光效率高、寿命长、响应速度快等优点,因此在现代科技中扮演着重要的角色。
总之,电致发光材料是一类能够通过电场或电流激发而发光的材料,其中LED和OLED是最常见的电致发光材料。
电致发光材料具有广泛的应用前景,推动了现代电子技术和光电子技术的发展。
有机高分子电致发光材料及器件
西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
有机电致发光器件的结构示意图 西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
西北工业大学
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
PLED材料的性能参数
发光光谱
发射光谱通常有两种,即光致发光光谱(PL)和电致 发光光谱(EL)。PL光谱是由光能激发的,而EL光谱 则需要电能的激发。通过比较器件的光谱和不同载 流子传输材料和发光材料的光谱,可以得出复合区 的位置以及实际发光物质等信息。一般说来,光谱 分散范围愈窄,其单色性愈好
PLED最新进展
西北工业大学
Angew. Chem. Int. Ed. 2014, 53, 1048 –1052
Northwestern Polytechnical University
PLED
ELM简介
ELD简介
PLED材料
PLED最新进展
西北工业大学
J. AM. CHEM. SOC. 9 VOL. 131, NO. 40, 2009
小分子类:
蒽化合物、芴类小 分子 、芳胺类材 料 、喹吖啶酮类 、 有机类硼类蓝光材 料
聚合物类:
聚对苯乙烯撑,聚 噻吩,聚苯胺、和
聚咔唑
西北工业大学
Northwestern Polytechnical University
导电高分子材料(3)幻灯片PPT
导电高分子材料(3)幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
目录: ⒈引言 ⒉导电高分子材料的隐身机理 ⒊红外与雷达波段复合材料 ⒋隐身导电高分子的研究方向
导电高分子材料的隐身机理
雷达隐身材料是通过对电磁波的吸收而实 现隐身效果的,因此,一方面要使电磁波最大 限度地进入材料内部而不是在外表反射;另 一方面要使进入材料内部的电磁波最大限 度地被吸收。要满足以上两个条件,材料的 电磁参数应相互匹配。
导电高分子的吸波机理主要是电损耗和介 电损耗。在雷达波的作用下,一方面材料被 反复极化,分子电偶极子力图跟上电磁场的 振荡而产生分子摩擦;另一方面由于材料电 导率不为零,电磁波在材料中形成感应电流 而产生热量,从而使得电磁波能量被耗散。
导电高分子材料由于具有大π共轭构造,表 现出了高的介电常数与介电损耗,而介电损 耗与材料的吸波性能密切相关。介电损耗 越大,材料的吸波性能越好。
导电高聚物由于其较高的电导率,具有一定 的金属相似性,显示出了独特的红外吸收与 红外反射特性。导电聚合物的红外发射率 远比普通聚合物低得多,这使得该类材料有 可能成为一种红外与微波兼容的隐身材料, 通过多层设计,可以获得轻质、宽频、多频 谱隐身的功能。
目前,导电高分子作为吸波材料的应用正由 单层构造向多层宽频吸收开展。另外,导电 高分子放置在大气中,它的室温电导率会随 时间而逐渐降低,而且掺杂剂本身不稳定,也 影响了导电高分子的适用温度范围。研究 导电高分子在电、光等条件下的电磁参数 的变化,设计合成智能隐身材料是导电高分 子隐身材料的重要研究方向。
《电活性高分子材料》PPT课件
说明:
①、制备时的温度应达到该聚合物的玻璃化温度以上,熔点
以下。
精极化过程越快、极化程度越大。 ③、当聚合物沉积在电极表面时,电荷可以通过电极注入材 料内部,使驻极体带有真实电荷。如果聚合物与电极保持一定间 隔,可以通过空气层击穿放电,给聚合物表面注入电荷。因此热 极化过程经常是一个多极化过程。 特点: 优点是--极化得到的极化取向和电荷累积可以保持较长时间。
体纤维--卷烟过滤嘴(可替代醋酸纤维)。
精选课件ppt
14
第三节 电致发光高分子材料
一、电致发光高分子材料概述 1、电致发光高分子材料
当施加电压参量时,能够将电能直接转换成光能量的功能高 分子材料称为电致发光高分子材料。其中电致发光又称电致荧光 现象。
2、电致发光高分子材料发展史 20世纪初发现晶体(SiC)电致发光材料,60年代发现非晶态
铍等的络合物,恶二唑衍生物PBD等。 B、高分子电子传输材料
聚吡啶类的PPY、奈内酰胺聚合物4-AcNI、聚苯乙烯磺酸钠 等。
精选课件ppt
20
②、空穴传输材料 相比于电子传输材料还未普遍使用。包括有机空穴传输材料
和高分子空穴传输材料。 A、有机空穴传输材料
主要有芳香二胺类TPD和NPB及其衍生物。 B、高分子空穴传输材料
精选课件ppt
9
三、高分子驻极体的形成方法
高分子驻极体的制备多采用物理方法实现。最常见的形成方
法包括热极化、电晕极化、液体接触极化、电子束注入法和光电
极化法。
如,热极化、电晕极化形成法:
1、热极化法形成法
➢ 是制备极化型高分子驻极体的主要方法。
➢ 在升高聚合物温度的同时,施加高电场,使材科内的偶极子指 向化,在保持电场强度的同时,降低材料温度,使偶极子的指 向性在较低温度下得以保持,而得到的高分子驻极体。
电致发光材料
电致发光材料
电致发光材料(Electroluminescent Materials,简称EL材料)是一种能够在电
场的作用下产生发光现象的材料。
它具有在室温下工作、发光效率高、寿命长、能耗低等优点,因此在显示、照明、生物医学、安全标识等领域有着广泛的应用前景。
EL材料的基本原理是在外加电场的作用下,通过电子和空穴的复合发生辐射
而产生光。
目前,主要的EL材料包括有机EL材料和无机EL材料两大类。
有机EL材料是指以有机化合物为基础的EL材料,其优点是制备工艺简单、
可制备成薄膜、柔性度高,适合于柔性显示器件的制备。
有机EL材料的发光颜色
丰富,可以通过不同的有机分子设计实现多种颜色的发光,因此在显示领域有着广泛的应用前景。
无机EL材料是指以无机化合物为基础的EL材料,其优点是发光效率高、寿
命长、稳定性好,适合于大面积照明和显示领域的应用。
无机EL材料的发光机理
复杂,通常包括发光中心和激活剂等组成,通过控制发光中心和激活剂的种类和浓度可以实现不同颜色的发光。
除了有机EL材料和无机EL材料,近年来还出现了混合型EL材料,即有机无
机杂化EL材料。
混合型EL材料综合了有机EL材料和无机EL材料的优点,具有
发光效率高、寿命长、制备工艺简单等特点,因此备受关注。
随着科学技术的不断发展,EL材料的研究和应用也在不断拓展。
未来,随着
新材料、新工艺的不断涌现,EL材料将会在显示、照明、生物医学等领域发挥越
来越重要的作用,为人类社会的发展和进步做出更大的贡献。
电致发光高分子材料
有机发光材料因分子间范德华力作用较弱,
对于处在激发态的有机分子,其电子与空
穴基本属于一个分子。因此大多数的有机 分子所形成的激子属于Frankel激子类型。 设激子的能级Eex。位于价带底能级Ec与价 带顶能级Ev之间,则它的激发能为Eg`= Eex—Ev ,小于Eg=Ec--Ev。显然激子的 束缚能为Ec—Eex;激子最终发生复合,即 在此过程中电子落人空穴之中,或者产生
余辉在10 -8 秒以下的称荧光.如受外来光 线激发发光的荧光灯发光;受阴极射线激发 发光的电视屏发光;都为荧光.荧光是冷光, 其余辉时间与发光体温度无关.荧光灯管和 电视屏上都涂有发光物质,荧光灯上涂的发 光物质常为卤磷酸钙.
磷光邮票与荧光邮票的区别:磷光邮票和荧 光邮票都是发光邮票,在紫外灯照射下发出 蓝绿色余辉,主要区别是撤除紫外线照射, 荧光邮票亮光立即消失,而磷光邮票亮光消 失较慢。
概述
长期以来,人们一直致力于研究开发无机半导体 电致发光器件,因为它们在通讯、光信息处理、 视频器件、测控仪器等光电子领域有着广泛而重 要的应用价值。
无机半导体二极管、半导体粉末、半导体薄膜等 电致发光器件尽管已取得了巨大的成就,但由于 其复杂的制备工艺、高驱动电压、低发光效率、 不能大面积平板显示、能耗较高以及难以解决短 波长(如荧光)等问题.使得无机电致发光材料的 进一步发展受到影响。
改变取代基 增加给电子基团发生红移 增加吸电子基团发生蓝移 改变共轭链的长短 部分共轭可以获得更大的量子效率,抑制了非光耗散 掺杂剂 改变了能量传递的效率和浓度,改变器件的发光光谱
制备
真空蒸镀 浸涂和旋涂 原位聚合法 利用单体的光聚合或者电化学聚合制备聚
聚合物电致发光的一些基本概念
载流子 激子 单线态与三线态 磷光和荧光 电致发光的量子效率 载流子注入效率
有机电致发光材料ppt课件
有机配合物是最早使用的有机电致发光材料,具有优良的载 流子传输特性和成膜性能,典型的有8-羟基喹啉铝(Alq3)及铍 的络合物Bebq2。
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
基本概念
电致发光(EL)是指发光材料在电场作用下,受到电流电压的激发 而发光的现象,是一种直接将电能转化为光能的过程。
有机电致发光是指由有机光电功能材料制备成的薄膜器件在电场 的激发作用下发光的现象。
发光材料按分子结构特性分为有机小分子荧光材料 和有机金属配合物材料,前者种类最多,典型的小 分子荧光有机电致发光材料如DCM发红光,香豆素 C540发绿光。
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
蒽 单晶层 20厚 m,度 驱动 40V 电 0 压
2). 1982年 Vincett的研究驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
有机电致发光二极管(OLED)
《高分子电功能材》课件
CHAPTER
05
高分子电功能材料在新能源领 域的应用
在太阳能电池中的应用
光吸收与转换
高分子电功能材料在太阳能电池 中主要用作光吸收和能量转换的 介质,通过吸收太阳光并将其转 换为电能。
稳定性与寿命
高分子电功能材料在长时间使用 中保持稳定,不易降解,提高了 太阳能电池的使用寿命。
柔性应用
一些高分子电功能材料具有较好 的柔韧性,使得太阳能电池能够 适应不同的应用场景,如穿戴设 备、建筑表面等。
热学性能测试
总结词
热学性能测试主要关注高分子电功能材料的热稳定性、热膨胀系数和热导率等参数。
详细描述
常用的热学性能测试方法包括热重分析、差热分析、热膨胀分析和热导率测量等。这些测试方法可以帮助我们了 解材料在高温下的稳定性、热膨胀行为和热量传递机制,对于评估材料在实际应用中的耐热性和可靠性具有重要 意义。
性能
高分子电功能材料的电学性能受其化学结构、分子量、聚集态等因素影响,可 通过调节这些因素来优化其性能。
高分子电功能材料的应用领域
电子器件
新能源
高分子电功能材料在电子器件领域具 有广泛应用,如导电高分子在电极材 料、电磁屏蔽材料等方面应用。
高分子电功能材料在新能源领域也有 广泛应用,如太阳能电池、燃料电池 等。
在燃料电池中的应用
催化作用
高分子电功能材料在燃料电池中作为催化剂 ,加速化学反应过程,提高燃料电池的效率 和性能。
气体分离与传导
高分子电功能材料具有较好的气体分离性能和离子 传导性能,能够实现燃料电池中氧气和氢气的有效 分离和传导。
耐腐蚀与稳定性
高分子电功能材料具有较好的耐腐蚀性和稳 定性,能够承受燃料电池工作过程中的高温 和化学腐蚀环境。
第五讲:有机电致发光材料
2021/8/10
武汉工业学院化学与环境工程学院
23
3 有机电致发光器件
3.1 有机电致发光器件的结构 有机电致发光器件(Organic Electro Luminescence
Devices OELD)的效率和寿命与器件结构的设计密切 相关,合理地设计器件结构,对提高器件性能是十 分重要的。
2021/8/10
武汉工业学院化学与环境工程学院
24
OELD结构示意图
2021/8/10
武汉工业学院化学与环境工程学院
25
多层结构
近几年又出现了一种新的多层器 件结构。在ITO和空穴传输层之间 加入一层铜酞菁(CuPc)缓冲层作为 空穴注入层,其效果是可以大大延 长器件的工作寿命。为保证电极与 有机物之间的良好接触及电子的有 效注入,在金属层和有机物之间加 一层很薄的MgO或LiF缓冲层作为 电子注入层,降低了器件的驱动电 压,并使器件的效率和亮度大大提 高。
2021/8/10
武汉工业学院化学与环境工程学院
13
①.在可见光范围内具有较高的荧光量子效率或良 好的半导体特性
②.能有效地传输空穴或电子
③.高质量的成膜特性
④.良好的机械加工性能和光、电、热稳定性。
2021/8/10
武汉工业学院化学与环境工程学院
14
自从1987年OLED研究工作取得实质性进展以来, 人们对OELM进行了广泛而深入的研究,并取得了 可喜的成绩,目前,所合成的OELM成千万,其分 类方法也是多种多样。
的高亮度、高效率有机薄膜电致发光器件,使有机EL获得 了划时代的发展。
* Adachi等发表了三层的结构,同样得到了稳定、低驱动
压、高亮度的器件。
2021/8/10
有机电致发光材料
有机电致发光材料
有机电致发光(OLED)材料是一种在电场作用下产生发光的有机材料,具有高亮度、高对比度、宽视角、薄、轻、柔性等特点,被广泛应用于显示器、照明、生物医药等领域。
有机电致发光材料的研究和开发已经成为当今光电材料领域的热点之一。
首先,有机电致发光材料具有优异的发光特性。
它能够在低电压下产生高亮度的发光,具有较高的发光效率和光电转换效率。
同时,OLED材料的发光波长范围广,可以实现全彩色显示,满足不同应用场景的需求。
此外,有机电致发光材料还具有快速响应速度和良好的稳定性,能够长时间保持良好的发光性能。
其次,有机电致发光材料具有良好的加工性能和柔性。
OLED材料可以通过溶液法、真空蒸发法等简单加工工艺制备成薄膜,适用于各种基板材料上。
同时,有机电致发光材料可以制备成柔性器件,具有弯曲、折叠等特性,可以应用于柔性显示器、可穿戴设备等领域,拓展了其应用范围。
此外,有机电致发光材料还具有环保、节能的特点。
相较于传统的无机发光材料,OLED材料不含重金属等有害物质,对环境友好。
同时,有机电致发光材料在低电压下即可发光,具有较低的功耗,能够实现节能减排的效果,符合可持续发展的趋势。
总的来说,有机电致发光材料具有优异的发光特性、良好的加工性能和柔性、环保节能等优点,是一种具有广阔应用前景的新型光电材料。
随着技术的不断进步和应用需求的增加,有机电致发光材料必将在显示、照明、生物医药等领域发挥越来越重要的作用,为人类生活带来更多的便利和美好。
电致发光材料
电致发光材料电致发光概述电致发光(Electroluminescence, EL)是指发光材料在电场作用下而发光的现象。
用有机发光材料制作的发光器件,一般统称作OLEDs(Organic Light-emitting Devices),用聚合物为发光层的器件,称作PLEDs(Polymeric Light-emitting Devices)。
有机电致发光器件多采用夹层式(三明治)结构,即将有机层夹在两侧的电极之间。
空穴和电子分别从阳极和阴极注入,并在有机层中传输,相遇之后形成激子,激子在电场的作用下迁移,将能量传递给发光分子,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活产生光子,释放出光能。
ITO透明电极和低功函数的金属(Mg、Li、Ca、Ba、Ce等)常被分别用作阴极和阳极。
根据材料特性和器件要求,主要有单层器件、双层器件、三层器件、多层器件、带有掺杂层的器件、三像素垂直层叠式器件等器件结构。
早在1963年,美国纽约大学的Pope等首次发现有机材料单晶蒽的电致发光现象,直到1987年,美国柯达(Eastern Kodak)公司邓青云等用苯胺-TPD做空穴传输层(HTL)、八羟基喹啉铝(Alq3)作为发光层(EML)成功研制出一种有机发光二极管,其工作电压小于10 V,亮度高达1000 cd/m2,这样的亮度足以用于实际应用。
1990年Friend课题组[3]采用聚对苯撑乙烯(Poly-phenylene vinylene, PPV)为发光材料制成聚合物发光器件(PLED),打开了PLED研究的新局面。
近十多年来,聚合物发光材料受到各国科学家的高度重视,研究工作非常活跃。
相继合成并研究了种类繁多的共轭高分子,涉及聚对苯撑乙炔(PPE)、聚乙炔(PA)、聚对苯撑(PPP)、聚噻吩(PT)、聚芴(PF)以及它们的衍生物等等。
PPV及其衍生物是目前电致发光研究中最为成熟、最具商业化前景的一类电致发光材料,通过结构修饰、复合/共混来控制分子结构以及调节光电性能是当前研究的主要方向。
第七章有机高分子电致发光材料和器件
第七章有机高分子电致发光材料和器件有机高分子电致发光材料和器件是一种新型的发光材料和器件,其通过在高分子材料中引入发光分子,利用电场激发和控制发光,具有较高的发光效率和较长的寿命。
有机高分子电致发光材料和器件在显示、照明、生物医学和传感器等领域具有广泛的应用前景。
有机高分子电致发光材料和器件的基本原理是电发光机理,即通过施加电场刺激分子激发态,使其经过电子跃迁释放光子,实现发光。
该技术具有以下优点:首先,有机高分子电致发光材料能够实现宽光谱范围的发光,可以通过合理设计分子结构和化学修饰来调控发光波长和颜色;其次,该材料发光效率高、亮度高,并且具有很快的响应速度;此外,材料制备相对简单,成本较低,适合大规模生产。
有机高分子电致发光材料和器件可以应用于各种显示器件,如有机发光二极管(OLED)和柔性显示器。
OLED是一种利用有机高分子电致发光材料制造的显示器件,具有自发光、高对比度、宽视角等优点。
相比传统液晶显示器,OLED显示器的亮度更高,更薄,更省电。
此外,由于有机高分子材料的柔性特点,可以实现柔性显示器,将显示器应用于可穿戴设备、曲面屏幕等。
有机高分子电致发光材料和器件还可以用于照明领域。
传统的照明设备如白炽灯和荧光灯存在能源消耗大、汞污染等问题,而有机高分子电致发光材料可以使用更低的电压获得较高的亮度,具有更好的能源效率。
同时,由于有机高分子材料的柔性特点,可以制造出柔性照明设备,使得照明方式更加多样化。
此外,由于有机高分子材料对生物相容性好,可以在生物医学领域应用。
例如,可以将有机高分子电致发光材料制备成荧光探针,用于生物分子的检测和成像。
这些探针可以灵敏地检测到病原体、癌细胞和分子信号,为生物学研究和疾病诊断提供有效的工具。
在传感器领域,有机高分子电致发光材料和器件也具有广泛的应用。
其可以制备成传感器材料,用于检测环境污染物、气体成分和生物分子等。
这些传感器可以实现高灵敏度、快速响应和实时监测,为环境监测和生命科学研究提供有效的手段。
发光材料ppt最终
3、PPV类电致发光材料
从结构上可分为含氟的PPV衍生物、含 氰基的PPV衍生物、含噻吩的PPV衍生物、含 吡啶的PPV衍生物、含噁二唑的PPV衍生物、 含萘的PPV衍生物、含芴的PPV衍生物、侧链 含C60的PPV衍生物、以及含磷的PPV衍生物等
4、聚噻吩类(PTs)电致发光材料
在电致发光领域,PT自1991年被Ohmori首次发现电致 发光性质以来,经过10多年的发展,PT是仅次于PPV的高分 子材料
专业班级:高分子材料与工程1102班
组 长: 黄鹏程
组 员:耿佳斌 汤信巧 李莹 徐芳芳
白荣华 杨帅
小组箴言:要有最朴素的生活和最遥远的梦想
,
即使明天天寒地冻,路遥马亡。
(1)
(2)
(3)
(4) (5)
(6)
发光材料
发光材料是怎么来的 发光材料的品种 发光材料的优缺点 发光材料都用于干什么 关于发光材料现在人们的研究方向 发光材料的具体应用实例
光致储能夜光
粉采用新型稀土发 光材料
电致发光材料 的应用
为实现彩色电致发光平板显示,目前大力研究开发掺杂稀土的电致发光 的薄膜材料,一种等离子显示板(PDP)已经开发成功.制成了壁挂式的彩色 电视机。PDP发光原理是在两块基玻璃基板之间的惰性气体在电压作用下发 生气体放电而产生紫外线,进而激发三基色荧光粉而产生光。由于PDP响应 速度快,视角大,亮度高而制成大屏幕。
电致发光高分子材料
电致发光(electroluminescent),又可称电场 发光,简称EL,是通过加在两电极的电压产生电场 ,被电场激发的电子碰击发光中心,而引致电子解 级的跃进、变化、复合导致发光的一种物理现象。 电致发光物料的例子包括掺杂了铜和银的硫化锌和 蓝色钻石。目前电致发光的研究方向主要为有机材 料的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
0
、
倚
南
窗
以
寄
傲
,审容膝之 Nhomakorabea易
安
。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
电致发光高分子材料
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左